2018年中考数学试卷江苏省宿迁市(含答案解析)(精选多篇)

时间:2019-05-14 02:26:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018年中考数学试卷江苏省宿迁市(含答案解析)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018年中考数学试卷江苏省宿迁市(含答案解析)》。

第一篇:2018年中考数学试卷江苏省宿迁市(含答案解析)

江 苏 省 宿 迁 市 2018年中考数学试卷

一、选择题

1.2的倒数是()A.2

B.C.【答案】B 【解析】【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案.【详解】∵2×=1,∴2的倒数是,故选B.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2.下列运算正确的是()A.【答案】C 【解析】【分析】根据同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项的法则逐项进行计算即可得.【详解】A.,故A选项错误;

B.C.D.D.-2

B.a2与a1不是同类项,不能合并,故B选项错误; C.D.故选C.【点睛】本题考查了同底数幂的乘法,幂的乘方,同底数幂的除法,合并同类项等运算,熟练掌握有关的运算法则是解题的关键.3.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是(),故C选项正确;,故D选项错误,A.24°

B.59°

C.60°

D.69° 【答案】B 【解析】【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.,∠C=24°,【详解】∵∠A=35°

+24°=59°,∴∠DBC=∠A+∠C=35°又∵DE∥BC,∴∠D=∠DBC=59°故选B.【点睛】本题考查了平行线的性质,三角形外角的性质,熟练掌握相关的性质是解题的关键.4.函数 中,自变量x的取值范围是()

A.x≠0

B.x<1

C.x>1

D.x≠1 【答案】D 【解析】【分析】根据分式有意义的条件:分母不为0,计算即可得出答案.【详解】依题可得:x-1≠0,∴x≠1,故选D.【点睛】本题考查了函数自变量的取值范围,熟知分式有意义的条件是分母不为0是解本题的关键.5.若a<b,则下列结论不一定成立的是()A.a-1<b-1

B.2a<2b

C.【答案】D 【解析】【分析】根据不等式的性质逐项进行判断即可得答案.【详解】A.∵a<b,∴ a-1<b-1,正确,故A不符合题意;

B.∵a<b,∴ 2a<2b,正确,故B不符合题意; C.∵a<b,∴,正确,故C不符合题意;

D.D.当a<b<0时,a2>b2,故D选项错误,符合题意,故选D.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的性质是解题的关键.不等式性质1:不等式两边同时加上(或减去)同一个数,不等号方向不变; 不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等号方向不变; 不等式性质3:不等式两边同时乘以(或除以)同一个负数,不等号方向改变.6.若实数m、n满足 A.12

B.10

C.8

D.6 【答案】B 【解析】【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.【详解】由题意得:m-2=0,n-4=0,∴m=2,n=4,又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去,②若腰为4,底为2,则周长为:4+4+2=10,故选B.【点睛】本题考查了非负数的性质以及等腰三角形的性质,根据非负数的性质求出m、n的值是解题的关键.7.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是(),且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()

A.B.2

C.D.4

【答案】A 【解析】【分析】根据菱形的性质得菱形边长为4,AC⊥BD,由一个角是60度的等腰三角形是等边三角形得△ABD是等边三角形;在Rt△AOD中,根据勾股定理得AO=2,AC=2AO=4,根据三角形面积公式AC=4,根据中位线定理得OE∥AD,根据相似三角形的面积比等于相似比继而可求出得S△ACD=OD·△OCE的面积.【详解】∵菱形ABCD的周长为16,∴菱形ABCD的边长为4,∵∠BAD=60°∴△ABD是等边三角形,又∵O是菱形对角线AC、BD的交点,∴AC⊥BD,在Rt△AOD中,∴AO=∴AC=2AO=4,AC= ×2×4=4,∴S△ACD=OD·又∵O、E分别是中点,∴OE∥AD,∴△COE∽△CAD,∴,∴,4=,∴S△COE=S△CAD=×故选A.【点睛】本题考查了相似三角形的判定与性质,等边三角形的判定与性质,勾股定理,菱形的性质,结合图形熟练应用相关性质是解题的关键.8.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()A.5

B.4

C.3

D.2 【答案】C 【解析】【分析】设直线l解析式为:y=kx+b,由l与x轴交于点A(-,0),与y轴交于点B(0,b),依题可得关于k和b的二元一次方程组,代入消元即可得出k的值,从而得出直线条数.【详解】设直线l解析式为:y=kx+b,则l与x轴交于点A(-,0),与y轴交于点B(0,b),∴2∴(2-k)=8|k|,22∴k-12k+4=0或(k+2)=0,4或k=-2,∴k=6±∴满足条件的直线有3条,故选C.【点睛】本题考查了一次函数图象与坐标轴交点问题,三角形的面积等,解本题的关键是确定出直线y=kx+b与x轴、y轴的交点坐标.二、填空题

9.一组数据:2,5,3,1,6,则这组数据的中位数是________.【答案】3 【解析】【分析】根据中位数的定义进行求解即可得出答案.【详解】将数据从小到大排列:1,2,3,5,6,处于最中间的数是3,∴中位数为3,故答案为:3.【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.10.地球上海洋总面积约为360 000 000km2,将360 000 000用科学记数法表示是________.108 【答案】3.6×

10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把【解析】【分析】科学记数法的表示形式为a×原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

【详解】360 000 000将小数点向左移8位得到3.6,108,所以360 000 000用科学记数法表示为:3.6×108.故答案为:3.6×

10的形式,【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

11.分解因式:x2y-y=________. 【答案】y(x+1)(x-1)

n

n

故答案为:y(x+1)(x﹣1)

12.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是________.【答案】8 【解析】【分析】根据多边形的内角和公式,多边形外角和为360°,根据题意列出方程,解之即可.【详解】设这个多边形边数为n,180°=360°×3,∴(n-2)×∴n=8,故答案为:8.【点睛】本题考查了多边形的内角和与外角和,熟练掌握多边形的内角和公式、外角和为360度是解题的关键.13.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.【答案】15π

【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线l=,∴S侧=×2πr×5=×2π×3×5=15π,故答案为:15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.14.在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是________.【答案】(5,1)

【解析】【分析】根据点坐标平移特征:左减右加,上加下减,即可得出平移之后的点坐标.【详解】∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,∴所得的点的坐标为:(5,1),故答案为:(5,1).【点睛】本题考查了点的平移,熟知点的坐标的平移特征是解题的关键.15.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.【答案】120 【解析】【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.【详解】设原计划每天种树x棵,则实际每天种树2x棵,依题可得:解得:x=120,经检验x=120是原分式方程的根,故答案为:120.【点睛】本题考查了列分式方程解应用题,弄清题意,找出等量关系是解题的关键.16.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是________.【答案】1 【解析】【分析】要保证小明获胜是必然事件,则小明必然要取到第7根火柴,进行倒推,可以发现只要两人所取的根数之和为3就能保证小明获胜.【详解】如果小明第一次取走1根,剩下了6根,后面无论如取,只要保证每轮两人所取的根数之和为3,就能保证小明将取走最后一根火柴,而6是3的倍数,因此小明第一次应该取走1根,故答案为:1.【点睛】本题考查了随机事件,概率的意义,理解题目信息,判断出使两人所取的根数之和是3是解题的关键.

17.如图,在平面直角坐标系中,反比例函数

(x>0)与正比例函数y=kx、(k>1)的图象分别,交于点A、B,若∠AOB=45°,则△AOB的面积是________.【答案】2 【解析】【分析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x

2,y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=联立,解得x1=,x2=,从而得x1x2=2,所以y1=x2,y2=x1,根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×2+ ×2=2.【详解】如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,设A(x1,y1),B(x2,y2),∵A、B在反比例函数上,∴x1y1=x2y2=2,∵,解得:x1=,又∵,解得:x2=∴x1x2=×,=2,∴y1=x2,y2=x1,即OC=OD,AC=BD,∵BD⊥x轴,AC⊥y轴,∴∠ACO=∠BDO=90°∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,OH⊥AB,又∵∠AOB=45°,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°∴△ACO≌△BDO≌△AHO≌△BHO,2+ ×2=2,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×故答案为:2.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.18.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点A,B分别落在x、y轴的正半轴上,点A的坐标为(1,0)∠OAB=60°,将三角板ABC沿x轴向右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.【答案】+π

【解析】【分析】在Rt△AOB中,由A点坐标得OA=1,根据锐角三角形函数可得AB=2,OB=,在旋转过程中,三角板的角度和边的长度不变,所以点B运动的路径与坐标轴围成的图形面积:S=,计算即可得出答案.【详解】在Rt△AOB中,∵A(1,0),∴OA=1,又∵∠OAB=60°=∴cos60°,∴AB=2,OB=,∵在旋转过程中,三角板的角度和边的长度不变,∴点B运动的路径与坐标轴围成的图形面积: S=故答案为:π.=

π,【点睛】本题考查了扇形面积的计算,锐角三角函数的定义,旋转的性质等,根据题意正确画出图形是解题的关键.三、解答题

19.解方程组:【答案】原方程组的解为

【解析】【分析】利用代入法进行求解即可得.【详解】,由①得:x=-2y ③

将③代入②得:3(-2y)+4y=6,解得:y=-3,将y=-3代入③得:x=6,∴原方程组的解为

.【点睛】本题考查了解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.20.计算: 【答案】5

【详解】原式=4-1+(2-)+2×,=4-1+2-+,=5.【点睛】本题考查了实数的混合运算,熟练掌握实数的混合运算顺序、特殊角的三角函数值是解题的关键.21.某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表.请根据以上信息,解决下列问题:

(1)征文比赛成绩频数分布表中c的值是________;(2)补全征文比赛成绩频数分布直方图;

(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.【答案】(1)0.2;(2)补全征文比赛成绩频数分布直方图见解析;(3)全市获得一等奖征文的篇数为300篇.【解析】【分析】(1)由频率之和为1,用1减去其余各组的频率即可求得c的值;(2)由频数分布表可知 60≤m<70的频数为:38,频率为:0.38,根据总数=频数÷频率得样本容量,再由频数=总数×频率求出a、b的值,根据a、b的值补全图形即可;

(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,再用总篇数×一等奖的频率=全市一等奖征文篇数.【详解】(1)c=1-0.38-0.32-0.1=0.2,故答案为:0.2;

(2)38÷0.38=100,a=100×0.32=32,b=100×0.2=20,补全征文比赛成绩频数分布直方图如图所示:

(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,0.3=300(篇),∴全市获得一等奖征文的篇数为:1000×答:全市获得一等奖征文的篇数为300篇.【点睛】本题考查了频数分布表、频数分布直方图,熟知频数、频率、总数之间的关系是解本题的关键.22.如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.【答案】证明见解析.【解析】【分析】根据平行四边形的性质得AD∥BC,AD=BC,∠A=∠C,根据平行线的性质得∠E=∠F,再结合已知条件可得AF=CE,根据ASA得△CEH≌△AFG,根据全等三角形对应边相等得证.【详解】∵在四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠A=∠C,∴∠E=∠F,又∵BE=DF,∴AD+DF=CB+BE,即AF=CE,在△CEH和△AFG中,∴△CEH≌△AFG,∴CH=AG.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质等,熟练掌握相关知识是解题的关键.23.有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;

(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)【答案】(1)甲选择A部电影的概率为;(2)甲、乙、丙3人选择同一部电影的概率为.【解析】【分析】(1)甲可选择电影A或B,根据概率公式即可得甲选择A部电影的概率.(2)用树状图表示甲、乙、丙3人选择电影的所有情况,由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,根据概率公式即可得出答案.【详解】(1)∵甲可选择电影A或B,∴甲选择A部电影的概率P=,答:甲选择A部电影的概率为;

(2)甲、乙、丙3人选择电影情况如图:

由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,∴甲、乙、丙3人选择同一部电影的概率P=答:甲、乙、丙3人选择同一部电影的概率为.,【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.

24.某种型号汽车油箱容量为40L,每行驶100km耗油10L.设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L)(1)求y与x之间的函数表达式;

(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的四分之一,按此建议,求该辆汽车最多行驶的路程.【答案】(1)y与x之间的函数表达式为:y=40-x(0≤x≤400);(2)该辆汽车最多行驶的路程为300.【解析】【分析】(1)根据题意可得y与x之间的函数表达式为:y=40-x(0≤x≤400);

(2)根据题意可得不等式:40-x≥40×,解之即可得出答案.【详解】(1)由题意得:y=40-x,即y=40-x(0≤x≤400),答:y与x之间的函数表达式为:y=40-x(0≤x≤400);(2)解:依题可得:40-∴x≤300.答:该辆汽车最多行驶的路程为300km.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,弄清题意,找出各个量之间的关系是解题的关键.25.如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是60和30,设PQ垂直于AB,且垂足为C.0

0

x≥40×,∴-x≥-30,(1)求∠BPQ的度数;

(2)求树PQ的高度(结果精确到0.1m,);(2)树PQ的高度约为15.8m.【答案】(1)∠BPQ=30°,∠PBC=60°,∠QBC=30°,AB=100m,在Rt△PBC中,【解析】【分析】(1)根据题意题可得:∠A=45°根据三角形内角和定理即可得∠BPQ度数;

(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC=x;根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+x,又∠A=45°,得出AC=PC,建立方程解之求出x,再将x值代入PQ代数式求之即可.,∠PBC=60°,∠QBC=30°,AB=10m,【详解】(1)依题可得:∠A=45°在Rt△PBC中,∠PCB=90°,∵∠PBC=60°; ∴∠BPQ=30°(2)设CQ=x,在Rt△QBC中,∠QCB=90°,∵∠QBC=30°∴BQ=2x,BC=x,∠QBC=30°,又∵∠PBC=60°,∴∠PBQ=30°,由(1)知∠BPQ=30°∴PQ=BQ=2x,∴PC=PQ+QC=3x,AC=AB+BC=10+x,又∵∠A=45°∴AC=PC,即3x=10+x,解得:x=∴PQ=2x=,≈15.8(m),答:树PQ的高度约为15.8m.【点睛】本题考查了解直角三角形的应用,涉及到三角形的内角和定理、等腰三角形的性质、含30度角的直角三角形的性质等,准确识图是解题的关键.26.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D,过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;

(2)若∠ABC=600,AB=10,求线段CF的长.【答案】(1)证明见解析;(2)CF=5.【解析】试题分析:(1)、连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)、依据切线的性质定理可知OC⊥PE,然后通过解直角三角函数,求得OF的值,再减去圆的半径即可. 试题解析:(1)、连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP ∵PA是⊙O的切线,∴∠OAP=90°. ∴∠OCP=90°,即OC⊥PC ∴PC是⊙O的切线.(2)、∵AB是直径,∴∠ACB=90°,∵∠CAB=30°,∴∠COF=60°,∵PC是⊙O的切线,AB=10,∴OC⊥PF,OC=OB=AB=5,∴OF==10,∴BF=OF﹣OB=5.

考点:(1)、切线的判定与性质;(2)、解直角三角形

27.如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0

(2)若△AOD与△BPC相似,求a的值;

(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.【答案】(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆.【解析】【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=C(,-),从而得PB=3-

=,PC=,AO=a,OD=3a,代入求得顶点

;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得,解得:a= 3(舍去);

②△AOD∽△CPB,根据相似三角形性质得

,解得:a1=3(舍),a2=;

(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.【详解】(1)∵y=(x-a)(x-3)(0

(2)∵A(a,0),B(3,0),D(0,3a).∴对称轴x=当x= ∴C(∴PB=3-时,y=-,-=),PC=,,AO=a,OD=3a,①当△AOD∽△BPC时,∴,即 解得:a=,3(舍去);

②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.综上所述:a的值为;

(3)能;连接BD,取BD中点M,∵D、B、O三点共圆,且BD为直径,圆心为M(,a),若点C也在此圆上,∴MC=MB,∴42化简得:a-14a+45=0,22∴(a-5)(a-9)=0,22∴a=5或a=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0

第二篇:江苏省宿迁市2018年中考数学试卷(解析版)

江苏省宿迁市2018年中考数学试卷(解析版)

一、选择题

1.(2分)2的倒数是()。

A.2 B.C.D.-2 【答案】B

【考点】有理数的倒数

【解析】【解答】解:∵2的倒数为,故答案为:B.【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案.2.(2分)下列运算正确的是()。

A.B.C.D.【答案】C

【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用

【解析】【解答】解:A.∵a.a =a ,故错误,A不符合题意; B.a2与a1不是同类项,不能合并,故错误,B不符合题意; C.∵(a2)3=a6,故正确,C符合题意; D.∵a8÷a4=a4,故错误,D不符合题意; 故答案为:C.【分析】A.根据同底数幂相乘,底数不变,指数相加即可判断对错;

B.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得不是同类项; C.根据幂的乘方,底数不变,指数相乘即可判断对错; D.根据同底数幂相除,底数不变,指数相减即可判断对错;

3.(2分)如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是(A.24° B.59° C.60° D.69° 【答案】B

【考点】平行线的性质,三角形的外角性质

【解析】【解答】解:∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=35°+24°=59°,又∵DE∥BC,∴∠D=∠DBC=59°.。)

故答案为:B.【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.4.(2分)函数 中,自变量x的取值范围是()。

A.x≠0 B.x<1 C.x>1 D.x≠1 【答案】D

【考点】分式有意义的条件

【解析】【解答】解:依题可得:x-1≠0,∴x≠1.故答案为:D.【分析】根据分式有意义的条件:分母不为0,计算即可得出答案.5.(2分)若a<b,则下列结论不一定成立的是()。

A.a-1<b-1 B.2a<2b C.【答案】D

【考点】不等式及其性质

【解析】【解答】解:A.∵a<b,∴ a-1<b-1,故正确,A不符合题意;B.∵a<b,∴ 2a<2b,故正确,B不符合题意; C.∵a<b,∴ <,故正确,C不符合题意;

D.D.当a<b<0时,a2>b

2,故错误,D符合题意; 故答案为:D.【分析】A.不等式性质1:不等式两边同时加上(或减去)同一个数,不等式任然成立;由此即可判断对错;

B.不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等式任然成立;由此即可判断对错; C.不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等式任然成立;由此即可判断对错; D.题中只有a<b,当当a<b<0时,a2>b2,故错误 6.(2分)若实数m、n满足 的周长是()。

A.12 B.10 C.8 D.6 【答案】B

【考点】等腰三角形的性质,非负数之和为0

【解析】【解答】解:依题可得:,∴

.,且m、n恰好是等腰△ABC的两条边的边长,则△ABC又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去.②若腰为4,底为2,∴C△ABC=4+4+2=10.故答案为:B.【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.7.(2分)如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是()。

A.B.2 C.D.4 【答案】A

【考点】三角形的面积,等边三角形的判定与性质,勾股定理,菱形的性质,相似三角形的判定与性质

【解析】【解答】解:∵菱形ABCD的周长为16,∴菱形ABCD的边长为4,∵∠BAD=60°, ∴△ABD是等边三角形,又∵O是菱形对角线AC、BD的交点,∴AC⊥BD,在Rt△AOD中,∴AO= ∴AC=2A0=4 ∴S△ACD=,×2×4

=4,·OD·AC= 又∵O、E分别是中点,∴OE∥AD,∴△COE∽△CAD,∴ ∴ ∴S△COE= , , S△CAD= ×4 =

.故答案为:A.【分析】根据菱形的性质得菱形边长为4,AC⊥BD,由一个角是60度的等腰三角形是等边三角形得△ABD是等边三角形;在Rt△AOD中,根据勾股定理得AO= ·OD·AC=4,AC=2A0=4,根据三角形面积公式得S△ACD= ,从而求出△OCE的面积.,根据中位线定理得OE∥AD,由相似三角形性质得

8.(2分)在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。

A.5 B.4 C.3 D.2 【答案】C

【考点】三角形的面积,一次函数图像与坐标轴交点问题

【解析】【解答】解:设直线l解析式为:y=kx+b,设l与x轴交于点A(-b), ∴

2∴(2-k)=8,22∴k-12k+4=0或(k+2)=0,0),与y轴交于点B(0,∴k= 或k=-2.∴满足条件的直线有3条.故答案为:C.【分析】设直线l解析式为:y=kx+b,设l与x轴交于点A(-,0),与y轴交于点B(0,b),依题可得关于k和b的二元一次方程组,代入消元即可得出k的值,从而得出直线条数.二、填空题

9.(1分)一组数据:2,5,3,1,6,则这组数据的中位数是________.【答案】3

【考点】中位数

【解析】【解答】解:将数据从小到大排列:1,2,3,5,6,∴中位数为:3.故答案为:3.【分析】将此组数据从小到大或从大到小排列,正好是奇数个,处于中间的那个数即为这组数据的中位数;由此即可得出答案.10.(1分)地球上海洋总面积约为360 000 000km

2,将360 000 000用科学计数法表示是________.8【答案】3.6×10

【考点】科学记数法—表示绝对值较大的数

88【解析】【解答】解:∵360 000 000=3.6×10,故答案为:3.6×10.【分析】学计数法:将一个数字表示成 a×10的n次幂的形式,其中1≤|a|<10,n为整数。11.(1分)分解因式:x2y-y=________.

【答案】y(x+1)(x-1)

【考点】提公因式法与公式法的综合运用

2【解析】【解答】xy-y,=y(x2-1),=y(x+1)(x-1).【分析】先用提公因式法分解因式,再用平方差公式分解到每一个因式都不能再分解为止。12.(1分)一个多边形的内角和是其外角和的3倍,则这个多边形的边数是________.【答案】8

【考点】多边形内角与外角

【解析】【解答】解:设这个多边形边数为n,∴(n-2)×180°=360°×3,∴n=8.故答案为:8.【分析】根据多边形的内角和公式,多边形外角和为360°,根据题意列出方程,解之即可.13.(1分)已知圆锥的底面圆半价为3cm,高为4cm,则圆锥的侧面积是________cm2.【答案】15π

【考点】圆锥的计算

【解析】【解答】解:设圆锥母线长为l,∵r=3,h=4,, ∴母线l= ∴S侧= ·2πr×5= =5,×2π×3×5=15π.故答案为:15π.【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.14.(1分)在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是________.【答案】(5,1)

【考点】平移的性质

【解析】【解答】解:∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,∴所得的点的坐标为:(5,1).故答案为:(5,1).【分析】根据点坐标平移特征:右加上加,从而得出平移之后的点坐标.15.(1分)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.【答案】120

【考点】分式方程的实际应用

【解析】【解答】解:设原计划每天种树x棵,则实际每天种树2x棵,依题可得:解得:x=120.经检验x=120是原分式方程的根.故答案为:120.【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.16.(1分)小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。若由小明先取,且小明获胜是必然事件,则小明第一次取走火柴棒的根数是________.【答案】1,【考点】随机事件

【解析】【解答】解:如果小明第一次取走1根,剩下了6根,6既是1的倍数又是2的倍数,不管后面怎么取,小明都将取走最后一根火柴.故答案为:1.【分析】要保证小明获胜是必然事件,则小明必然要取到第7根火柴,进行倒推,就能找到保证小明获胜的方法.17.(1分)如图,在平面直角坐标系中,反比例函数

(x>0)与正比例函数y=kx、(k>1)的图像分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.【答案】2

【考点】反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质

【解析】【解答】解:如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,设A(x1,y1),B(x

2,y2),∵A、B在反比例函数上,∴x1y1=x2y2=2,∵,解得:x1= , 又∵,解得:x2= ∴x1x2= ×,=2,∴y1=x

2,y2=x

1,即OC=OD,AC=BD,∵BD⊥x轴,AC⊥y轴,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO= 故答案为:2.【分析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2,y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=

联立,解得x1=,x2=,从而得

x1y1+

x2y2=

×2+

×2=2.x1x2=2,所以y1=x2,y2=x1,根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=

x1y1+

x2y2=

×2+

×2=2.18.(1分)如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点AB分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.【答案】+ π

【考点】三角形的面积,扇形面积的计算,锐角三角函数的定义,旋转的性质

【解析】【解答】解:在Rt△AOB中,∵A(1,0),∴OA=1, 又∵∠OAB=60°,∴cos60°= ∴AB=2,OB= , , ∵在旋转过程中,三角板的角度和边的长度不变,∴点B运动的路径与坐标轴围成的图形面积为: = = + π.+ π.故答案为:

【分析】在Rt△AOB中,由A点坐标得OA=1,根据锐角三角形函数可得AB=2,OB= 角板的角度和边的长度不变,所以点B运动的路径与坐标轴围成的图形面积为:=,计算即可得出答案.,在旋转过程中,三

三、解答题

19.(5分)解方程组:

【答案】解:,由①得:x=-2y ③

将③代入②得:3(-2y)+4y=6,解得:y=-3, 将y=-3代入③得:x=6,∴原方程组的解为:

【考点】解二元一次方程组

【解析】【分析】根据二元一次方程组代入消元解方程即可.20.(5分)计算: 【答案】解:原式=4-1+2-=4-1+2-=5.【考点】实数的运算

【解析】【分析】根据零指数幂,绝对值的非负性,特殊角的三角函数值,化简计算即可.21.(11分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表。+,+2×,请根据以上信息,解决下列问题:

(1)征文比赛成绩频数分布表中c的值是________;

(2)补全征文比赛成绩频数分布直方图;

(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数。

【答案】(1)0.2(2)解:10÷0.1=100,100×0.32=32,100×0.2=20 补全征文比赛成绩频数分布直方图如图:

(3)解:由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,∴全市获得一等奖征文的篇数为:1000×0.3=300(篇).答:全市获得一等奖征文的篇数为300篇.【考点】用样本估计总体,频数(率)分布表,频数(率)分布直方图

【解析】【解答】(1)解:(1)由频数分布表可知 60≤m<70的频数为:38,频率为:0.38∴抽取的篇数为:38÷0.38=100(篇),∴a=100×0.32=32(篇),∴b=100-38-32-10=20(篇),∴c=20÷100=0.2.故答案为:0.2.【分析】(1)由频数分布表可知 60≤m<70的频数为:38,频率为:0.38,根据总数=频数÷频率得样本容量,再由频数=总数×频率求出a,再根据频率=频数÷总数求出c.(2)由(1)中数据可补全征文比赛成绩频数分布直方图.(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,再用总篇数×一等奖的频率=全市一等奖征文篇数.22.(5分)如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.【答案】证明:∵在□ABCD中,∴AD∥BC,AD=BC,∠A=∠C, ∴∠E=∠F, 又∵BE=DF,∴AD+DF=CB+BE,即AF=CE, 在△CEH和△AFG中,, ∴△CEH≌△AFG,∴CH=AG.【考点】平行线的性质,全等三角形的判定与性质,平行四边形的性质

【解析】【分析】根据平行四边形的性质得AD∥BC,AD=BC,∠A=∠C,根据平行线的性质得∠E=∠F,再结合已知条件可得AF=CE,根据ASA得△CEH≌△AFG,根据全等三角形对应边相等得证.23.(10分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看

(1)求甲选择A部电影的概率;

(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)

【答案】(1)解:(1)∵甲可选择电影A或B,∴甲选择A部电影的概率P= 答:甲选择A部电影的概率为

..(2)甲、乙、丙3人选择电影情况如图:

由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,∴甲、乙、丙3人选择同一部电影的概率P= 答:甲、乙、丙3人选择同一部电影的概率为: 【考点】列表法与树状图法,概率公式

..【解析】【分析】(1)甲可选择电影A或B,根据概率公式即可得甲选择A部电影的概率.(2)用树状图表示甲、乙、丙3人选择电影的所有情况,由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,根据概率公式即可得出答案.24.(10分)某种型号汽车油箱容量为40L,每行驶100km耗油10L。设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L)。

(1)求y与x之间的函数表达式;

(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的四分之一,按此建议,求该辆汽车最多行驶的路程.【答案】(1)解:依题可得:y=40-y=40-x(0≤x≤400).x≥40×,∴-

x≥-30,x,即y=40-

x(0≤x≤400).答:y与x之间的函数表达式为:(2)解:依题可得:40-∴x≤300.答:该辆汽车最多行驶的路程为300.【考点】一次函数与不等式(组)的综合应用,根据实际问题列一次函数表达式

【解析】【分析】(1)根据题意可得y与x之间的函数表达式为:y=40-(2)根据题意可得不等式:40-

x≥40×,解之即可得出答案.x(0≤x≤400).025.(10分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为4

5,00

然后他沿着正对树PQ的方向前进100m到达B点处,此时测得树顶P和树底Q的仰角分别是60和30,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;

(2)求树PQ的高度(结果精确到0.1m,)

【答案】(1)解:依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=100m,在Rt△PBC中,∵∠PBC=60°,∠PCB=90°,∴∠BPQ=30°,(2)解:设CQ=x,在Rt△QBC中,∵∠QBC=30°,∠QCB=90°, ∴BQ=2x,BC= x,又∵∠PBC=60°,∠QBC=30°,∴∠PBQ=30°, 由(1)知∠BPQ=30°, ∴PQ=BQ=2x,∴PC=PQ+QC=3x,AC=AB+BC=10+ 又∵∠A=45°,∴AC=PC,即3x=10+ 解得:x= ∴PQ=2x= x,, ≈15.8(m).x,答:树PQ的高度约为15.8m.【考点】三角形内角和定理,等腰三角形的性质,含30度角的直角三角形

【解析】【分析】(1)根据题意题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=100m,在Rt△PBC中,根据三角形内角和定理即可得∠BPQ度数.(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC= 根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+ x,又∠A=45°,得出AC=PC,建立方程解之求出x,再将x值代入PQ代数式求之即可.x;26.(10分)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D,过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;

(2)若∠ABC=600,AB=10,求线段CF的长,【答案】(1)证明:连接OC,∵OA=OC,OD⊥AC,∴OD是AC的垂直平分线,∴PA=PC, 在△PAO和△PCO中,, ∴△PAO≌△PCO(SSS),∴∠PAO=∠PCO=90°, ∴PC是⊙O的切线.(2)解:∵PC是⊙O的切线.∴∠FCO=∠PCO=90°, ∵∠ABC=60°,OB=OC,∴△OCB是等边三角形,又∵AB=10, ∴OB=OC=5, 在Rt△FCO中,∴tan60°= ∴CF=5.= , 【考点】全等三角形的判定与性质,等边三角形的判定与性质,切线的判定与性质,锐角三角函数的定义,线段垂直平分线的判定

【解析】【分析】(1)连接OC,根据垂直平分线的判定得OD是AC的垂直平分线,再由垂直平分线的性质得PA=PC,根据SSS得△PAO≌△PCO(SSS),由全等三角形性质得∠PAO=∠PCO=90°,即PC是⊙O的切线.(2)由切线性质得∠FCO=∠PCO=90°,根据有一个角是60度的等腰三角形是等边三角形得△OCB是等边三角形,在Rt△FCO中,根据正切的三角函数定义即可求出CF值.27.(15分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)的图像与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;

(2)若△AOD与△BPC相似,求a的值;

(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.【答案】(1)解:∵y=(x-a)(x-3)(0

②△AOD∽△CPB,∴ 即 ,,.解得:a1=3(舍),a2= 综上所述:a的值为.(3)解:能;连接BD,取BD中点M,∵D、B、O三点共圆,且BD为直径,圆心为M(若点C也在此圆上,∴MC=MB,∴

42化简得:a-14a+45=0,22∴(a-5)(a-9)=0, 22∴a=5或a=9,,a),∴a1= ∵0

【解析】【分析】(1)根据二次函数的图像与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=-),从而得PB=3-

=,PC= ,AO=a,OD=3a,代入求得顶点C(,;再分情况讨论:①当△AOD∽△BPC时,根据相似三角形性质得,解得:a= 3(舍去);,解得:a1=3(舍),a2=

.,a)的圆上,②△AOD∽△CPB,根据相似三角形性质得

(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M为圆心(若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.28.(15分)如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD

交于点P,设BE=x,(1)当AM= 时,求x的值;

(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;

(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.【答案】(1)解:由折叠性质可知:BE=ME=x,∵正方形ABCD边长为1 ∴AE=1-x,在Rt△AME中,222∴AE+AM=ME,2即(1-x)+ =x

2,.解得:x=(2)解:△PDM的周长不会发生变化,且为定值2.连接BM、BP,过点B作BH⊥MN,∵BE=ME,∴∠EBM=∠EMB,又∵∠EBC=∠EMN=90°,即∠EBM+∠MBC=∠EMB+∠BMN=90°,∴∠MBC=∠BMN,又∵正方形ABCD,∴AD∥BC,AB=BC,∴∠AMB=∠MBC=∠BMN,在Rt△ABM和Rt△HBM中,∵ , ∴Rt△ABM≌Rt△HBM(AAS),∴AM=HM,AB=HB=BC,在Rt△BHP和Rt△BCP中,∵ , ∴Rt△BHP≌Rt△BCP(HL),∴HP=CP,又∵C△PDM=MD+DP+MP,=MD+DP+MH+HP,=MD+DP+AM+PC, =AD+DC, =2.∴△PDM的周长不会发生变化,且为定值2.(3)解:过F作FQ⊥AB,连接BM,由折叠性质可知:∠BEF=∠MEF,BM⊥EF,∴∠EBM+∠BEF=∠EMB+∠MEF=∠QFE+∠BEF=90°, ∴∠EBM=∠EMB=∠QFE,在Rt△ABM和Rt△QFE中,∵ , ∴Rt△ABM≌Rt△QFE(ASA),∴AM=QE,设AM长为a,在Rt△AEM中,222∴AE+AM=EM, 222即(1-x)+a=x, ∴AM=QE= ,∴BQ=CF=x-∴S= = =,(CF+BE)×BC,(x-(2x-+x)×1,), 222又∵(1-x)+a=x, ∴x= ∴S= = =(=AM=BE,BQ=CF=-a+)×1,-a,2(a-a+1), 2)+(a-,∵0

【解析】【分析】(1)由折叠性质可知BE=ME=x,结合已知条件知AE=1-x,在Rt△AME中,根据勾股定2理得(1-x)+ =x

2,解得:x=

.BP,(2)△PDM的周长不会发生变化,且为定值2.连接BM、过点B作BH⊥MN,根据折叠性质知BE=ME,由等边对等角得∠EBM=∠EMB,由等角的余角相等得∠MBC=∠BMN,由全等三角形的判定AAS得Rt△ABM≌Rt△HBM,根据全等三角形的性质得AM=HM,AB=HB=BC,又根据全等三角形的判定HL得Rt△BHP≌Rt△BCP,根据全等三角形的性质得HP=CP,由三角形周长和等量代换即可得出△PDM周长为定值2.(3)过F作FQ⊥AB,连接BM,由折叠性质可知:∠BEF=∠MEF,BM⊥EF,由等角的余角相等得∠EBM=∠EMB=∠QFE,由全等三角形的判定ASA得Rt△ABM≌Rt△QFE,据全等三角形的性质得AM=QE;设AM

222长为a,在Rt△AEM中,根据勾股定理得(1-x)+a=x,从而得AM=QE= , BQ=CF=x-

222,根据梯形得面积公式代入即可得出S与x的函数关系式;又由(1-x)+a=x,得x= =AM=BE,BQ=CF= S的最小值.-a(0

第三篇:宿迁市2018年中考数学试卷含答案解析(Word版)

江苏省宿迁市2018年中考数学试卷

一、选择题

1.2的倒数是()。

A.2 B.C.2.下列运算正确的是()。

A.B.C.D.D.-2 3.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()。

A.24° B.59° C.60° D.69° 4.函数 中,自变量x的取值范围是()。

A.x≠0 B.x<1 C.x>1 D.x≠1 5.若a<b,则下列结论不一定成立的是()。

A.a-1<b-1 B.2a<2b C.6.若实数m、n满足 △ABC的周长是()。

A.12 B.10 C.8 D.6 7.如图,菱形ABCD的对角线AC、BD相交于点O,点E为边CD的中点,若菱形ABCD,则△OCE的面积是()。的周长为16,∠BAD=60°

D.,且m、n恰好是等腰△ABC的两条边的边长,则

A.B.2 C.D.4 8.在平面直角坐标系中,过点(1,2)作直线l,若直线l与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。A.5 B.4 C.3 D.2

二、填空题

9.一组数据:2,5,3,1,6,则这组数据的中位数是________.10.地球上海洋总面积约为360 000 000km

2,将360 000 000用科学计数法表示是________.11.分解因式:x2y-y=________.

12.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是________.13.已知圆锥的底面圆半价为3cm,高为4cm,则圆锥的侧面积是________cm2.14.在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得的点的坐标是________.15.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.16.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜。若由小明先取,且小明获胜是必然事件,则小明第一次取走火柴棒的根数是________.17.如图,在平面直角坐标系中,反比例函数

(x>0)与正比例函数y=kx、,则△AOB的面积是________.(k>1)的图像分别交于点A、B,若∠AOB=45°

18.如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点AB分别落在x、y轴,点A的坐标为(1,0),将三角板ABC沿x轴右作无滑动的滚动的正半轴上,∠OAB=60°(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.三、解答题

19.解方程组: 20.计算:

21.某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表。

请根据以上信息,解决下列问题:

(1)征文比赛成绩频数分布表中c的值是________;

(2)补全征文比赛成绩频数分布直方图;

(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数。22.如图,在□ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H,求证:AG=CH.23.有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看

(1)求甲选择A部电影的概率;

(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)

24.某种型号汽车油箱容量为40L,每行驶100km耗油10L。设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L)。(1)求y与x之间的函数表达式;

(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的四分之一,按此建议,求该辆汽车最多行驶的路程.25.如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角0为4

5,然后他沿着正对树PQ的方向前进100m到达B点处,此时测得树顶P和树底Q00的仰角分别是60和30,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;

(2)求树PQ的高度(结果精确到0.1m,)

26.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D,过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;

(2)若∠ABC=600,AB=10,求线段CF的长,27.如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)的图像与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;

(2)若△AOD与△BPC相似,求a的值;

(3)点D、O、C、B能否在同一个圆上,若能,求出a的值,若不能,请说明理由.28.如图,在边长为1的正方形ABCD中,动点E、F分别在边AB、CD上,将正方形ABCD沿直线EF折叠,使点B的对应点M始终落在边AD上(点M不与点A、D重合),点C落在点N处,MN与CD交于点P,设BE=x,(1)当AM= 时,求x的值;

(2)随着点M在边AD上位置的变化,△PDM的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;

(3)设四边形BEFC的面积为S,求S与x之间的函数表达式,并求出S的最小值.答案解析部分

一、选择题

1.【答案】B

【考点】有理数的倒数

【解析】【解答】解:∵2的倒数为,故答案为:B.【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案.2.【答案】C

【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用

【解析】【解答】解:A.∵a.a =a ,故错误,A不符合题意; B.a2与a1不是同类项,不能合并,故错误,B不符合题意; C.∵(a2)3=a6,故正确,C符合题意; D.∵a8÷a4=a4,故错误,D不符合题意; 故答案为:C.【分析】A.根据同底数幂相乘,底数不变,指数相加即可判断对错;

B.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得不是同类项; C.根据幂的乘方,底数不变,指数相乘即可判断对错; D.根据同底数幂相除,底数不变,指数相减即可判断对错; 3.【答案】B

【考点】平行线的性质,三角形的外角性质

+24°=59°【解析】【解答】解:∵∠A=35°,∠C=24°,∴∠DBC=∠A+∠C=35°,又∵DE∥BC,.∴∠D=∠DBC=59°故答案为:B.【分析】根据三角形外角性质得∠DBC=∠A+∠C,再由平行线性质得∠D=∠DBC.4.【答案】D

【考点】分式有意义的条件

【解析】【解答】解:依题可得:x-1≠0,∴x≠1.故答案为:D.【分析】根据分式有意义的条件:分母不为0,计算即可得出答案.5.【答案】D

【考点】不等式及其性质

【解析】【解答】解:A.∵a<b,∴ a-1<b-1,故正确,A不符合题意;B.∵a<b,∴ 2a<2b,故正确,B不符合题意; C.∵a<b,∴ <,故正确,C不符合题意;

D.当a<b<0时,a2>b

2,故错误,D符合题意; 故答案为:D.【分析】A.不等式性质1:不等式两边同时加上(或减去)同一个数,不等式任然成立;由此即可判断对错;

B.不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等式任然成立;由此即可判断对错;

C.不等式性质2:不等式两边同时乘以(或除以)同一个正数,不等式任然成立;由此即可判断对错;

D.题中只有a<b,当当a<b<0时,a2>b2,故错误 6.【答案】B

【考点】等腰三角形的性质,非负数之和为0

【解析】【解答】解:依题可得:,∴

.又∵m、n恰好是等腰△ABC的两条边的边长,①若腰为2,底为4,此时不能构成三角形,舍去.②若腰为4,底为2,∴C△ABC=4+4+2=10.故答案为:B.【分析】根据绝对值和二次根式的非负性得m、n的值,再分情况讨论:①若腰为2,底为4,由三角形两边之和大于第三边,舍去;②若腰为4,底为2,再由三角形周长公式计算即可.7.【答案】A 【考点】三角形的面积,等边三角形的判定与性质,勾股定理,菱形的性质,相似三角形的判定与性质

【解析】【解答】解:∵菱形ABCD的周长为16,∴菱形ABCD的边长为4,, ∵∠BAD=60°∴△ABD是等边三角形,又∵O是菱形对角线AC、BD的交点,∴AC⊥BD,在Rt△AOD中,∴AO= ∴AC=2A0=4 ∴S△ACD=,×2×4

=4,·OD·AC= 又∵O、E分别是中点,∴OE∥AD,∴△COE∽△CAD,∴ ∴ ∴S△COE= , , S△CAD= ×4

=

.故答案为:A.【分析】根据菱形的性质得菱形边长为4,AC⊥BD,由一个角是60度的等腰三角形是等边三角形得△ABD是等边三角形;在Rt△AOD中,根据勾股定理得AO=,根据三角形面积公式得S△ACD= 似三角形性质得 8.【答案】C

【考点】三角形的面积,一次函数图像与坐标轴交点问题

【解析】【解答】解:设直线l解析式为:y=kx+b,设l与x轴交于点A(-轴交于点B(0,b),,0),与y

·OD·AC=4,AC=2A0=4,根据中位线定理得OE∥AD,由相,从而求出△OCE的面积.∴

2∴(2-k)=8,22∴k-12k+4=0或(k+2)=0,∴k= 或k=-2.∴满足条件的直线有3条.故答案为:C.【分析】设直线l解析式为:y=kx+b,设l与x轴交于点A(-,0),与y轴交于点B(0,b),依题可得关于k和b的二元一次方程组,代入消元即可得出k的值,从而得出直线条数.二、填空题

9.【答案】3

【考点】中位数

【解析】【解答】解:将数据从小到大排列:1,2,3,5,6,∴中位数为:3.故答案为:3.【分析】将此组数据从小到大或从大到小排列,正好是奇数个,处于中间的那个数即为这组数据的中位数;由此即可得出答案.10.【答案】3.6×108

【考点】科学记数法—表示绝对值较大的数

108,故答案为:3.6×108.【解析】【解答】解:∵360 000 000=3.6×

10的n次幂的形式,其中1≤|a|<10,n为整数。【分析】学计数法:将一个数字表示成 a×11.【答案】y(x+1)(x-1)

【考点】提公因式法与公式法的综合运用

2【解析】【解答】xy-y,=y(x2-1),=y(x+1)(x-1).【分析】先用提公因式法分解因式,再用平方差公式分解到每一个因式都不能再分解为止。12.【答案】8

【考点】多边形内角与外角

180°=360°×3,【解析】【解答】解:设这个多边形边数为n,∴(n-2)×∴n=8.故答案为:8.【分析】根据多边形的内角和公式,多边形外角和为360°,根据题意列出方程,解之即可.13.【答案】15π

【考点】圆锥的计算

【解析】【解答】解:设圆锥母线长为l,∵r=3,h=4,, ∴母线l= ∴S侧= ·2πr×5= =5,×2π×3×5=15π.故答案为:15π.【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.14.【答案】(5,1)

【考点】平移的性质

【解析】【解答】解:∵点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,∴所得的点的坐标为:(5,1).故答案为:(5,1).【分析】根据点坐标平移特征:右加上加,从而得出平移之后的点坐标.15.【答案】120

【考点】分式方程的实际应用

【解析】【解答】解:设原计划每天种树x棵,则实际每天种树2x棵,依题可得:,解得:x=120.经检验x=120是原分式方程的根.故答案为:120.【分析】设原计划每天种树x棵,则实际每天种树2x棵,根据题意列出分式方程,解之即可.16.【答案】1

【考点】随机事件

【解析】【解答】解:如果小明第一次取走1根,剩下了6根,6既是1的倍数又是2的倍数,不管后面怎么取,小明都将取走最后一根火柴.故答案为:1.【分析】要保证小明获胜是必然事件,则小明必然要取到第7根火柴,进行倒推,就能找到保证小明获胜的方法.17.【答案】2

【考点】反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质

【解析】【解答】解:如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,设A(x1,y1),B(x

2,y2),∵A、B在反比例函数上,∴x1y1=x2y2=2,∵,解得:x1= , 又∵,解得:x2=,∴x1x2= × =2,∴y1=x

2,y2=x

1,即OC=OD,AC=BD,∵BD⊥x轴,AC⊥y轴,∴∠ACO=∠BDO=90°,∴△ACO≌△BDO(SAS),∴AO=BO,∠AOC=∠BOD,又∵∠AOB=45°,OH⊥AB,∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,∴△ACO≌△BDO≌△AHO≌△BHO,∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO= 故答案为:2.【分析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2,y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y= x1= x2=,联立,解得

x1y1+

x2y2=

×2+

×2=2.y2=x1,根据SAS得△ACO≌△BDO,从而得x1x2=2,所以y1=x2,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO= 18.【答案】+ π

x1y1+

x2y2=

×2+

×2=2.【考点】三角形的面积,扇形面积的计算,锐角三角函数的定义,旋转的性质

【解析】【解答】解:在Rt△AOB中,∵A(1,0),∴OA=1, 又∵∠OAB=60°,= ∴cos60°∴AB=2,OB= , , ∵在旋转过程中,三角板的角度和边的长度不变,∴点B运动的路径与坐标轴围成的图形面积为: = = + π.+ π.,故答案为: 【分析】在Rt△AOB中,由A点坐标得OA=1,根据锐角三角形函数可得AB=2,OB= 在旋转过程中,三角板的角度和边的长度不变,所以点B运动的路径与坐标轴围成的图形面积为:=

三、解答题,计算即可得出答案.19.【答案】解:,由①得:x=-2y ③

将③代入②得:3(-2y)+4y=6,解得:y=-3, 将y=-3代入③得:x=6,∴原方程组的解为:

【考点】解二元一次方程组

【解析】【分析】根据二元一次方程组代入消元解方程即可.20.【答案】解:原式=4-1+2-=4-1+2-=5.【考点】实数的运算

【解析】【分析】根据零指数幂,绝对值的非负性,特殊角的三角函数值,化简计算即可.21.【答案】(1)0.2 0.1=100,100×0.32=32,100×0.2=20(2)解:10÷补全征文比赛成绩频数分布直方图如图: +,+2×,(3)解:由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,∴全市获得一等奖征文的0.3=300(篇).篇数为:1000×答:全市获得一等奖征文的篇数为300篇.【考点】用样本估计总体,频数(率)分布表,频数(率)分布直方图

【解析】【解答】(1)解:(1)由频数分布表可知 60≤m<70的频数为:38,频率为:0.38∴抽取的篇数为:38÷0.38=100(篇),0.32=32(篇),∴a=100×∴b=100-38-32-10=20(篇),100=0.2.∴c=20÷故答案为:0.2.【分析】(1)由频数分布表可知 60≤m<70的频数为:38,频率为:0.38,根据总数=频数÷频率得样本容量,再由频数=总数×频率求出a,再根据频率=频数÷总数求出c.(2)由(1)中数据可补全征文比赛成绩频数分布直方图.(3)由频数分布表可知评为一等奖的频率为:0.2+0.1=0.3,再用总篇数×一等奖的频率=全市一等奖征文篇数.22.【答案】证明:∵在□ABCD中,∴AD∥BC,AD=BC,∠A=∠C, ∴∠E=∠F, 又∵BE=DF,∴AD+DF=CB+BE,即AF=CE, 在△CEH和△AFG中,, ∴△CEH≌△AFG,∴CH=AG.【考点】平行线的性质,全等三角形的判定与性质,平行四边形的性质

【解析】【分析】根据平行四边形的性质得AD∥BC,AD=BC,∠A=∠C,根据平行线的性质得∠E=∠F,再结合已知条件可得AF=CE,根据ASA得△CEH≌△AFG,根据全等三角形对应边相等得证.23.【答案】(1)解:(1)∵甲可选择电影A或B,∴甲选择A部电影的概率P= 答:甲选择A部电影的概率为(2)甲、乙、.丙

3人

:.由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,∴甲、乙、丙3人选择同一部电影的概率P= 答:甲、乙、丙3人选择同一部电影的概率为: 【考点】列表法与树状图法,概率公式

【解析】【分析】(1)甲可选择电影A或B,根据概率公式即可得甲选择A部电影的概率.(2)用树状图表示甲、乙、丙3人选择电影的所有情况,由图可知总共有8种情况,甲、乙、丙3人选择同一部电影的情况有2种,根据概率公式即可得出答案.24.【答案】(1)解:依题可得:y=40-的函数表达式为:y=40-(2)解:依题可得:40-∴x≤300.答:该辆汽车最多行驶的路程为300.【考点】一次函数与不等式(组)的综合应用,根据实际问题列一次函数表达式

【解析】【分析】(1)根据题意可得y与x之间的函数表达式为:y=40-(2)根据题意可得不等式:40-

x≥40×,解之即可得出答案.x(0≤x≤400).x(0≤x≤400).x≥40×,∴-

x≥-30,x,即y=40-

x(0≤x≤400).答:y与x之间

..25.【答案】(1)解:依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=100m,在Rt△PBC中,,∠PCB=90°, ∵∠PBC=60°, ∴∠BPQ=30°(2)解:设CQ=x,在Rt△QBC中,,∠QCB=90°, ∵∠QBC=30°∴BQ=2x,BC= x,,∠QBC=30°又∵∠PBC=60°,, ∴∠PBQ=30°, 由(1)知∠BPQ=30°∴PQ=BQ=2x,∴PC=PQ+QC=3x,AC=AB+BC=10+ 又∵∠A=45°,∴AC=PC,即3x=10+ 解得:x= ∴PQ=2x= x,, ≈15.8(m).x,答:树PQ的高度约为15.8m.【考点】三角形内角和定理,等腰三角形的性质,含30度角的直角三角形,∠PBC=60°,∠QBC=30°,AB=100m,在Rt【解析】【分析】(1)根据题意题可得:∠A=45°△PBC中,根据三角形内角和定理即可得∠BPQ度数.(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC= x;根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用

x,又∠A=45°,得出AC=PC,建含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+ 立方程解之求出x,再将x值代入PQ代数式求之即可.26.【答案】(1)证明:连接OC,∵OA=OC,OD⊥AC,∴OD是AC的垂直平分线,∴PA=PC, 在△PAO和△PCO中,, ∴△PAO≌△PCO(SSS),, ∴∠PAO=∠PCO=90°∴PC是⊙O的切线.,(2)解:∵PC是⊙O的切线.∴∠FCO=∠PCO=90°,OB=OC,∵∠ABC=60°∴△OCB是等边三角形,又∵AB=10, ∴OB=OC=5, 在Rt△FCO中,= ∴tan60°∴CF=5.= , 【考点】全等三角形的判定与性质,等边三角形的判定与性质,切线的判定与性质,锐角三角函数的定义,线段垂直平分线的判定

【解析】【分析】(1)连接OC,根据垂直平分线的判定得OD是AC的垂直平分线,再由垂直平分线的性质得PA=PC,根据SSS得△PAO≌△PCO(SSS),由全等三角形性质得∠PAO=∠PCO=90°,即PC是⊙O的切线.,根据有一个角是60度的等腰三角形是等边三角形得(2)由切线性质得∠FCO=∠PCO=90°△OCB是等边三角形,在Rt△FCO中,根据正切的三角函数定义即可求出CF值.27.【答案】(1)解:∵y=(x-a)(x-3)(0

②△AOD∽△CPB,∴ 即 ,,.解得:a1=3(舍),a2= 综上所述:a的值为.(3)解:能;连接BD,取BD中点M,∵D、B、O三点共圆,且BD为直径,圆心为M(若点C也在此圆上,∴MC=MB,∴

42化简得:a-14a+45=0,22∴(a-5)(a-9)=0, 22∴a=5或a=9,,a),∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0

【解析】【分析】(1)根据二次函数的图像与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x= 得顶点C(,-),从而得PB=3-

=,PC= ,AO=a,OD=3a,代入求

;再分情况讨论:

3(舍去);

.,①当△AOD∽△BPC时,根据相似三角形性质得 ②△AOD∽△CPB,根据相似三角形性质得,解得:a=,解得:a1=3(舍),a2=(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M为圆心(a)的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.28.【答案】(1)解:由折叠性质可知:BE=ME=x,∵正方形ABCD边长为1 ∴AE=1-x,在Rt△AME中,222∴AE+AM=ME,2即(1-x)+ =x

2,解得:x=.(2)解:△PDM的周长不会发生变化,且为定值2.连接BM、BP,过点B作BH⊥MN,∵BE=ME,∴∠EBM=∠EMB,又∵∠EBC=∠EMN=90°,即∠EBM+∠MBC=∠EMB+∠BMN=90°,∴∠MBC=∠BMN,又∵正方形ABCD,∴AD∥BC,AB=BC,∴∠AMB=∠MBC=∠BMN,在Rt△ABM和Rt△HBM中,∵ , ∴Rt△ABM≌Rt△HBM(AAS),∴AM=HM,AB=HB=BC,在Rt△BHP和Rt△BCP中,∵ , ∴Rt△BHP≌Rt△BCP(HL),∴HP=CP,又∵C△PDM=MD+DP+MP,=MD+DP+MH+HP,=MD+DP+AM+PC, =AD+DC, =2.∴△PDM的周长不会发生变化,且为定值2.(3)解:过F作FQ⊥AB,连接BM,由折叠性质可知:∠BEF=∠MEF,BM⊥EF,, ∴∠EBM+∠BEF=∠EMB+∠MEF=∠QFE+∠BEF=90°∴∠EBM=∠EMB=∠QFE,在Rt△ABM和Rt△QFE中,∵ , ∴Rt△ABM≌Rt△QFE(ASA),∴AM=QE,设AM长为a,在Rt△AEM中,222∴AE+AM=EM, 222即(1-x)+a=x, ∴AM=QE= ∴BQ=CF=x-∴S= = = ,,BC,(CF+BE)×(x-(2x-+x)×1,), 222又∵(1-x)+a=x, ∴x= ∴S= =(=AM=BE,BQ=CF=-a+

1,)×

-a,2(a-a+1), =(a-2)+,∵0

.【考点】二次函数的最值,全等三角形的判定与性质,勾股定理,正方形的性质,翻折变换(折叠问题)

【解析】【分析】(1)由折叠性质可知BE=ME=x,结合已知条件知AE=1-x,在Rt△AME

2中,根据勾股定理得(1-x)+

=x

2,解得:x=

.(2)△PDM的周长不会发生变化,且为定值2.连接BM、BP,过点B作BH⊥MN,根据折叠性质知BE=ME,由等边对等角得∠EBM=∠EMB,由等角的余角相等得∠MBC=∠BMN,由全等三角形的判定AAS得Rt△ABM≌Rt△HBM,根据全等三角形的性质得AM=HM,AB=HB=BC,又根据全等三角形的判定HL得Rt△BHP≌Rt△BCP,根据全等三角形的性质得HP=CP,由三角形周长和等量代换即可得出△PDM周长为定值2.(3)过F作FQ⊥AB,连接BM,由折叠性质可知:∠BEF=∠MEF,BM⊥EF,由等角的余角相等得∠EBM=∠EMB=∠QFE,由全等三角形的判定ASA得Rt△ABM≌Rt△QFE,据

222全等三角形的性质得AM=QE;设AM长为a,在Rt△AEM中,根据勾股定理得(1-x)+a=x,从而得AM=QE= BQ=CF=x-2,,根据梯形得面积公式代入即可得出S与x的函数关系式;又由(1-x)=AM=BE,BQ=CF=

-a(0

第四篇:2018年江苏省盐城市中考数学试卷含答案解析(Word版)

2018年江苏省盐城市中考数学试卷

一、选择题(本大题共8小题,每小题3分,共24分)1.-2018的相反数是()

A.2018 B.-2018 C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()

A.B.C.D.3.下列运算正确的是()

A.B.C.D.4.盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()

A.B.C.D.5.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A.B.C.D.6.一组数据2,4,6,4,8的中位数为()

A.2 B.4 C.6 D.8 7.如图,则 A.为 的直径,是 的弦,的度数为()

B.C.D.8.已知一元二次方程 有一个根为1,则 的值为()

A.-2 B.2 C.-4 D.4

二、填空题(本大题共有8小题,每小题3分,共24分)9.根据如图所示的车票信息,车票的价格为________元.

10.要使分式 11.分解因式: 有意义,则 的取值范围是________.

________.

12.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________. 13.将一个含有

________. 角的直角三角板摆放在矩形上,如图所示,若,则

14.如图,点,交 为矩形

.若 的 边的中点,反比例函数

________。的图象经过点

边于点 的面积为1,则

15.如图,左图是由若干个相同的图形(右图)组成的美丽图案的一部分.右图中,图形的相关数据:半径 16.如图,在直角

,中,.则右图的周长为________,,、(结果保留).分别为边、上的两个动点,若要使 ________.

是等腰三角形且 是直角三角形,则

三、解答题(本大题共有11小题,共102分)17.计算:

18.解不等式:,并把它的解集在数轴上表示出来..19.先化简,再求值:,其中.20.端午节是我国传统佳节.小峰同学带了4个粽子(除粽馅不同外,其它均相同),其中有两个肉馅粽子、一个红枣馅粽子和一个豆沙馅粽子,准备从中任意拿出两个送给他的好朋友小悦.(1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果;

(2)请你计算小悦拿到的两个粽子都是肉馅的概率.21.在正方形、、中,对角线、所在的直线上有两点、满足,连接,如图所示.;的形状,并说明理由.(1)求证:(2)试判断四边形

22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:

.仅学生自己参与;

.仅家长自己参与;

.家长和学生一起参与;.家长和学生都未参与.请根据图中提供的信息,解答下列问题:

(1)在这次抽样调查中,共调查了________名学生;

(2)补全条形统计图,并在扇形统计图中计算

类所对应扇形的圆心角的度数;

(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;

(2)当每件商品降价多少元时,该商店每天销售利润为1200元?

24.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.(1)根据图象信息,当(2)求出线段

________分钟时甲乙两人相遇,甲的速度为________米/分钟;

所表示的函数表达式.25.如图,在以线段 得到.在

上;,使、.求证:

相交于点,若

为,的切线;,为直径的

上取一点,连接、.将

沿

翻折后(1)试说明点(2)在线段 的延长线上取一点

(3)在(2)的条件下,分别延长线段 求线段 的长.26.(1)【发现】如图①,已知等边 边上(点

①若 ②求证: 不与点、,将直角三角形的、角顶点 于点

任意放在、.重合),使两边分别交线段,则

.________

________;

(2)【思考】若将图①中的三角板的顶点 的两个交点 分、都存在,连接平分

边上移动,保持三角板与、平,如图②所示.问点 是否存在某一位置,使

且 ?若存在,求出

中,的值;若不存在,请说明理由.,点

边的中点,将三

、(3)【探索】如图③,在等腰 角形透明纸板的一个顶点放在点

于点 与(点、均不与、处(其中 的顶点重合),连接),使两条边分别交边.设,则 的周长之比为________(用含 的表达式表示).27.如图①,在平面直角坐标系 两点,且与 轴交于点

.中,抛物线 经过点、(1)求抛物线的表达式;

(2)如图②,用宽为4个单位长度的直尺垂直于 轴,并沿 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 段 上方抛物线上有一动点(Ⅰ)若点、两点(点、.面积的最大值,并求此时点

的坐标;

在点 的左侧),连接,在线,连接,求 的横坐标为

(Ⅱ)直尺在平移过程中,若没有,请说明理由.面积是否有最大值?若有,求出面积的最大值;

答案解析部分

一、选择题

1.【答案】A

【考点】相反数及有理数的相反数

【解析】【解答】解:-2018的相反数是2018。故答案为A 【分析】负数的相反数是它的绝对值;-2018只要去掉负号就是它的相反数 2.【答案】D

【考点】轴对称图形,中心对称及中心对称图形

【解析】【解答】解:A、既不是轴对称图形,也不是中心对称图形,故A不符合题意;B、是轴对称图形,但不是中心对称图形,故B不符合题意; C、是轴对称图形,但不是中心对称图形,故C不符合题意; D、是轴对称图形,但不是中心对称图形,故D符合题意; 故答案为:D 【分析】轴对称图形:沿着一条线折叠能够完全重合的图形;中心对称图形:绕着某一点旋转180°能够与自身重合的图形;根据定义逐个判断即可。3.【答案】C

【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用

【解析】【解答】解:A、合题意; C. D. 故答案为:C 【分析】根据合并同类项法则、同底数幂的乘除法则即可。4.【答案】A

【考点】科学记数法—表示绝对值较大的数

【解析】【解答】解:146000=1.46

=

故答案为:A,其中1≤|a|<10,且n为正,故C符合题意;,故D不符合题意;,故A不符合题意;B、,故B不符【分析】用科学记数法表示绝对值较大的数,即表示为 整数. 5.【答案】B

【考点】简单几何体的三视图

【解析】【解答】解:从左面看到的图形是 故答案为:B 【分析】在侧投影面上的正投影叫做左视图;观察的方法是:从左面看几何体得到的平面图形。

6.【答案】B

【考点】中位数

【解析】【解答】这组数据从小到大排列为:2,4,4,5,8,最中间的数是第3个是4,故答案为:B 【分析】中位数是一组数中最中间的一个数(数据是奇数个)或是最中间两个数的平均数(数据是偶数个);这组数据一共有5个,是奇数个,那么把这组数据从小到大排列,第 数就是中位数。7.【答案】C

【考点】圆周角定理

【解析】【解答】解:∵ ∵AB是⊙O的直径,∴∠ACB=90°,-∠B=55°∴∠CAB=90°,故答案为:C 【分析】由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°-∠B即可求得。,则由∠CAB=90°8.【答案】B

【考点】一元二次方程的根

【解析】【解答】解:把x=1代入方程可得1+k-3=0,解得k=2。故答案为:B 【分析】将x=1代入原方程可得关于k的一元一次方程,解之即可得k的值。

二、填空题

9.【答案】77.5

【考点】有理数及其分类

【解析】【解答】解:车票上有“¥77.5元”,那么车票的价格是77.5元。故答案为:77.5 【分析】根据车票信息中的价格信息可知。10.【答案】2

,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,个【考点】分式有意义的条件

【解析】【解答】解:要使分式

有意义,即分母x-2≠0,则x≠2。故答案为: 【分析】分式有意义的条件是分母不为0:令分母的式子不为0,求出取值范围即可。11.【答案】

【考点】因式分解﹣运用公式法

【解析】【解答】解:根据完全平方公式可得 【分析】考查用公式法分解因式;完全平方公式: 12.【答案】 【考点】几何概率

故答案为:

【解析】【解答】解:一共有9个小方格,阴影部分的小方格有4个,则P= 故答案为:

【分析】根据概率公式P= 13.【答案】85°

【考点】平行线的性质

,找出所有结果数n,符合事件的结果数m,代入求值即可。【解析】【解答】如图,作直线c//a,则a//b//c,∴∠3=∠1=40°,-∠3=90°-40°=50°∴∠5=∠4=90°,-∠5-45°=85° ∴∠2=180° 故答案为:85°【分析】过三角形的顶点作直线c//a,根据平行线的性质即可打开思路。14.【答案】4

【考点】反比例函数系数k的几何意义

【解析】【解答】解:∵点D在反比例函数 是AB的中点,∴B(2a,),的图象上,的图象上,∴设点D(a,),∵点D∵点E与B的纵坐标相同,且点E在反比例函数 ∴点E(2a,)则BD=a,BE= ∴ 则k=4 故答案为:4 【分析】由 ,,的面积为1,构造方程的思路,可设点D(a,),在后面的计算过程中a将被消掉;所以在解反比例函数中的k时设另外的未知数时依然能解出k的值。15.【答案】

【考点】弧长的计算

【解析】【解答】解:由第一张图可知弧OA与弧OB的长度和与弧AB的长度相等,则周长为 故答案为: cm 【分析】仔细观察第一张图,可发现单个图的左右两条小弧的长度之和是弧AB的度,则根据弧长公式 16.【答案】或 即可求得。

【考点】等腰三角形的判定与性质,相似三角形的判定与性质

【解析】【解答】解:当△BPQ是直角三角形时,有两种情况:∠BPQ=90度,∠BQP=90度。在直角 中,,AC:BC:AB=3:4:5.(1),则AB=10,当∠BPQ=90度,则△BPQ~△BCA,则PQ:BP:BQ=AC:BC:AB=3:4:5,设PQ=3x,则BP=4x,BQ=5x,AQ=AB-BQ=10-5x,此时∠AQP为钝角,则当△APQ是等腰三角形时,只有AQ=PQ,则10-5x=3x,解得x= 则AQ=10-5x= ;,(2)当∠BQP =90度,则△BQP~△BCA,则PQ:BQ:BP=AC:BC:AB=3:4:5,设PQ=3x,则BQ=4x,BP=5x,AQ=AB-BQ=10-4x,此时∠AQP为直角,则当△APQ是等腰三角形时,只有AQ=PQ,则10-4x=3x,解得x= 则AQ=10-4x= ;,故答案为: 或

是等腰三角形且

是直角三角形,要先找突破口,可先确【分析】要同时使

定当△APQ是等腰三角形时,再讨论△BPQ是直角三角形可能的情况;或者先确定△BPQ是直角三角形,再讨论△APQ是等腰三角形的情况;此题先确定△BPQ是直角三角形容易一些:△BPQ是直角三角形有两种情况,根据相似的判定和性质可得到△BQP与△BCA相似,可得到△BQP三边之比,设出未知数表示出三边的长度,再讨论△APQ是等腰三角形时,是哪两条相等,构造方程解出未知数即可,最后求出AQ。

三、解答题

17.【答案】原式=1-2+2=0

【考点】实数的运算

【解析】【分析】任何非零数的0次幂结果为1;负整数次幂法则: 18.【答案】解:解:合并同类项得,去括号得,移项得

,n为正整数。,在数轴上表示如图:【考点】在数轴上表示不等式(组)的解集,解一元一次不等式

【解析】【分析】按照解不等式的一般步骤解答即可,并在数轴上表示出解集。19.【答案】原式= 原式=。

=,当

时,【考点】利用分式运算化简求值

【解析】【分析】根据分式的加减乘除法则计算即可;在做分式乘除法时,分子或分母的因式能分解因式的要分解因式可帮助简便计算。

20.【答案】(1)解:如树状图,所有可能的结果是:(肉

1,肉2),(肉1,豆沙),(肉1,红枣),(肉

2,肉1),(肉2,豆沙),(肉2,红枣),(红枣,肉1),(红枣,肉2),(红枣,豆沙),(豆沙,肉1),(豆沙,肉2),(豆沙,红枣)。

(2)解:由(1)可得所有等可能的结果有12种,拿到的两个是肉棕的有2种结果,则P=。

【考点】列表法与树状图法,概率公式

【解析】【分析】(1)列树状图从开始,列出第一次所有可能拿到的棕子,再列出第二次除第一次拿到的外所有可能拿到的棕子,注意用线连好;列表格:将每次可能拿到的棕子分别写在列或行中,再列举出所有可能,注意不能重复拿同一种的;(2)由(1)可得出所有可能的结果数,再找出其中是两个都是肉的结果数,利用概率公式求得。

21.【答案】(1)解:证明:在正方形ABCD中,AB=AD,∠ABD=∠ADB=45°,则∠ABE=∠ADF=135°,又∵BE=DF,∴△ABE≅△ADF。

(2)解:解:四边形AECF是菱形。理由如下:由(1)得∴△ABE≅△ADF,∴AE=AF。在正方形ABCD中,CB=CD,∠CBD=∠CDB=45°,则∠CBE=∠CDF=135°,双∵BE=DF,∴△CBE≅△CDF。∴CE=CF。

∵BE=BE,∠CBE=∠ABE=135°,CB=AB,∴△CBE≅△ABE。∴CE=AE,∴CE=AE=AF=CF,∴四边形AECF是菱形。

【考点】全等三角形的判定与性质,菱形的判定,正方形的性质

【解析】【分析】(1)由正方形ABCD的性质可得AB=AD,∠ABD=∠ADB=45°,由等角的补角相等可得∠ABE=∠ADF=135°,又由已知BE=DF,根据“SAS”可判定全等;(2)由(1)的全等可得AE=AF,则可猜测四边形AECF是菱形;由(1)的思路可证明△CBE≅△ABE,得到CE=AE;不难证明△CBE≅△ABE,可得CE=AE,则可根据“四条边相等的四边形是菱形”来判定即可。22.【答案】(1)400(2)解:解:B类家长和学生有:400-80-60-20=240(人),补全如图;

C类所对应扇形的圆心角的度数:360°×(3)解:解: 有100人。

【考点】扇形统计图,条形统计图

=54°。

(人)。答:该校2000名学生中“家长和学生都未参与”

20%=400(人)。【分析】(1)有【解析】【解答】解:(1)一共调查家长和学生:80÷A类学生的人数除以其所占的百分比即可得到;(2)由(1)求得的总人数,分别减去其他类的人数就是B类的人数;C类所占扇形的圆心角度数:由C类人数和总人数求出C类所占的百分比,而C类在扇形占的部分是就是这个百分比,用它乘以360°即可得答案;(3)用“家长和学生都未参与”在调查中的百分比看成占2000人的百分比计算即可。23.【答案】(1)26(2)解:解:设每件商品降价x元时,该商店每天销售利润为1200元,则平均每天销售数量为(20+2x)件,每件盈利为(40-x)元,且40-x≥25,即x≤15.根据题意可得(40-x)(20+2x)=1200,2整理得x-30x+200=0, 解得x1=10,x2=20(舍去),答:每件商品降价10元时,该商店每天销售利润为1200元。

【考点】一元二次方程的实际应用-销售问题

【解析】【分析】(1)根据等量关系“原销售件数+2×降价数=降价后的销售件数”计算;(2)根据等量关系“每件盈利×销量=利润”,可设降价x元,则销量根据(1)的等量关系可得为(20+2x)件,而每件盈利为(40-x)元,利润为1200元,代入等量关系解答即可。24.【答案】(1)24;40

24-40=60(米/分钟),则乙一共用的时间:2400÷60=40分钟,(2)解:乙的速度:2400÷

(60+40)-2400=1600(米),此时甲、乙两人相距y=40×则点A(40,1600),又点B(60,2400),设线段AB的表达式为:y=kt+b, 则,解得,则线段AB的表达式为:y=40t(40≤t≤60)

【考点】一次函数的实际应用

【解析】【解答】解:(1)当甲、乙两人相遇时,则他们的距离y=0,由图象可得此时t=2424=40(米/分钟).分钟;t=60分钟时,y=2400即表示甲到达图书馆,则甲的速度为2400÷故答案为:24;40 【分析】(1)从题目中y关于t的图象出发,t表示时间,y表示甲乙两人的距离,而当y=0时的实际意义就是甲、乙两人相遇,可得此时的时间;当t=0时,y=2400米就表示甲、乙两人都还没出发,表示学校和图书馆相距2400米,由图象可得在A点时乙先到达学校(题中也提到了乙先到止的地),则甲60分钟行完2400米,可求得速度;(2)线段AB是一次函数的图象的一部分,由待定系数法可知要求点A的坐标,即需要求出点A时的时间和甲、乙两人的距离:因为点A是乙到达目的地的位置,所以可先求乙的速度,由开始到相遇,共用了24分钟,甲的速度和一共行驶的路程2400米可求得乙的速度,再求点A位置的时间和距离即可;最后要写上自变量t的取值范围。

25.【答案】(1)解:连接OC,OD,由翻折可得OD=OC,∵OC是⊙O的半径,∴点D在⊙O上。

(2)证明:∵点D在⊙O上,∴∠ADB=90°,由翻折可得AC=AD,2AE,∵AB=AC·2AE,∴AB=AD·∴,又∵∠BAE=∠DAB,∴△ABE~△ADB,∴∠ABE=∠ADB=90°,∵OB是半径,∴BE为的⊙O切线。

2AE,∴AE=5,DE=AE-AD=5-4=1,(3)解:设EF=x,∵AB=AC+BC=AC·∵∠BDF=∠C=90°,∠BFD=∠AFC,∴△BDF~△ACF,∴ 则BF= 即,222在Rt△BDF中,由勾股定理得BD+DF=BF,22则2+(1+x)=()2,解得x1= 则EF= ,x2=-1(舍去), 【考点】点与圆的位置关系,切线的判定,相似三角形的判定与性质

【解析】【分析】(1)要证明点D在⊙O上,则需要证明点D到圆心的距离OD要等于半径,由折叠易知OD=OC;(2)证明BE为的⊙O切线,由切线判定定理可得需要证明∠ABE=90°;易知∠ADB=90°,由公共角∠BAE=∠DAB,则需要△ABE~△ADB,由AB2=AC·AE和AC=AD可证明;(3)易知∠BDF=∠ADB=90°,则△BDF是一个直角三角

222形,由勾股定理可得BD+DF=BF,而BD=BC=2,DF=DE+EF,EF就是要求的,不妨222先设EF=x,看能否求出DE或都BF,求不出的话可用x表示出来,再代入BD+DF=BF解得即可。

26.【答案】(1)解:4;证明:∵∠EDF=60°,∠B=160°∴∠CDF+∠BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF,又∵∠B=∠C,∴

(2)解:解:存在。如图,作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别为M,G,N,∵平分 且平分,∴DM=DG=DN,又∵∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≅△CDN,∴BD=CD,即点D是BC的中点,∴。

(3)1-cosα

【考点】全等三角形的判定与性质,角平分线的性质,等腰三角形的性质,等边三角形的判定与性质,相似三角形的判定与性质

【解析】【解答】(1)①∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°,∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BDE=60°,又∵∠EDF=60°,-∠EDF-∠B=60°∴∠CDF=180°,则∠CDF =∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC-BD=6-2=4。

(3)连结AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别为G,D,H,则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点 ∴∠B=∠C,OB=OC,∴△OBG≅△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°−α,-(∠BOG+∠COH)=2α,则∠GOH=180°∵∠EOF=∠B=α,则∠GOH=2∠EOF=2α,由(2)题可猜想应用EF=ED+DF=EG+FH(可通过半角旋转证明),则 =AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,2设AB=m,则OB=mcosα,GB=mcosα,【分析】(1)①先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角 形,可得∠BDE=60°,另外∠EDF=60°,可证得△CDF是等边三角形,从而CF=CD=BC-BD;②证明,这个模型可称为“一线三等角·相似模型”,根据“AA”判定相似;(2)【思考】由平分线可联系到角平分线的性质“角平分线上的点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而通过证明△BDM≅△CDN可得BD=CD;

(3)

=2(m+mcos),则需要用m和α的三角函数表示出,=AE+EF+AF;题中直接已知O是BC的中点,应用(2)题的方法和结论,=AE+EF+AF= 作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则 AG+AH=2AG,而AG=AB-OB,从而可求得。27.【答案】(1)解:∵抛物线

解得

∴抛物线,当x=

时,经过点、两点,∴

(2)解:(I)∵点P的横坐标是(,),则点P∵直尺的宽度为4个单位长度,∴点Q的横坐标为 ∴点Q(,+4=),),Q(,),可得,则当x=

时,y= , 设直线PQ的表达式为:y=kx+c,由P(解得,则直线PQ的表达式为:y=-x+,),则E如图②,过点D作直线DE垂直于x轴,交PQ于点E,设D(m,(m,-m+),则S△PQD=S

PDE+S

QDE= =

=)。),即Q(n+4, ,),= ∵

时,S△PQD=8最大,此时点D(),则Q(n+4,(II)设P P(n,),而直线PQ的表达式为:y= 设D(∴S△PQD= =2 = ≤8),则E(t,=2

当t=n+2时,S△PQD=8.∴△PQD面积的最大值为8

【考点】二次函数的最值,待定系数法求二次函数解析式,三角形的面积

【解析】【分析】(1)将两点、坐标代入,可得方程组,解之即可;(2)(I)在遇到几何或代数求最大值,可联系到二次函数求最大值的应用,即将△PQD的面积用代数式的形式表示出来,因为它的面积随着点D的位置改变而改变,所以可设点D的坐标为(m,),过过点D作直线DE垂直于x轴,交PQ于点E,则需要用m表示出点E的坐标,而点E在线段PQ上,求出PQ的坐标及直线PQ的表达式即可解答;(II)可设P(n,),则Q(n+4,),作法与(I)一样,表示出△PQD的面积,运用二次函数求最值。

第五篇:2018年江苏省宿迁市中考思想品德试题(word版,含答案解析)

江苏省宿迁市2018年初中学业水平考试

思想品德·历史 思想品德部分

一、单项选择题:本大题共15小题,每小题2分,共30分。每小题的四个选项中,只有一个选项最符合题意。请在答题卡上填涂你认为正确的选项。

1.2017年10月18日,中国共产党第十九次全国代表大会开幕。习近平同志在报告中指出,经过长期努力,中国特色社会主义进入了()

A.新阶段

B.新时期

C.新时代

D.新常态 【答案】C 【解析】本题考查的是2017年的时事政治。2017年10月18日,中国共产党第十九次全国代表大会开幕。习近平同志在报告中指出,经过长期努力,中国特色社会主义进入了新时代。故选C。

2.2017年10月30日,由我国申报并通过联合国教科文组织世界记忆工程国际咨询重员会的评市、成功入选《世界记忆名录》的是()A.珠算

B.甲骨文

C.京剧

D.南京大屠杀档案 【答案】B

3.“静坐多思已过,闲谈莫论人非“包含的认识和评价自己的途径是()A.自我观察

B.相互比较

C.自我反省

D.科学鉴定 【答案】C 【解析】本题考查的是认识自己的途径这个知识点的理解。正确认识自己,可以通过自我观察、与他人的比较、他人对自己的态度、评价来实现。曾子曰:“静坐多思已过,闲谈莫论人非”这体现了正确认识和评价自己的正确方法是自我反省,故C正确;ABD与题干无关;故选C。

4.北宋著名政治家、史学家司马光自制“警枕”,稍一翻动即被惊醒,遂起身.挑灯夜读,执笔写作,经过19个寒暑的锲而不舍,最终完成鸿篇巨著《资治通鉴》。其体现出磨砺坚强意志的方法

是()A.从小事做起,持之以恒

B.主动迎接挑战,在实践中锻炼 C.制订明确的目标和计划

D.做自己不感兴趣却有意义的事 【答案】A 【解析】本题考查的是磨砺坚强意志这个知识点的理解。司马光自制“警枕”,稍一翻动即被惊醒,遂起身,挑灯夜读,执笔写作,经过19个寒署的锲而不舍,最終完成鸿篇巨著《资治通鉴》的事迹告诉我们,磨砺坚强意志要就要从小事做起,持之以恒,故A正确;BCD是磨砺意志的方法,但是与题意不符,故选A。

5.下图中的情境启示我们应()

A.悦纳自己 B.宽容友善

C.保持积极乐观心态 D.提高自我保护意识 【答案】B 【解析】本题考查的是宽容这个知识点。题目中“小红学习保守、自私,还冤枉过咱们,别理她!”观察图片可知,同学们不愿意和小红交友的主要原因是,在生活中小红对待同学们不够宽容,故B正确;ACD与题意不符,故选B。

6.有一种“龟兔双赢理论” 龟兔赛了多次,互有输赢。后来龟兔合作,兔子背着乌龟在地面上奔跑,乌龟背着兔子过河,实现以最短用时共同到达终点,这表明()A.竞争必然导致资源浪费

B.竞争中要相互理解,相互支持 C.合作结果一定优于竞争

D.合作可以互惠互利,其享成果 【答案】D 【解析】本题考查的是对竞争这个知识点的理解。AC犯了绝对化的错误,故不能入选;B中说的是竞争,乌龟背着兔子过河是合作,故与题意不符;D中乌龟背着兔子过河,实现以最短用时共同到达终点,实现了互赢,故D正确;故选D。

7.为深化监察体制改革,我国组建了各级监察委员会,加强对所有行使公权力的公职人员的监察。这样做能够更好地()

A.杜绝腐败行为发生

B.制约和监督权力的行使 C.保障公职人员权益

D.扩大公民拥有的监督权 【答案】B 【解析】本题考查的是我国行政监督体系这个知识点。A犯了绝对化的错误;为深化监察体制改革,我国组建了各级监察委员会,加强对所有行使公权力的公职人员的监察。这样做能够更好地制约和监督权力行使,故B正确;组建各级监察委员会,其目的并不是为了保障公职人员更好的依法办事,故C错误;组建了各级监察委员会,加强对所有行使公权力的公职人员的监察,与扩大公民拥有的监督权没有关系,故D错误;故选B。

8.下表中数据从一个侧面反映出当前我国社会的主要矛盾是人民日益增长的美好生活需要和

A.落后的社会生产之间的矛盾 B.城乡发展不协调之间的矛盾 C.人均收人水平较低之间的矛盾 D.不平衡不充分的发展之间的矛盾 【答案】D 【解析】本题考查的是我国的主要矛盾这个知识点的理解。我国的主要矛盾是人民日益增长的美好生活需要同不平衡、不充分发展之间的矛盾。十九大报告指出:“中国特色社会主义进入新时代,我国社会主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾”。表中数据反映出当前我国社会主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾,故D符合题意;ABC与题干无关;故选D。

9.实施中华优秀传统文化传承发展工程,推进戏曲、书法高雅艺术、传统体育等进校园,这有利于()

①增强民族文化认同感 ②坚定文化自信 ③继承弘扬优秀传统文化 ④排斥外来文化

A.①②③

B.①②④

C.①⑧④

D.②③④ 【答案】A 【解析】本题考查的是弘扬中华文化这个知识点的理解。实施中华优秀传统文化传承发展工程有利于促进青少年自觉弘扬中华民族优秀的传统文化,有利于青少年增强民族文化认同感,坚定文化自信,有利于学生培养高雅生活情趣,有利于继承弘扬优秀传统文化,故①②③正确;对待外来文化,我们要汲取优秀的文化营养,故④错误,故排除;故选A。10.我国社会主义经济制度的基础是

A.公有制经济

B.非公有制经济

C.个体经济

D.混合所有制经济 【答案】A 【解析】本题考查的是我国社会主义经济制度的基础这个知识点的记忆。我国的基本经济制度是以公有制为主体,多种所有制共同发展的基本经济制度,公有制经济是国民经济制度的基础,非公有制经济是社会

主义市场的重要组成部分,故A正确;BCD与题干无关,故选A。

11.2017年9月,国家互联网信息办公室印发《互联网群组信息服务管理规定》指出,互联网群组建立者、管理者应当履行群组管理责任,即“谁建群谁负责”“谁管理谁负责”,规范群组网络行为和信息发布。这一规定()

A.说明诚信是一种资源

B.体现了权利与义务的统一 C.维护了公民的隐私权

D.限制了公民言论自由权利 【答案】B 【解析】本题考查的是权利和义务的关系这个知识点。“规范群组网络行为和信息发布”体现了公民权利义务的密切关系,在我国,公民的权利和义务具有一致性,人们不仅要增强权利观念,依法行使权利、维护权利,而且要增强义务观念,依法履行义务,故B正确;AC的内容与题干无关,故错误;D本身就是错误的;故选B。

12.深化民族团结进步教育、筑牢中华民族共同体意识,加强各民族交往交流交融,促

进各民族像石榴籽一样紧紧抱在一起,共同团结奋斗,共同繁荣发展,下列符合这 精神实质的是()

A.坚持民族平等、团结、共同繁荣的原则 B.在少数民族聚居的地方实行民族自治 C.支持鼓励少数族 地区群众信仰宗教 D.保障少数民族地区享有高度的自治权 【答案】A 【解析】本题考查的维护民族团结这个知识点的理解。我国是统一的多民族国家,公民要自觉履行维护民族团结的义务。根据题目中的”促进各民族像石榴籽一样紧紧抱在一起,共同团结奋斗,共同繁荣发展”, 体现了坚持民族平等、团结、共同繁荣的原则,故A正确;BCD的内容与题干不符;故选A。

13.立足新的历史方位,推动高质量发展,推进中国制造向中国创造转变,中国速度向中国质量转变,制造大国向制造强国转变。为此应()①追求发展的高速度

②增强自主创新能力

③实施人才强国战略

④贯彻科教兴国战略

A.①②③

B.①②④

C.①③④

D.②③④ 【答案】D 【解析】本题考查的是创新和科技兴国、人才强国战略这些知识点的理解。推进中国制造向中国创造转变,中国速度向中国质量转变,制造大国向制造强国转变,关键靠人才;人才的培养关键靠教育;把教育摆在优先发展的战略地位;实施科教兴国战略和人才强国战略,故③④正确;增强自主创新能力,是赶超发达国家的关键,我国才有可能向制造强国转变,故②正确;我国现在发展要适应速度和结构变化,坚持以提高经济发展质量和效益为中心,淡化“速度情结”,不一味追求发展的高速度,但必须强化“质量关切”,故①错误;故选D。

14.2018年中央一号文件《中共中央国务院关于实施乡村振兴战略的意见》提出:到2050年,乡村全面振兴,农业强、农村美、农民富全面实现,实施乡村振兴战略有利于()①缩小城乡差距

②建设美丽中国 ③确保同步富裕

④共享发展成果

A.①②③

B.①③④

C.①②④

D.②③④ 【答案】C 【解析】本题考查的知识点是城乡差距这个知识点的理解。这个题可以用排除法来做,确保同步富裕的说法是错误的,应该是是确保共同富裕,故③错误,被排除;就能选出正确答案了;再来分析一下这个题目,实施乡村振兴战略,有利于加强农村建设,缩小城乡差距,有利于人民共享发展成果,实现共同富裕,有利于建设美丽中国,有利于实现社会公平,全面建成小康社会,故①②④正确;故选C。

15.为妥善解决双边经贸问题,经过多轮磋商,2018年5月19日.中美发表联合声明,双方就创造有利条件扩大制造业产品和服务贸易达成共识,并同意鼓励双向投资,努力创造公平竞争的营商环境。这表明

①我国奉行互利共赢的开放战略

②中美两国的根本利益是一致的 ③和平与发展是当今时代的主题

④我国主导着经济全球化的进程A.①②

B.①③

C.②③

D.②④

【答案】A 【解析】本题考查的是我国的对外开放的基本国策这个知识点。题目中中美双方就创造有利条件扩大制造业产品和服务贸易达成共识表明中美两国的根本利益是一致的,表明我国坚持互利共赢的开放战略,故①②

是正确的;③这句话本身的说法是正确的,但是材料中没有涉及和平,因此不选;④的说法是错误的,我国对世界经济的发展起着积极的推动作用,因此不选;故本题选A。

二、简答题:共2小题。第16题6分,第17题5分,共11分。请把每题答案写在答题卡对应位置上。

16.自2018年5月1日起,我国《英雄烈士保护法》正式施行。《英雄烈士保护法》规定。英雄烈士的姓名、肖像、名誉、荣誉受法律保护,禁止歪曲、丑化、亵渎、否定英雄烈士的事迹和精神。

时代呼唤英雄,时代緬怀英雄。为了争取民族独立和人民解放。实现国家富强和人民幸福,促进世界和平和人类进步而毕生奋斗、英勇献身的英雄烈士,功勋彪炳史册,精神水垂不朽。

依据材料.运用所学知识同答:(1)英雄人物具有哪些优秀品质?

(2)请你谈谈施行《英雄烈士保护法》的社会作用。

【答案】(1)爱国,大无畏的牺牲精神,负责任,爱好和平,艰苦奋斗等。

(2)立法保护英雄烈士有利于弘扬社会主义核心价值观;有利于维护社会公共利益,传承和弘扬英雄烈士精神;有利于加强社会主义精神文明建设;有得于促进全社会崇尚英烈,营造良好社会氛围。

【解析】本题考查爱国主义精神、艰苦奋斗、弘扬和培育民族精神等知识点的理解和运用。考查了分析解决问题的能力。

(1)本题要求归纳出英雄人物的优秀品质,英雄人物为了民族独立与解放,为实现人民的幸福和国家的富强,赴汤蹈火、英勇献身,体现了爱国主义精神、大无畏的牺牲精神和爱好和平的精神;同时也体现了他们的艰苦奋斗精神等,还可以是无私奉献、积极担当等,言之有理即可。

(2)本题考查的是施行《英雄烈士保护法》的社会作用这个知识点,要回答这个问题,可以从有利于弘扬社会主义核心价值观、有利于传承和弘扬英雄烈士精神、有利于加强社会主义精神文明建设等角度进行回答。17.“不忘初心,方得始終”,一语出自《华严经》,其意思是说一个人做事情,始终如一的保持当初的信念,最后就一定能得到成功。

(1)运用所学知识,说明理想信念对人生的重要意义。

有高尚的追求是人生幸福的起点,而“幸福是奋斗出来的”。

(2)在以“奋斗”为主题的班会课上,有同学认为:“艰苦奋斗就是一种精神风貌”。请简要评析这一观点。

【答案】(1)理想信念是贯穿于人的精神生活之中,它是引领人生前进的灯塔;是促进生活奋斗的动力;是提高人生境界的保障。(2)①这种观点是片面的。

②艰苦奋斗不仅是一种奋发向上的精神风貌,还是勤俭节约的生活作风与开拓进取的工作作风。③艰苦奋斗不只是一种精神风貌,更需要在实际行动中去践行,去奋斗。

【解析】本题考查的是理想对人的作用、弘扬艰苦奋斗精神的重要性等知识点的理解和运用。阅读材料,回归课本,归纳得出问题的答案。

(1)本题考查的理想信念对人生的重要意义这个知识点,回答这个问题,从引导人生航船的方向、导向驱动和调控作用、激励着我们不断超越自己、奋斗的目标、克服困难的力量源泉等角度进行作答。

三、探究题:本题9分。要求紧扣题意,综合运用所学知识和方法,展开探究和分析。

18.2018 年是我国改革开放 40周年,某班同学成立兴趣小组,开展以“40年改革开放”为主题的探究活动,搜集到以下材料,请你一起参与。[感悟发展成就] 40年来,中国发生了翻天覆地的变化。今天,中国已经成为世界第二大经济体,按照可比价格计算,中国国内生产总值年均增长约9.5%;中国人民生活从短缺走向充裕、从贫困走向小康,现行联合国标准下的7亿多贫困人口成功脱贫,占同期全球减贫人口总数70%以上.(1)概括材料中体现出的我国改革开放取得的成就。

[彰显制度优势] 40年来,解放思想和改革开放相互激荡、观念创新和实践探索相互促进,中国人民勇于自我革命、自我革新,不断完善中国特色社会主义制度。不断革除各方面体制弊端,充分显示了制度保障的强大力量。

(2)请列举三项具有中国特色的社会主义制度。

[开启新的征程] 站在新的历史起点,我国将全面深化改革,形成全面开放新格局。推动改革开放再出发,江苏将在科技体制等重点领域改革上先行突破、全方位提升开放的广度和深度、全面激发市场、企业和人才活力。

(3)从改革开放两个角度,就激发人才活力分别提出一项建议。

【答案】(1)改革开放以来,我国的综合国力不断增强,人民生活水平不断提高,贫困人口大幅减少。

(2)我国的根本政治制度:人民代表大会制度。

基本经济制度:公有制为主体,多种所有制经济共同发展。分配制度:按劳分配为主体,多种分配方式并存。

基本政治制度:民族区域自治制度,村民自治制度,(3)改革:①深化科技改革,营造尊重知识、尊重人才的社会氛围。

②加强人才奖励机制。③完善分配制度。开放:①加强人才交流,引进高素质人才。

②积极引进国外先进技术。

【解析】本题考查的是改革开放以来,我国取得的巨大成就这个知识点的运用。考查学生的分析总结概括能力。

(1)本题考查是改革开放以来我国取得的巨大成就。做这一类的问题,必须有分析材料,然后回归课本,找到相应的知识点,用规范的政治术语来回答问题。由材料“40年来,中国发生了翻天覆地的变化。今天,中国已经成为世界第二大经济体“说明我国的综合国力不断增强;“中国人民生活从短缺走向充裕、从贫困走向小康“说明人民生活水平不断提高;“现行联合国标准下的7亿多贫困人口成功脱贫,占同期全球减贫人口总数70%以上”说明中国脱贫工作成就显著,这样来回答这个问题。

(2)本题考查的是对我国中国特色社会主义制度的认识。我国的根本政治制度、基本政治制度、基本经济制度。

(3)要回答这个问题,要从改革和开放两个角度来回答;改革要从深化科技改革、加强人才奖励机制、完善分配机制来回答;开放要从加强人才交流、积极引进国外先进技术等角度进行作答。

下载2018年中考数学试卷江苏省宿迁市(含答案解析)(精选多篇)word格式文档
下载2018年中考数学试卷江苏省宿迁市(含答案解析)(精选多篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐