2018年广州市中考数学试卷(含答案)

时间:2019-05-14 16:09:22下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018年广州市中考数学试卷(含答案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018年广州市中考数学试卷(含答案)》。

第一篇:2018年广州市中考数学试卷(含答案)

广东省广州市2018年中考数学试题

一、选择题

1.四个数0,1,A.,中,无理数的是()

B.1

C.D.0 2.如图所示的五角星是轴对称图形,它的对称轴共有()A.1条

B.3条

C.5条

D.无数条

3.如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是()

A.B.C.D.4.下列计算正确的是()

A.B.C.D.5.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2

B.∠2,∠6

C.∠5,∠4

D.∠2,∠4 6.甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数

字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.7.如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()

A.40°

B.50°

C.70°

D.80°

8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x辆,每枚白银重y辆,根据题意得()A.B.C.D.9.一次函数 和反比例函数 在同一直角坐标系中大致图像是()

A.B.C.D.10.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1次移动到 则△ A.504 的面积是()

B.C.D.,第2次移动到

……,第n次移动到,二、填空题 11.已知二次函数,当x>0时,y随x的增大而________(填“增大”或“减小”)

12.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=________。13.方程 的解是________

14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0)点D在y轴上,则点C的坐标是________。

15.如图,数轴上点A表示的数为a,化简:

=________

16.如图9,CE是平行四边形ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E,连接AC,BE,DO,DO与AC交于点F,则下列结论: 四边形ACBE是菱形;②∠ACD=∠BAE AF:BE=2:3 ④

①③其中正确的结论有________。(填写所有正确结论的序号)

三、解答题

17.解不等式组

18.如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C。

19.已知(1)化简T。

(2)若正方形ABCD的边长为a,且它的面积为9,求T的值。

20.随着移动互联网的快速发展,基于互联网的共享单车应运而生,为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.

(1)这组数据的中位数是________,众数是________.

(2)计算这10位居民一周内使用共享单车的平均次数;

(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数。

21.友谊商店A型号笔记本电脑的售价是a元/台,最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案,方案一:每台按售价的九折销售,方案二:若购买不超过5台,每台按售价销售,若超过5台,超过的部分每台按售价的八折销售,某公司一次性从友谊商店购买A型号笔记本电脑x台。

(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?

(2)若该公司采用方案二方案更合算,求x的范围。

22.设P(x,0)是x轴上的一个动点,它与原点的距离为(1)求。

关于x的函数解析式,并画出这个函数的图像的图像与函数 的图像交于点A,且点A的横坐标为2.①求k的值(2)若反比例函数 ②结合图像,当 时,写出x的取值范围。

23.如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.

(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法)

(2)在(1)的条件下,①证明:AE⊥DE; ②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值。

24.已知抛物线。

(1)证明:该抛物线与x轴总有两个不同的交点。

(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在圆P上。①试判断:不论m取任何正数,圆P是否经过y轴上某个定点?若是,求出该定点的坐标,若不是,说明理由;

②若点C关于直线 半径记为,求

25.如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数。

(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由。

(3)若AB=1,点E在四边形ABCD内部运动,且满足,求点E运动路径的长度。

的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为,圆P的的值。

答案解析部分

一、选择题

1.【答案】A

【考点】实数及其分类,无理数的认识

【解析】【解答】解:A.属于无限不循环小数,是无理数,A符合题意;

B.1是整数,属于有理数,B不符合题意; C.是分数,属于有理数,C不符合题意;

D.0是整数,属于有理数,D不符合题意; 故答案为:A.【分析】无理数:无限不循环小数,由此即可得出答案.2.【答案】C

【考点】轴对称图形

【解析】【解答】解:五角星有五条对称轴.故答案为:C.【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线叫做对称轴。由此定义即可得出答案.3.【答案】B

【考点】简单几何体的三视图

【解析】【解答】解:∵从物体正面看,最底层是三个小正方形,第二层最右边一个小正方形,故答案为:B.【分析】主视图:从物体正面观察所得到的图形,由此即可得出答案.4.【答案】D

【考点】实数的运算

222【解析】【解答】解:A.∵(a+b)=a+2ab+b,故错误,A不符合题意;

B.∵a2+2a2=3a

2,故错误,B不符合题意; C.∵x2y÷ =x2y×y=x2y2,故错误,C不符合题意;

D.∵(-2x2)3=-8x6,故正确,D符合题意; 故答案为D:.【分析】A.根据完全平方和公式计算即可判断错误;

B.根据同类项定义:所含字母相同,相同字母指数也相同,再由合并同类项法则计算即可判断错误; C.根据单项式除以单项式法则计算,即可判断错误; D.根据幂的乘方计算即可判断正确; 5.【答案】B

【考点】同位角、内错角、同旁内角

【解析】【解答】解:∵直线AD,BE被直线BF和AC所截,∴∠1与∠2是同位角,∠5与∠6是内错角,故答案为:B.【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。根据此定义即可得出答案.6.【答案】C

【考点】列表法与树状图法,概率公式

【解析】【解答】解:依题可得:

∴一共有4种情况,而取出的两个小球上都写有数字2的情况只有1种,∴取出的两个小球上都写有数字2的概率为:P= 故答案为:C.【分析】根据题意画出树状图,由图可知一共有4种情况,而取出的两个小球上都写有数字2的情况只有1种,再根据概率公式即可得出答案.7.【答案】D

【考点】垂径定理,圆周角定理, 【解析】【解答】解:∵∠ABC=20°, ∴∠AOC=40°又∵OC⊥AB,∴OC平分∠AOB,.∴∠AOB=2∠AOC=80°故答案为:D.【分析】根据同弧所对的圆心角等于圆周角的两倍得∠AOC度数,再由垂径定理得OC平分∠AOB,由角平分线定义得∠AOB=2∠AOC.8.【答案】D

.【考点】二元一次方程的应用

【解析】【解答】解:依题可得: 故答案为:D.【分析】根据甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚黄金重量相同),称重两袋相等,由此得9x=11y;两袋互相交换1枚后,甲袋比乙袋轻了13辆(袋子重量忽略不计),由此得(10y+x)-(8x+y)=13,从而得出答案.9.【答案】A

【考点】反比例函数的图象,一次函数图像、性质与系数的关系

【解析】【解答】解:A.从一次函数图像可知:01,∴a-b>0,∴反比例函数图像在一、三象限,故正确;A符合题意; B.从一次函数图像可知:01,∴a-b>0,∴反比例函数图像在一、三象限,故错误;B不符合题意; C.从一次函数图像可知:0

【考点】探索图形规律

【解析】【解答】解:依题可得:

A2(1,1),A4(2,0),A8(4,0),A12(6,0)…… ∴A4n(2n,0),∴A2016=A4×504(1008,0),∴A2018(1009,1),∴A2A2018=1009-1=1008,,∴S△

故答案为:A.= ×1×1008=504().【分析】根据图中规律可得A4n(2n,0),即A2016=A4×504(1008,0),从而得A2018(1009,1),再根据坐标性质可得A2A2018=1008,由三角形面积公式即可得出答案.二、填空题

11.【答案】增大

【考点】二次函数y=ax^2的性质

【解析】【解答】解:∵a=1>0,∴当x>0时,y随x的增大而增大.故答案为:增大.【分析】根据二次函数性质:当a>0时,在对称轴右边,y随x的增大而增大.由此即可得出答案.12.【答案】

【考点】锐角三角函数的定义

【解析】【解答】解:在Rt△ABC中,∵高AB=8m,BC=16m,∴tanC= 故答案为: =.=.【分析】在Rt△ABC中,根据锐角三角函数正切定义即可得出答案.13.【答案】x=2

【考点】解分式方程

【解析】【解答】解:方程两边同时乘以x(x+6)得: x+6=4x ∴x=2.经检验得x=2是原分式方程的解.故答案为:2.【分析】方程两边同时乘以最先公分母x(x+6),将分式方程转化为整式方程,解之即可得出答案.14.【答案】(-5,4)

【考点】坐标与图形性质,菱形的性质,矩形的判定与性质

【解析】【解答】解:∵A(3,0),B(-2,0), ∴AB=5,AO=3,BO=2,又∵四边形ABCD为菱形,∴AD=CD=BC=AB=5,在Rt△AOD中,∴OD=4,作CE⊥x轴,∴四边形OECD为矩形,∴CE=OD=4,OE=CD=5,∴C(-5,4).故答案为:(-5,4).【分析】根据A、B两点坐标可得出菱形ABCD边长为5,在Rt△AOD中,根据勾股定理可求出OD=4;作CE⊥x轴,可得四边形OECD为矩形,根据矩形性质可得C点坐标.15.【答案】2

【考点】实数在数轴上的表示,二次根式的性质与化简

【解析】【解答】解:由数轴可知: 0

【考点】三角形的面积,全等三角形的判定与性质,线段垂直平分线的性质,平行四边形的性质,相似三角形的判定与性质,BC∥【解析】【解答】解:①∵CE是平行四边形ABCD的边AB的垂直平分线,∴AO=BO,∠AOE=∠BOC=90°AE,AE=BE,CA=CB,∴∠OAE=∠OBC,∴△AOE≌△BOC(ASA),∴AE=BC,∴AE=BE=CA=CB,∴四边形ACBE是菱形,故①正确.②由①四边形ACBE是菱形,∴AB平分∠CAE,∴∠CAO=∠BAE,又∵四边形ABCD是平行四边形,∴BA∥CD,∴∠CAO=∠ACD,∴∠ACD=∠BAE.故②正确.③∵CE垂直平分线AB,∴O为AB中点,又∵四边形ABCD是平行四边形,∴BA∥CD,AO= ∴△AFO∽△CFD,∴

∴AF:AC=1:3, ∵AC=BE,∴AF:BE=1:3, 故③错误.④∵ ·CD·OC, =,AB= CD,由③知AF:AC=1:3, ∴ ∵ ∴ ∴ 故④正确.故答案为:①②④.,BC∥AE,AE=BE,CA=CB,根据【分析】①根据平行四边形和垂直平分线的性质得AO=BO,∠AOE=∠BOC=90°ASA得△AOE≌△BOC,由全等三角形性质得AE=CB,根据四边相等的四边形是菱形得出①正确.= × = CD·OC=

+ , =

= , , ②由菱形性质得∠CAO=∠BAE,根据平行四边形的性质得BA∥CD,再由平行线的性质得∠CAO=∠ACD,等量代换得∠ACD=∠BAE;故②正确.③根据平行四边形和垂直平分线的性质得BA∥CD,AO= 质得 =

AB=

CD,从而得△AFO∽△CFD,由相似三角形性,从而得出AF:AC=1:3,即AF:BE=1:3,故③错误.·CD·OC,从③知AF:AC=1:3,所以,从而得出

故④正确.=

+ ④由三角形面积公式得

= =

三、解答题

17.【答案】解: 解不等式①得:x>-1,解不等式②得:x<2, ∴不等式组的解集为:-1

【解析】【分析】分别解出每个不等式的解,再得出不等式组的解集.18.【答案】证明:在△DAE和△BCE中,, ∴△DAE≌△BCE(SAS),∴∠A=∠C,【考点】全等三角形的判定与性质

【解析】【分析】根据全等三角形的判定SAS得三角形全等,再由全等三角形性质得证.19.【答案】(1)

,(2)解:∵正方形ABCD的边长为a,且它的面积为9,∴a= ∴T= =3 =

【考点】利用分式运算化简求值

【解析】【分析】(1)先找最简公分母,通分化成分母相同的分式,再由其法则:分母不变,分子相加;合并同类项之后再因式分解,约分即可.(2)根据正方形的面积公式即可得出边长a的值,代入上式即可得出答案.20.【答案】(1)16;17(2)解:这组数据的平均数是: 的平均次数为14.14=2800(次).(3)解:200×答:该小区一周内使用共享单车的总次数大约是2800次.【考点】平均数及其计算,中位数,用样本估计总体,众数

【解析】【解答】解:(1)将这组数据从小到大顺序排列: 0,7,9,12,15,17,17,17,20,26。∵中间两位数是15,17,∴中位数是 =16,=14.答:这10位居民一周内使用共享单车又∵这组数据中17出现的次数最多,∴众数是17.故答案为:16,17.【分析】(1)将此组数据从小到大或者从大到小排列,正好是偶数个,所以处于中间两个数的平均数即为这组数据的中位数;根据一组数据中出现次数最多的即为众数,由此即可得出答案.(2)平均数:指在一组数据中所有数据之和再除以这组数据的个数,由此即可得出答案.(3)根据(2)中的样本平均数估算总体平均数,由此即可得出答案.21.【答案】(1)解:∵x=8,8=7.2a,∴方案一的费用是:0.9ax=0.9a×方案二的费用是:5a+0.8a(x-5)=5a+0.8a(8-5)=7.4a ∵a>0,∴7.2a<7.4a ∴方案一费用最少,答:应选择方案一,最少费用是7.2a元.(2)解:设方案一,二的费用分别为W1,W2,由题意可得:W1=0.9ax(x为正整数),当0≤x≤5时,W2=ax(x为正整数),0.8a=0.8ax+a(x为正整数),当x>5时,W2=5a+(x-5)×∴,其中x为正整数, 由题意可得,W1>W2,∵当0≤x≤5时,W2=ax>W1,不符合题意,∴0.8ax+a<0.9ax,解得x>10且x为正整数,即该公司采用方案二购买更合算,x的取值范围为x>10且x为正整数。

【考点】一元一次不等式的应用,一次函数的实际应用,根据实际问题列一次函数表达式

【解析】【分析】(1)根据题意,分别得出方案一的费用是:0.9ax,方案二的费用是:5a+0.8a(x-5)=a+0.8ax,再将x=8代入即可得出方案一费用最少以及最少费用.W2,根据题意,(2)设方案一,二的费用分别为W1,分别得出W1=0.9ax(x为正整数),其中x为正整数,再由W1>W2,分情况解不等式即可得出x的取值范围.22.【答案】(1)解:∵P(x,0)与原点的距离为y1,∴当x≥0时,y1=OP=x,当x<0时,y1=OP=-x,∴y1关于x的函数解析式为 函数图象如图所示:,即为y=|x|,(2)解:∵A的横坐标为2,2=4,∴把x=2代入y=x,可得y=2,此时A为(2,2),k=2×2=-4,把x=2代入y=-x,可得y=-2,此时A为(2,-2),k=-2×当k=4时,如图可得,y1>y2时,x<0或x>2。当k=-4时,如图可得,y1>y2时,x<-2或x>0。

【考点】反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,根据实际问题列一次函数表达式

【解析】【分析】(1)根据P点坐标以及题意,对x范围分情况讨论即可得出(2)将A点的横坐标分别代入

关于x的函数解析式.关于x的函数解析式,得出A(2,2)或A(2,-2),再分别代入反比例函数解析

时x的取值范围.式得出k的值;画出图像,由图像可得出当

23.【答案】(1)

(2)①证明:在AD上取一点F使DF=DC,连接EF,∵DE平分∠ADC,∴∠FDE=∠CDE,在△FED和△CDE中,DF=DC,∠FDE=∠CDE,DE=DE ∴△FED≌△CDE(SAS),-∠DFE=90° ∴∠DFE=∠DCE=90°,∠AFE=180°∴∠DEF=∠DEC,∵AD=AB+CD,DF=DC,∴AF=AB,在Rt△AFE≌Rt△ABE(HL)∴∠AEB=∠AEF,∴∠AED=∠AEF+∠DEF= ∴AE⊥DE ②解:过点D作DP⊥AB于点P,∠CEF+

∠BEF=

(∠CEF+∠BEF)=90°。

∵由①可知,B,F关于AE对称,BM=FM,∴BM+MN=FM+MN,当F,M,N三点共线且FN⊥AB时,有最小值,∵DP⊥AB,AD=AB+CD=6,∴∠DPB=∠ABC=∠C=90°,∴四边形DPBC是矩形,∴BP=DC=2,AP=AB-BP=2,在Rt△APD中,DP= ∵FN⊥AB,由①可知AF=AB=4,∴FN∥DP,∴△AFN∽△ADP ∴ 即 解得FN=,,=,∴BM+MN的最小值为

【考点】全等三角形的判定与性质,矩形的判定与性质,作图—基本作图,轴对称的应用-最短距离问题,相似三角形的判定与性质

【解析】【分析】(1)根据角平分的做法即可画出图.(2)①在AD上取一点F使DF=DC,连接EF;角平分线定义得∠FDE=∠CDE;根据全等三角形判定SAS得△FED≌△CDE,再由全等三角形性质和补角定义得∠DFE=∠DCE=∠AFE=90°,∠DEF=∠DEC;再由直角三角形全等的判定HL得Rt△AFE≌Rt△ABE,由全等三角形性质得∠AEB=∠AEF,再由补角定义可得AE⊥DE.②过点D作DP⊥AB于点P;由①可知,B,F关于AE对称,根据对称性质知BM=FM,当F,M,N三点共线且FN⊥AB时,有最小值,即BM+MN=FM+MN=FN;在Rt△APD中,根据勾股定理得DP= = ;由相似三角形判定得△AFN∽△ADP,再由相似三角形性质得,从而求得FN,即BM+MN的最小值.24.【答案】(1)证明:当抛物线与x轴相交时,令y=0,得: x2+mx-m-4=0 222∴△=m+4(2m+4)=m+8m+16=(m+4)

∵m>0,2∴(m+4)>0,∴该抛物线与x轴总有两个不同的交点。

2(2)解:①令y=x+mx-2m-4=(x-2)(x+m+2)=0,解得:x1=2,x2=-m-2,∵抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),∴A(2,0),B(-2-m,0),∵抛物线与y轴交于点C,∴C(0,-2m-4),设⊙P的圆心为P(x0,y0),则x0= ∴P(=,y0),22且PA=PC,则PA=PC,则 解得 ∴P(,),∴⊙P与y轴的另一交点的坐标为(0,b)则 ∴b=1,∴⊙P经过y轴上一个定点,该定点坐标为(0,1)②由①知,D(0,1)在⊙P上,∵E是点C关于直线 的对称点,且⊙P的圆心P(,),∴E(-m,-2m-4)且点E在⊙P上,即D,E,C均在⊙P上的点,且∠DCE=90°,∴DE为⊙P的直径,∴∠DBE=90°,△DBE为直角三角形,∵D(0,1),E(-m,-2m-4),B(-2-m,0),∴DB= BE= ∴BE=2DB,在Rt△DBE中,设DB=x,则BE=2x,∴DE= =,=

=,=

∴△BDE的周长l=DB+BE+DE=x+2x+ ⊙P的半径r= =

∴ = =

【考点】一元二次方程根的判别式及应用,二次函数图像与坐标轴的交点问题,两点间的距离,勾股定理,圆周角定理

22【解析】【分析】(1)当抛物线与x轴相交时,即y=0,根据一元二次方程根的判别式△=b-4ac=m+4(2m+4)=m2+8m+16=(m+4)2>0,从而得出该抛物线与x轴总有两个不同的交点.(2)①抛物线与x轴的两个交点,即y=0,因式分解得出A(2,0),B(-2-m,0);抛物线与y轴交点,即x=0,得出C(0,-2m-4);设⊙P的圆心为P(x0,y0),由P为AB中点,得出P点横坐标,再PA=PC,根据两点间距离公式得出P点纵坐标,即P(,);设⊙P与y轴的另一交点的坐标为(0,b),根据中点坐标公式得b=1,即⊙P经过y轴上一个定点,该定点坐标为(0,1).②由①知,D(0,1)在⊙P上,由)①知⊙P的圆心P(形,再根据两点间距离公式得DB= 则BE=2x,根据勾股定理得DE= △BDE的周长l=,BE=,由三角形周长公式得,从而得出

值.,),由圆周角定理得△DBE为直角三角,由BE=2DB,在Rt△DBE中,设DB=x,又⊙P的半径r= 25.【答案】(1)解:在四边形ABCD中,∠B=60°,∠D=30°,-∠B-∠C=360°-60°-30°=270°∴∠A+∠C=360°。

(2)解:如图,将△BCD绕点B逆时针旋转60°,得到△BAQ,连接DQ,∵BD=BQ,∠DBQ=60°,∴△BDQ是等边三角形,∴BD=DQ,∵∠BAD+∠C=270°,∴∠BAD+∠BAQ=270°,-270°=90°∴∠DAQ=360°,∴△DAQ是直角三角形

222∴AD+AQ=DQ,222即AD+CD=BD

(3)解:如图,将△BCE绕点B逆时针旋转60°,得到△BAF,连接EF,∵BE=BF,∠EBF=60°,∴△BEF是等边三角形,∴EF=BE,∠BFE=60°,222∵AE=BE+CE 222∴AE=EF+AF

∴∠AFE=90°+90°=150°∴∠BFA=∠BFE+∠AFE=60°,∴∠BEC=150°,则动点E在四边形ABCD内部运动,满足∠BEC=150°,以BC为边向外作等边△OBC,则点E是以O为圆心,OB为半径的圆周上运动,运动轨迹为BC,∵OB=AB=1,则BC= =

【考点】等边三角形的判定与性质,勾股定理的逆定理,多边形内角与外角,弧长的计算,旋转的性质

【解析】【分析】(1)根据四边形内角和为360度,结合已知条件即可求出答案.(2)将△BCD绕点B逆时针旋转60°,得到△BAQ,连接DQ(如图),由旋转性质和等边三角形判定得△BDQ

222是等边三角形,由旋转性质根据角的计算可得△DAQ是直角三角形,根据勾股定理得AD+AQ=DQ,即AD2+CD2=BD2.(3)将△BCE绕点B逆时针旋转60°,得到△BAF,连接EF(如图),由等边三角形判定得△BEF是等边三角形,222结合已知条件和等边三角形性质可得AE=EF+AF,即∠AFE=90°,从而得出∠BFA=∠BEC=150°,从而得出点E是在以O为圆心,OB为半径的圆周上运动,运动轨迹为BC,根据弧长公式即可得出答案.

第二篇:2015贵州六盘水中考数学试卷(扫描版,含答案)

参考答案

10、DCBBC ACADC11、40°

12、(2,7)

13、1 14、15、书16、5×1019、1 10

17、(3,2)

18、25 20、解:∵直线l1∥l2,∴△ABC1,△ABC2,△ABC3的底边AB上的高相等,∴△ABC1,△ABC2,△ABC3这3个三角形同底,等高,∴△ABC1,△ABC2,△ABC3这些三角形的面积相等. 即S1=S2=S3.

21、解:(1)A套餐的收费方式:y1=0.1x+15; B套餐的收费方式:y2=0.15x;

(2)由0.1x+15=0.15x,得到x=300,答:当月通话时间是300分钟时,A、B两种套餐收费一样;(3)当月通话时间多于300分钟时,A套餐更省钱

22、解:∵前三层三角形的几何点数分别是1、2、3,∴第六层的几何点数是6,第n层的几何点数是n;

∵前三层正方形的几何点数分别是:1=2×1﹣

1、3=2×2﹣

1、5=2×3﹣1,∴第六层的几何点数是:2×6﹣1=11,第n层的几何点数是2n﹣1; ∵前三层五边形的几何点数分别是:1=3×1﹣

2、2=3×2﹣

2、3=3×3﹣2,∴第六层的几何点数是:3×6﹣2=16,第n层的几何点数是3n﹣2; 前三层六边形的几何点数分别是:1=4×1﹣

3、5=4×2﹣

3、9=4×3﹣3,∴第六层的几何点数是:4×6﹣3=21,第n层的几何点数是4n﹣3.

23、解:(1)该班学生的总人数是:

=50(人);

(2)徒步的人数是:50×8%=4(人),自驾游的人数是:50﹣12﹣8﹣4﹣6=20(人); 补图如下:

(3)扇形统计图中∠α的度数是:360°×

=144°;

(4)最喜欢的方式是自驾游,它比较自由,比较方便.

24、(1)证明:∵AB是⊙O的切线,∴OD⊥AB,∴∠C=∠ADO=90°,∵∠A=∠A,∴△ADO∽△ACB;

(2)解:由(1)知:△ADO∽△ACB. ∴,∴AD•BC=AC•OD,∵OD=1,∴AC=AD•BC.

25、解:(1)如图,(2)∵AD=AB,∴∠ADB=∠ABD,而∠BAC=∠ADB+∠ABD,∴∠ADB=∠BAC=×45°=22.5°,即∠BDC的度数为22.5°;(3)设AC=x,∵∠C=90°,∠BAC=45°,∴△ACB为等腰直角三角形,∴BC=AC=x,AB=AC=x,∴AD=AB=x,∴CD=x+x=(+1)x,在Rt△BCD中,cot∠BDC=

=

=

+1,即cot22.5°=+1.

26、解:(1)将D、C、E的坐标代入函数解析式,得,解得.

图①中抛物线的函数表达式y=x﹣1;

2(2)将抛物线的函数表达式y=x﹣1向上平移1个单位,得

2y=x,2该抛物线的函数表达式y=x;

22(3)将抛物线的函数表达式y=x绕原点O顺时针旋转90°,得x=y,2图③中抛物线的函数表达式x=y;

2(4)将图③中抛物线的函数表达式x=y绕原点O顺时针旋转90°,得

2y=﹣x,联立,2解得,.

A(AB=

,),B(,).

=

第三篇:2018年浙江省舟山市中考数学试卷含答案解析

浙江省舟山市2018年中考数学试卷

一、选择题

1.下列几何体中,俯视图为三角形的是()

A.B.C.D.2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为()

A.15×105 B.1.5×106 C.0.15×107 D.1.5×105 3.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()

A.1月份销量为2.2万辆 B.从2月到3月的月销量增长最快 C.4月份销量比3月份增加了1万辆 D.1-4月新能源乘用车销量逐月增加 4.不等式1-x≥2的解在数轴上表示正确的是()

A.B.C.D.5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去浙江省舟山市2018年中考数学试卷

一个角,展开铺平后的图形是()

A.B.C.D.6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()

A.点在圆内 B.点在圆上 C.点在圆心上 D.点在圆上或圆内

227.欧几里得的《原本》记载,形如x+ax=b的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=。则该方程的一个正根是()

A.AC的长 B.AD的长 C.BC的长 D.CD的长

8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()

A.B.C.D.9.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交浙江省舟山市2018年中考数学试卷

于点A,B,且AB=BC,△AOB的面积为1,则k的值为()

A.1 B.2 C.3 D.4 10.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()

A.甲 B.甲与丁 C.丙 D.丙与丁

二、填空题

11.分解因式m2-3m=________。

12.如图,直线l1∥l2∥l

3,直线AC交l

1,l

2,l3,于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知,则 =________。

13.小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果”小红赢的概率是________,据此判断该游戏________(填“公平”两次是一正一反,则我赢,或“不公平”)。

14.如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数浙江省舟山市2018年中考数学试卷

为60°,则该直尺的宽度为________ cm。

15.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%,若设甲每小时检x个,则根据题意,可列处方程:________。

16.如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是________。

三、解答题

17.(1)计算:2((2)化简并求值 -1)+|-3|-(-1)0;,其中a=1,b=2。

18.用消元法解方程组 时,两位同学的解法如下:

(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”。

(2)请选择一种你喜欢的方法,完成解答。

19.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。浙江省舟山市2018年中考数学试卷

求证:矩形ABCD是正方形

20.某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm-185mm的产品为合格),随机各轴取了20个样品进行测,过程如下:收集数据(单位:mm): 甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180。

乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183。整理数据:

分析数据:

应用数据:

(1)计算甲车间样品的合格率。

(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?

(3)结合上述数据信息,请判断个车间生产的新产品更好,并说明理由,21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与动时间t(s)之间的关系如浙江省舟山市2018年中考数学试卷

图2所示。

(1)根据函数的定义,请判断变量h是否为关于t的函数?

(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义,②秋千摆动第一个来回需多少时间?

22.如图1,滑动调节式遮阳伞的立柱AC垂直于地面AB,P为立柱上的滑动调节点,伞体的截面示意图为△PDE,F为PD中点,AC=2.8m,PD=2m,CF=1m,∠DPE=20°。当点P位于初始位置P0时,点D与C重合(图2),根据生活经验,当太阳光线与PE垂直时,遮阳效果最佳。

(1)上午10:00时,太阳光线与地面的夹角为65°(图3),为使遮阳效果最佳,点P需从P0上调多少距离?(结果精确到0.1m)

(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点P在(1)的基础上还需上调多少距离?(结果精确到0.1m)(参考数:sin70°≈0.94,cos70°≈0.34,浙江省舟山市2018年中考数学试卷

tan70°≈2.75,≈1.41,≈1.73)

23.已知,点M为二次函数y=-(x-b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B。

(1)判断顶点M是否在直线y=4x+1上,并说明理由。

2(2)如图1,若二次函数图象也经过点A,B,且mx+5>-(x-b)+4b+1,根据图象,写出x的取值范围。

(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(都在二次函数图象上,试比较y1与y2的大小。

24.已知,△ABC中,∠B=∠C,P是BC边上一点,作∠CPE=∠BPF,分别交边AC,AB于点E,F。,y1),D(,y2)(1)若∠CPE=∠C(如图1),求证:PE+PF=AB。

(2)若∠CPE≠∠C,过点B作∠CBD=∠CPE,交CA(或CA的延长线)于点D.试猜想:线段PE,PF和BD之间的数量关系,并就∠CPE>∠C情形(如图2)说明理由。

(3)若点F与A重合(如图3),∠C=27°,且PA=AE。浙江省舟山市2018年中考数学试卷

①求∠CPE的度数;

②设PB=a,PA=b,AB=c,试证明:

浙江省舟山市2018年中考数学试卷

答案解析部分

一、选择题

1.【答案】C

【考点】简单几何体的三视图

【解析】【解答】A、圆锥的俯视图是一个圆并用圆心,故A不符合题意; B、长方体的俯视图是一个长方形,故B不符合题意; C、直三棱柱的俯视图是三角形,故C符合题意; D、四棱锥的俯视图是一个四边形,故D不符合题意; 故答案为C。

【分析】俯视图指的是在水平投影面上的正投影,通俗的讲是从上面往下面看到的图形. 2.【答案】B

【考点】科学记数法—表示绝对值较大的数

1000000=1.5×106 【解析】【解答】解:1500000=1.5×故答案为B。

10n,其中1≤|a|<10,n是【分析】考查用科学记数表示绝对值较大的数,将数表示形a×正整数. 3.【答案】D

【考点】折线统计图

【解析】【解答】解:A、显然正确,故A不符合题意;

B、2月份到3月份的线段最陡,所以2月到3月的月销量增长最快,说法正确,故B不符合题意;

C、4月份销量为4.3万辆,3月份销量为3.3万量,4.3-3.3=1(万辆),说法正确,故不符合题意;

D、1月到2月是减少的,说法错误,故D符合题意; 故答案为D 【分析】A、正确读取1月份的数据,即可知;B、根据折线统计图看增长快慢,只需要看各线段的陡的程度,线段越陡,则越快;C、正确读取4月、3月的数据,即可知;D、观察折线的趋势,逐月增加的应该是上升的折线,而图中有下降。浙江省舟山市2018年中考数学试卷

4.【答案】A

【考点】解一元一次不等式

【解析】【解答】解:因为1-x≥2,3≥x,所以不等式的解为x≤3,故答案为A。

【分析】解在不等式的解,并在数轴上表示,不等号是“≥”或“≤”的时候,点要打实心 5.【答案】A

【考点】剪纸问题

【解析】【解答】解:沿虚线剪开以后,剩下的图形先向右上方展开,缺失的部分是一个等腰直角三角形,用直角边与正方形的边是分别平行的,再沿着对角线展开,得到图形A。故答案为A。

【分析】根据对称的性质,用倒推法去展开这个折纸。6.【答案】D

【考点】点与圆的位置关系,反证法

【解析】【解答】解:点与圆的位置关系只有三种:点在圆内、点在圆上、点在圆外,如果点不在圆外,那么点就有可能在圆上或圆内 故答案为D 【分析】运用反证法证明,第一步就要假设结论不成立,即结论的反面,要考虑到反面所有的情况。7.【答案】B

【考点】一元二次方程的根,勾股定理

2222【解析】【解答】解:在Rt△ABC中,由勾股定理可得AC+BC=AB=(AD+BD),因为AC=b,BD=BC=,2所以b+=,2222整理可得AD+aAD=b,与方程x+ax=b相同,22因为AD的长度是正数,所以AD是x+ax=b的一个正根

故答案为B。

2222【分析】由勾股定理不难得到AC+BC=AB=(AD+BD),代入b和a即可得到答案

8.【答案】C 浙江省舟山市2018年中考数学试卷

【考点】平行四边形的性质,菱形的判定,作图—尺规作图的定义

【解析】【解答】解:A、作的辅助线AC是BD的垂直平分线,由平行四边形中心对称图形的性质可得AC与BD互相平分且垂直,则四边形ABCD是菱形,故A不符合题意; B、由辅助线可得AD=AB=BC,由平行四边形的性质可得AD//BC,则四边形ABCD是菱形,故B不符合题意;

C、辅助线AB、CD分别是原平行四边形一组对角的角平分线,只能说明四边形ABCD是平行四边形,故C符合题意;

D、此题的作法是:连接AC,分别作两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,由AD//BC,得∠BAD+∠ABC=180°,∠BAC=∠DAC=∠ACB=∠ACD,则AB=BC,AD =CD,∠BAD=∠BCD,则∠BCD+∠ABC=180°,则AB//CD,则四边形ABCD是菱形 故D不符合题意; 故答案为C 【分析】首先要理解每个图的作法,作的辅助线所具有的性质,再根据平行四边形的性质和菱形的判定定理判定 9.【答案】D

【考点】反比例函数系数k的几何意义

【解析】【解答】解:过点C作CD垂直于y轴,垂足为D,作CE垂直于x轴,垂足为E,则∠AOB=∠CDB=∠CEA=90°又因为AB=BC,∠ABO=∠CBD,所以△ABO≅△CBD,所以S△CBD=S△ABO=1,因为∠CDB=∠CEA=90°,∠BAO=∠CAE, 所以△ABO~△ACE,所以,则S△ACE=4,浙江省舟山市2018年中考数学试卷

所以S矩形ODCE=S△CBD+S四边形OBCE=S△ACE=4,则k=4,故答案为D 【分析】根据反比例函数k的几何意义,可过C点作CD垂直于y轴,垂足为D,作CE垂直于x轴,垂足为E,即求矩形ODCE的面积 10.【答案】B

【考点】推理与论证

【解析】【解答】解:小组赛一共需要比赛由分析可知甲是最高分,且可能是9或7分,当甲是9分时,乙、丙、丁分别是7分、5分、3分,因为比赛一场最高得分3分,3=18分,所以4个队的总分最多是6×而9+7+5+3>18,故不符合;

当甲是7分时,乙、丙、丁分别是5分、3分、1分,7+5+3+1<18,符合题意,因为每人要参加3场比赛,所以甲是2胜一平,乙是1胜2平,丁是1平2负,则甲胜丁1次,胜丙1次,与乙打平1次,因为丙是3分,所以丙只能是1胜2负,乙另外一次打平是与丁,则与乙打平的是甲、丁 故答案是B。

【分析】需要推理出甲、乙、丙、丁四人的分数:每个人都要比赛3场,要是3场全胜得最高9分,根据已知“甲、乙,丙、丁四队分别获得第一,二,三,四名”和“各队的总得分恰好是四个连续奇数”,可推理出四人的分数各是多少,再根据胜、平、负一场的分数去讨论打平的场数。

二、填空题

11.【答案】m(m-3)

【考点】提公因式法因式分解

2m-3·m=m(m-3)【解析】【解答】解:原式=m-3m=m·

场,浙江省舟山市2018年中考数学试卷

故答案为m(m-3)【分析】提取公因式m即可 12.【答案】2

【考点】平行线分线段成比例

【解析】【解答】解:由则,和BC=AC-AB,因为直线l1∥l2∥l

3,所以故答案为2 【分析】由

13.【答案】;不公平

【考点】游戏公平性,概率公式

【解析】【解答】解:抛硬币连续抛两次可能的情况:(正面,正面),(正面,反面),(反面,正面),(反面,反面),一共有4种,而两次都是正面的只有一次,则P(两次都是正面)=< 所以该游戏是不公平的。故答案为;不公平

【分析】可列举抛硬币连续抛两次可能的情况,得出两次都是正面的情况数,可求得小红赢的概率;游戏的公平是双方赢的概率都是 14.【答案】 和BC=AC-AB,可得的值;由平行线间所夹线段对应成比例可得=2 【考点】垂径定理,切线的性质

【解析】【解答】解:如图,连结OD,OC,OC与AD交于点G,设直尺另一边为EF,浙江省舟山市2018年中考数学试卷

因为点D在量角器上的读数为60°,所以∠AOD=120°,因为直尺一边EF与量角器相切于点C,所以OC⊥EF,因为EF//AD,所以OC⊥AD,由垂径定理得AG=DG=AD=5 cm,∠AOG=∠AOD=60°,在Rt△AOG中,AG=5 cm,∠AOG=60°,则OG=则CG=OC-OG=cm,OC=OA=

cm.cm 【分析】因为直尺另一边EF与圆O相切于点C,连接OC,可知求直尺的宽度就是求CG=OC-OG,而OC=OA;OG和OA都在Rt△AOG中,即根据解直角三角形的思路去做:由垂定理可知AG=DG=AD=5cm,∠AOG=∠AOD=60°,从而可求答案。15.【答案】【考点】列分式方程

【解析】【解答】解:设甲每小时检x个,则乙每小时检测(x-20)个,甲检测300个的时间为乙检测200个所用的时间为由等量关系可得故答案为,【分析】根据实际问题列方程,找出列方程的等量关系式:甲检测300个的时间=乙检测200浙江省舟山市2018年中考数学试卷

个所用的时间×(1-10%),分别用未知数x表示出各自的时间即可 16.【答案】0或1<AF<

或4

【考点】矩形的性质,圆周角定理,切线的性质,直角三角形的性质

【解析】【解答】解:以EF为斜边的直角三角形的直角顶点P是以EF为直径的圆与矩形边的交点,取EF的中点O,(1)如图1,当圆O与AD相切于点G时,连结OG,此时点G与点P重合,只有一个点,此时AF=OG=DE=1;

(2)如图2,当圆O与BC相切于点G,连结OG,EG,FG,此时有三个点P可以构成Rt△EFP,∵OG是圆O的切线,∴OG⊥BC ∴OG//AB//CD ∵OE=OF,∴BG=CG,∴OG=(BF+CE),设AF=x,则BF=4-x,OG=(4-x+4-1)=(7-x),2222222则EF=2OG=7-x,EG=EC+CG=9+1=10,FG=BG+BF=1+(4-x)浙江省舟山市2018年中考数学试卷

22222在Rt△EFG中,由勾股定理得EF=EG+FG,得(7-x)=10+1+(4-x),解得x=

所以当1<AF< 时,以EF为直径的圆与矩形ABCD的交点(除了点E和F)只有两个;(3)因为点F是边AB上一动点:

当点F与A点重合时,AF=0,此时Rt△EFP正好有两个符合题意; 当点F与B点重合时,AF=4,此时Rt△EFP正好有两个符合题意; 故答案为0或1<AF<

或4 【分析】学习了圆周角的推论:直径所对的圆周角是直角,可提供解题思路,不妨以EF为直径作圆,以边界值去讨论该圆与矩形ABCD交点的个数

三、解答题

17.【答案】(1)原式=4(2)原式=

-2+3-1=4

=a-b 当a=1,b=2时,原式=1-2=-1

【考点】实数的运算,利用分式运算化简求值

【解析】【分析】(1)按照实数的运算法则计算即可;

(2)分式的化简当中,可先运算括号里的,或都运用乘法分配律计算都可 18.【答案】(1)解法一中的计算有误(标记略)(2)由①-②,得-3x=3,解得x=-1,把x=-1代入①,得-1-3y=5,解得y=-2,所以原方程组的解是

【考点】解二元一次方程组

【解析】【分析】(1)解法一运用的是加减消元法,要注意用①-②,即用方程①左边和右边的式子分别减去方程②左边和右边的式子;(2)解法二运用整体代入的方法达到消元的目的 19.【答案】∵四边形ABCD是矩形,∴∠B=∠D=∠C=90°∵△AEF是等边三角形

∴AE=AF,∠AEF=∠AFE=60°,又∠CEF=45°,浙江省舟山市2018年中考数学试卷

∴∠CFE=∠CEF=45°,-45°-60°=75°∴∠AFD=∠AEB=180°,∴△AEB≌△AFD(AAS),∴AB=AD, ∴矩形ABCD是正方形。

【考点】三角形全等的判定,矩形的性质,正方形的判定

【解析】【分析】证明矩形ABCD是正方形,根据有一组邻边相等的矩形是正方形,则可证一组邻边相等

20.【答案】(1)甲车间样品的合格率为

×100%=55%

(2)∵乙车间样品的合格产品数为20-(1+2+2)=15(个),∴乙车间样品的合格率为

×100%=75%。

75%=750(个). ∴乙车间的合格产品数为1000×(3)①从样品合格率看,乙车间合格率比甲车间高,所以乙车间生产的新产品更好。②从样品的方差看,甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比甲稳定,所以乙车间生产的新产品更好.

【考点】数据分析

【解析】【分析】(1)由题意可知,合格的产品的条件为尺寸范围为176mm-185mm的产品,所以甲车间合格的产品数是(5+6),再除总个数即可;

(2)需要先求出乙车间的产品的合格率;而合格产品数(a+b)的值除了可以样品数据中里数出来,也可以由20-(1+2+2)得到;

(3)分析数据中的表格提供了甲、乙车间的平均数、众数、中位数和方差数据,根据它们的特点结合数据的大小进行比较及评价即可

21.【答案】(1)∵对于每一个摆动时间t,都有一个唯一的h的值与其对应,∴变量h是关于t的函数。

(2)①h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度为0.5m ②2.8s.

【考点】函数的概念,函数值

【解析】【分析】(1)从函数的定义出发:一般地,在某个变化过程中,设有两个变量x,y,y都有唯一确定的值,x是自变量。如果对于x的每个确定的值,那么就说y是x的函数,浙江省舟山市2018年中考数学试卷

h是否为关于t的函数:即表示t为自变量时,每一个t的值是否只对应唯一一个h的值,从函数的图象中即可得到答案;

(2)①结合实际我们知道在t=0的时刻,秋千离地面最高;t=0.7的时刻,观察该点的纵坐标h的值即可;结合h表示高度的实际意义说明即可;

②结合荡秋千的经验,秋千先从一端的最高点下落到最低点,再荡到另一端的最高点,再返回到最低点,最后回到开始的一端,符合这一过程的即是0~2.8s。22.【答案】(1)如图2,当点P位于初始位置P0时,CP0=2m。

如图3,10:00时,太阳光线与地面的夹角为65°,点P上调至P1处,∠1=90°,∠CAB=90°,∴∠AP1E=115°,∴∠CPE=65°. ∵∠DP1E=20°,∴∠CP1F=45°∵CF=P1F=1m,∴∠C=∠CP1F=45°,∴△CP1F为等腰直角三角形,浙江省舟山市2018年中考数学试卷

∴CP1= m,≈0.6m,P0P1=CP0-CP1=2-即点P需从P0上调0.6m(2)如图4,中午12:00时,太阳光线与PE,地面都垂直,点P上调至P2处,∴P2E∥AB ∵∠CAB=90°,∴∠CP2E=90°∵∠DP2E=20°,∴∠CP2F=∠CP2E-∠DP2E=70°∵CF=P2F=1m,得△CP2F为等腰三角形,∴∠C=∠CP2F=70 过点F作FG⊥CP2于点G,cos70°=1×0.34=0.34m ∴GP2=P2F·∴CP2=2GP2=0.68m,∴P1P2=CP1-CP2=-0.68≈0.7

即点P在(1)的基础上还需上调0.7m。

【考点】等腰三角形的判定与性质,解直角三角形

【解析】【分析】(1)求P上升的高度,设上升后的点P为P1,即求P0P1=CP0-CP1的值,其中CP0=2,即求CP1的长度,由已知可得P1F=CF=1,且可已知求出∠C=45°,从而可得△CP1F为等腰直角三角形,由勾股定理求出CP1即可;

(2)与(1)同理即求CP2的长度,因为△CP1F为等腰三角形,由三线合一定理,作底中的垂线,根据解直角三角形的方法求出底边的长即可 浙江省舟山市2018年中考数学试卷

23.【答案】(1)∵点M坐标是(b,4b+1),∴把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上。

(2)如图1,∵直线y=mx+5与y轴交于点为B,∴点B坐标为(0,5)又∵B(0,5)在抛物线上,2∴5=-(0-b)+4b+1,解得b=2 2∴二次函数的表达式为y=-(x-2)+9 ∴当y=0时,得x1=5,x2=-1,∴A(5,0).

观察图象可得,当mx+5>-(x-b)+4b+1时,x的取值范围为x<0或x>5.

(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于点F,而直线AB表达式为y=-x+5,2

解方程组,得

∴点E(,),F(0,1)浙江省舟山市2018年中考数学试卷

∵点M在△AOB内,∴0

-b 当点C,D关于抛物线对称轴(直线x=b)对称时,b-∴b=

且二次函数图象的开口向下,顶点M在直线y=4x+1上,综上:①当0<b< ②当b= ③当 时,y1>y2;

时,y1=y2;

时,y1<y2。

<b<

【考点】二次函数与一次函数的综合应用

【解析】【分析】(1)验证一个点的坐标是否在一个函数图象:即把该点的横坐标代入该函数表达式,求出纵坐标与该点的纵坐标比较是否一样;

2(2)求不等式mx+5>-(x-b)+4b+1的解集,不能直接解不等式,需要结合函数图象解答,因为次函数y=-(x-b)+4b+1,一次函数y=mx+5,这个不等式即表示一次函数的值要大于二次函数的值,结合图象,即一次函数的图象在二次函数图的上方时x的取值范围,此时x的范围是在点B的左边,点A的右边,则需要分别求出点B和点A的横从标;因为点B是在直线直线y=mx+5与y轴的交点,令x=0,可求得B(0,5);因为二次函数y=-22(x-b)+4b+1图象经过点B,将B(0,5)代入可求得b,然后令二次函数y=-(x-b)+

24b+1=0,求出点A的横坐标的值即可

2(3)二次函数y=-(x-b)+4b+1的图象是开口向下的,所以有最大值,当点离对称轴越近时,也就越大,因为C(,y1),D(,y2)的横坐标是确定的,则需要确定对称轴x=b的位置,先由顶点M在△AOB内,得出b的取值范围;一般先确定y1=y2时对称轴位置,再结合“点离对称轴越近时,也就越大”分三类讨论,当y1>y2,当y1=y2,当y1

24.【答案】(1)证明:∵∠B=∠C,∠CPE=∠BPF,∠CPE=∠C,∴∠B=∠BPF=∠CPE,∠BPF=∠C,∴PF=BF,PE∥AF,PF∥AE,∴四边形AEPF是平行四边形,浙江省舟山市2018年中考数学试卷

∴PE=AF ∴PE+PF=AF+BF=AB(2)猜想:BD=PE+PF,理由如下: 过点B作DC的平行线交EP的延长线于点G,则∠ABC=∠C=∠CBG,∵∠CPE=∠BPF,∴∠BPF=∠CPE=∠BPG,又BP=BP,∴△FBP≌△GBP(ASA),∴PF=PG。∵∠CBD=∠CPE,∴PE∥BD,∴四边形BGED是平行四边形,∴BD=EG=PG+PE=PE+PF。(3)①设∠CPE=∠BPF=x ∵∠C=27°,PA=AE,∴∠APE=∠PEA=∠C+∠CPE=27°+x,又∠BPA+∠APE+∠CPE=180°,即x+x+27°+x=180°,∴x=51°,即∠CPE=51°,②延长BA至M,使AM=AP,连结MP

∵∠C=27°,∠BPA=∠CPE=51°,浙江省舟山市2018年中考数学试卷

-∠B-∠BPA=102°=∠M+∠MPA,∴∠BAP=180°∵AM=AP,∴∠M=∠MPA= ∴∠M=∠BPA,而∠B=∠B,∴△ABP∽△PBM ∴ ∠BAP=51°,2∴BP=AB・BM ∵PB=a,PA=AM=b,AB=c,2∴a=c(b+c),∴

【考点】等腰三角形的判定与性质,平行四边形的判定与性质,相似三角形的判定与性质

【解析】【分析】(1)要证明PE+PF=AB,则需要将PE和PF能移到线段AB上,而AB=AF+BF,则证明PE=AF,BF=PF;由∠B=∠C,∠CPE=∠BPF,∠CPE=∠C,这几组相等,可证明BF=PF,PE=PC,以及四边形AEPF是平行四边形;

(2)由(1)的结论可猜想BD=PF+PE;此题证明方法不唯一,参加(1)中的作法,构造平行四边形BDEG;

(3)①题根据平角的定义∠BPA+∠APE+∠CPE=180°,列方程解答即可; ②要证明

22,就要证明a=c(b+c),即要证明PB=AB·(PA+AB),将BA延长

BM,即要证明 到M,使得AM=PA,则就要证明PB=AB·(AM+AB)=AB·

,就要证明△ABP∽△PBM,这两个三角形有一对公共角,根据①中得到的角度,再证明其中有一对角相等即可。

第四篇:2018年浙江省杭州市中考数学试卷含答案解析

浙江省杭州市2018年中考数学试题

一、选择题

1.=()

A.3 B.-3 C.D.2.数据1800000用科学计数法表示为()

A.1.86 B.1.8×106 C.18×105 D.18×106 3.下列计算正确的是()

A.B.C.D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。计算结果不受影响的是()

A.方差 B.标准差 C.中位数 D.平均数 5.若线段AM,AN分别是△ABC边上的高线和中线,则()

A.B.C.D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。已知圆圆这次竞赛得了60分,设圆圆答对了 道题,答错了 道题,则()

A.B.C.D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()

A.B.C.D.8.如图,已知点P矩形ABCD内一点(不含边界),设,若,,则()

A.C.B.D.浙江省杭州市2018年中考数学试题

9.四位同学在研究函数 小值;乙发现

时,是方程

(b,c是常数)时,甲发现当 时,函数有最的一个根;丙发现函数的最小值为3;丁发现当

.已知这四位同学中只有一位发现的结论是错误的,则该同学是()

A.甲 B.乙 C.丙 D.丁

10.如图,DE∥BC,在△ABC中,点D在AB边上,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S

1,S

2,()

A.若 C.若,则,则

B.若 D.若,则,则

二、填空题

11.计算:a-3a=________。

12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

13.因式分解: ________

14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。

15.某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间v单位:(含10点和11点)追上甲车,则乙车的速度(千米/小时)的范围是________。浙江省杭州市2018年中考数学试题

16.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________。

三、简答题

17.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时)。

(1)求v关于t的函数表达式

(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?

18.某校积极参与垃圾分类活动,以班级为单位收集可回收的垃圾,下面是七年级各班一周收集的可回收垃圾的质量频数和频数直方图(每组含前一个边界值,不含后一个边界值)。浙江省杭州市2018年中考数学试题

(1)求a的值。

(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得的金额能否达到50元。

19.如图,在△ABC中,AB=AC,AD为BC边上的中线DE⊥AB于点E。

(1)求证:△BDE∽△CAD。

(2)若AB=13,BC=10,求线段DE的长

20.设一次函数

是常数,)的图象过A(1,3),B(-1,-1)

(1)求该一次函数的表达式;

2(2)若点(2a+2,a)在该一次函数图象上,求a的值;

(3)已知点C(x

1,y1),D(x

2,y2)在该一次函数图象上,设m=(x1-x2)(y1-y2),判断反比例函数 的图象所在的象限,说明理由。

21.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD。

浙江省杭州市2018年中考数学试题

(1)若∠A=28°,求∠ACD的度数;

AC=b;(2)设BC=a,①线段AD的长度是方程 ②若线段AD=EC,求 22.设二次函数 的值.

(a,b是常数,a≠0)

的一个根吗?说明理由。(1)判断该二次函数图象与x轴交点的个数,说明理由.

(2)若该二次函数的图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;

(3)若a+b>0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.

23.如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG,于点E,BF⊥AG于点F,设。

(1)求证:AE=BF;

(2)连接BE,DF,设∠EDF=,∠EBF= 求证:

(3)设线段AG与对角线BD交于点H,△AHD和四边形CDHG的面积分别为S1和S2,求 的最大值.

浙江省杭州市2018年中考数学试题

答案解析部分

一、选择题

1.【答案】A

【考点】绝对值及有理数的绝对值

【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。2.【答案】B

【考点】科学记数法—表示绝对值较大的数

【解析】【解答】解:1800000=1.8×

10n。其中1≤|a|<10,此题是绝对值较大的数,【分析】根据科学计数法的表示形式为:a×因此n=整数数位-1,即可求解。3.【答案】A

【考点】二次根式的性质与化简

AB、【解析】【解答】解:∵ 因此C、D不符合题意; 故答案为:A 【分析】根据二次根式的性质,对各选项逐一判断即可。4.【答案】C

【考点】中位数

【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响 故答案为:C 【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。5.【答案】D

【考点】垂线段最短

【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN

B不符合题意;CD、,因此A符合题意;∵,浙江省杭州市2018年中考数学试题

当BC边上的中线和高不重合时,则AM<AN ∴AM≤AN 故答案为:D 【分析】根据垂线段最短,可得出答案。6.【答案】C

【考点】二元一次方程的实际应用-鸡兔同笼问题

【解析】【解答】根据题意得:5x-2y+0(20-x-y)=60,即5x-2y=60故答案为:C 【分析】根据圆圆这次竞赛得分为60分,建立方程即可。7.【答案】B

【考点】概率公式,复合事件概率的计算

【解析】【解答】解:根据题意可知,这个两位数可能是:31、32、33、34、35、36,一共有6种可能得到的两位数是3的倍数的有:

33、36两种可能 ∴P(两位数是3的倍数)=

【分析】利用列举法求出所有可能的结果数及得到的两位数是3的倍数的可能数,利用概率公式求解即可。8.【答案】A

【考点】三角形内角和定理,矩形的性质

-∠PAB 【解析】【解答】解:∵矩形ABCD∴∠PAB+∠PAD=90°即∠PAB=90° ∵∠PAB=80°-80°=100° ∴∠PAB+∠PBA=180°-∠PAB+∠PBA=100°① ∴90°即∠PBA-∠PAB=10°-50°-90°=40°② 同理可得:∠PDC-∠PCB=180°

由②-①得:∠PDC-∠PCB-(∠PBA-∠PAB)=30°∴

故答案为:A

-∠PAB,再根据三角形内角和定理可得出∠【分析】根据矩形的性质,可得出∠PAB=90°PAB+∠PBA=100°①;同理可证得∠PDC-∠PCB=40°②,从而可得出∠PBA-∠PAB=10°再将②-①,可得出答案。

浙江省杭州市2018年中考数学试题

9.【答案】B

【考点】二次函数图象与系数的关系,二次函数的最值

【解析】【解答】解:根据题意得:抛物线的顶点坐标为:(1,3)且图像经过(2,4)设抛

2物线的解析式为:y=a(x-1)+3 ∴a+3=4 解之:a=1

22∴抛物线的解析式为:y=(x-1)+3=x-2x+4 当x=-1时,y=7,∴乙说法错误 故答案为:B 【分析】根据甲和丙的说法,可知抛物线的顶点坐标,再根据丁的说法,可知抛物线经过点(2,4),因此设函数解析式为顶点式,就可求出函数解析式,再对乙的说法作出判断,即可得出答案。10.【答案】D

【考点】三角形的面积,平行线分线段成比例

【解析】【解答】解:如图,过点D作DF⊥AC于点F,过点B作BM⊥AC于点M

∴DF∥BM,设DF=h

1,BM=h2 ∴ ∵DE∥BC ∴ ∴ ∵若 ∴设

=k<0.5(0<k<0.5)

∴AE=AC∙k,CE=AC-AE=AC(1-k),h1=h2k 浙江省杭州市2018年中考数学试题

∵S1= ∴3S1= AE∙h1= AC∙k∙h1,S2= CE∙h2= AC(1-k)h2

k2ACh

2,2S2=(1-K)∙ACh2

∵0<k<0.5 ∴ k2<(1-K)

∴3S1<2S2 故答案为:D

【分析】过点D作DF⊥AC于点F,过点B作BM⊥AC于点M,可得出DF∥BM,设DF=h1,BM=h2,再根据DE∥BC,可证得,若,设

=k<0.5(0<k<0.5),再分别求出3S1和2S2,根据k的取值范围,即可得出答案。

二、填空题

11.【答案】-2a

【考点】合并同类项法则及应用

【解析】【解答】解:a-3a=-2a故答案为:-2a 【分析】利用合并同类项的法则计算即可。12.【答案】135°

【考点】对顶角、邻补角,平行线的性质

【解析】【解答】解:∵a∥b∴∠1=∠3=45° ∵∠2+∠3=180°-45°=135° ∴∠2=180° 故答案为:135°【分析】根据平行线的性质,可求出∠3的度数,再根据邻补角的定义,得出∠2+∠3=180°,从而可求出结果。13.【答案】

【考点】提公因式法因式分解

【解析】【解答】解:原式=(b-a)(b-a)-(b-a)=(b-a)(b-a-1)【分析】观察此多项式的特点,有公因式(b-a),因此提取公因式,即可求解。浙江省杭州市2018年中考数学试题

14.【答案】30°

【考点】垂径定理,圆周角定理

【解析】【解答】解:∵DE⊥AB∴∠DCO=90°∵点C时半径OA的中点 ∴OC= OA= OD ∴∠CDO=30° ∴∠AOD=60°∵弧AD=弧AD ∴∠DEA=

∠AOD=30° 故答案为:30°【分析】根据垂直的定义可证得△COD是直角三角形,再根据中点的定义及特殊角的三角函数值,可求出∠AOD的度数,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求出结果。15.【答案】60≤v≤80

【考点】一次函数的图象,一次函数的实际应用,一次函数的性质

3=40千米/小时2≤t≤3 【解析】【解答】解:根据题意得:甲车的速度为120÷40=80千米/小时 若10点追上,则v=2×若11点追上,则2v=120,即v=60千米/小时 ∴60≤v≤80 故答案为:60≤v≤80

【分析】根据函数图像可得出甲车的速度,再根据乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,可得出t的取值范围,从而可求出v的取值范围。16.【答案】或3

【考点】勾股定理,矩形的性质,正方形的性质,翻折变换(折叠问题)

【解析】【解答】∵当点H在线段AE上时把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上 ∴四边形ADFE是正方形 浙江省杭州市2018年中考数学试题

∴AD=AE ∵AH=AE-EH=AD-1 ∵把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上 ∴DC=DH=AB=AD+2 222在Rt△ADH中,AD+AH=DH 222∴AD+(AD-1)=(AD+2)

解之:AD=3+2 ∴AD=3+2,AD=3-2(舍去)

当点H在线段BE上时 则AH=AE-EH=AD+1 222在Rt△ADH中,AD+AH=DH 222∴AD+(AD+1)=(AD+2)

解之:AD=3,AD=-1(舍去)故答案为: 或3 【分析】分两种情况:当点H在线段AE上;当点H在线段BE上。根据①的折叠,可得出四边形ADFE是正方形,根据正方形的性质可得出AD=AE,从而可得出AH=AD-1(或AH=AD+1),再根据②的折叠可得出DH=AD+2,然后根据勾股定理求出AD的长。

三、简答题

17.【答案】(1)有题意可得:100=vt,则

(2)∵不超过5小时卸完船上的这批货物,∴t≦5,则v≧ =20 答:平均每小时至少要卸货20吨。

【考点】一元一次不等式的应用,反比例函数的性质,根据实际问题列反比例函数关系式

【解析】【分析】(1)根据已知易求出函数解析式。

(2)根据要求不超过5小时卸完船上的这批货物,可得出t的取值范围,再求出t=5时的函数值,就可得出答案。

18.【答案】(1)观察频数分布直方图可得出a=4 浙江省杭州市2018年中考数学试题

(2)设收集的可回收垃圾总质量为W,总金额为Q∵每组含前一个边界值,不含后一个边界

W<2×4.5+4×5+3×5.5+1×6=51.5kg Q<515×0.8=41.2元 ∵41.2<50 ∴该年级这周的可回收垃圾被回收后所得全额不能达到50元。

【考点】频数(率)分布表,频数(率)分布直方图

【解析】【分析】(1)观察频数分布直方图,可得出a的值。

(2)设收集的可回收垃圾总质量为W,总金额为Q,根据每组含前一个边界值,不含后一个边界,求出w和Q的取值范围,比较大小,即可求解。

19.【答案】(1)证明:∵AB=AC,∴∠ABC=∠ACB,△ABC为等腰三角形 ∵AD是BC边上中线 ∴BD=CD,AD⊥BC 又∵DE⊥AB ∴∠DEB=∠ADC 又∵∠ABC=∠ACB ∴△BDE∽△CAD(2)∵AB=13,BC=10BD=CD= AD=12 ∵△BDE∽△CAD ∴ ∴DE=,即

BC=5,AD2+BD2=AB2

【考点】等腰三角形的性质,勾股定理,相似三角形的判定与性质

【解析】【分析】(1)根据已知易证△ABC为等腰三角形,再根据等腰三角形的性质及垂直的定义证明∠DEB=∠ADC,根据两组角对应相等的两三角形是相似三角形,即可证得结论。

(2)根据等腰三角形的性质求出BD的长,再根据勾股定理求出AD的长,再根据相似三角浙江省杭州市2018年中考数学试题

形的性质,得出对应边成比例,就可求出DE的长。20.【答案】(1)根据题意,得所以y=2x+1 22(2)因为点(2a+2,a)在函数y=2x+1的图像上,所以a=4a+5,解得k=2,b=1 解得a=5或a=-1(3)由题意,得y1-y2=(2x1+1)-(2x2+1)=2(x1-x2)所以m=(x1-x2)(y1-y2)=2(x1-x2)2≥0,所以m+1>0 所以反比例函数 的图像位于第一、第三象限

【考点】因式分解法解一元二次方程,待定系数法求一次函数解析式,反比例函数的性质

【解析】【分析】(1)根据已知点的坐标,利用待定系数法,就可求出一次函数的解析式。(2)将已知点的坐标代入所求函数解析式,建立关于a的方程,解方程求解即可。

2(3)先求出y1-y2=2(x1-x2),根据m=(x1-x2)(y1-y2),得出m=2(x1-x2)≥0,从而可判断m+1的取值范围,即可求解。

21.【答案】(1)因为∠A=28°,所以∠B=62°又因为BC=BD,所以∠BCD= =59°

-59°=31° ∴∠ACD=90°(2)因为BC=a,AC=b,所以AB= ①因为

=0

22所以线段AD的长是方程x+2ax-b=0的一个根。

×-62°(180°)

所以AD=AB-BD=

= ②因为AD=EC=AE= 所以 所以

因为b≠0,所以 =

22是方程x+2ax-b=0的根,即4ab=3b 浙江省杭州市2018年中考数学试题

【考点】一元二次方程的根,等腰三角形的性质,勾股定理,圆的认识

【解析】【分析】(1)根据三角形内角和定理可求出∠B的度数,再根据已知可得出△BCD是等腰三角形,可求出∠BCD的度数,从而可求得∠ACD的度数。

(2)根据已知①BC=a,AC=b,利用勾股定理可求出AB的值,①再求出AD的长,再根据AD是原方程的一个根,将AD的长代入方程,可得出方程左右两边相等,即可得出结论;②根据已知条件可得出AD=EC=AE= 与b之比。

22.【答案】(1)当y=0时,2

2(a≠0)因为△=b+4a(a+b)=(2a+b),将 代入方程化简可得出4ab=3b,就可求出a

所以,当2a+b=0,即△=0时,二次函数图像与x轴有1个交点; 当2a+b≠0,即△>0时,二次函数图像与x轴有2个交点。(2)当x=1时,y=0,所以函数图象不可能经过点C(1,1)所以函数图象经过A(-1,4),B(0,-1)两点,所以

解得a=3,b=-2所以二次函数的表达式为

(3)因为P(2,m)在该二次函数的图像上,所以m=4a+2b-(a+b)=3a+b 因为m>0,所以3a+b>0,又因为a+b>0,所以2a=3a+b-(a+b)>0,所以a>0

【考点】待定系数法求二次函数解析式,二次函数图像与坐标轴的交点问题

2【解析】【分析】(1)根据题意求出△=b-4ac的值,再分情况讨论,即可得出答案。

(2)根据已知点的坐标,可排除点C不在抛物线上,因此将A、B两点代入函数解析式,建立方程组求出a、b的值,就可得出函数解析式。

(3)抓住已知条件点P(2,m)(m>0)在该二次函数图象上,得出m=3a+b,结合已知条件m的取值范围,可得出3a+b>0,再根据a+b>0,可证得结论。

23.【答案】(1)因为四边形ABCD是正方形,所以∠BAF+∠EAD=90°,又因为DE⊥AG,浙江省杭州市2018年中考数学试题

所以∠EAD+∠ADE=90°,所以∠ADE=∠BAF,又因为BF⊥AG,所以∠DEA=∠AFB=90°,又因为AD=AB 所以Rt△DAE≌Rt△ABF,所以AE=BF(2)易知Rt△BFG∽Rt△DEA,所以 tanβ=

=

k因为△ABD的=

=

=tanα

在Rt△DEF和Rt△BEF中,tanα=,所以ktanβ= 所以

(3)设正方形ABCD的边长为1,则BG=k,所以△ABG的面积等于 面积等于 又因为 所以S2=1-所以 k-

=k,所以S1= =

有最大值

=-k2+k+1= 因为0<k<1,所以当k=,即点G为BC中点时,【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质,解直角三角形

【解析】【分析】(1)根据正方形的性质及垂直的定义,可证得∠ADE=∠BAF,∠ADE= ∠BAF及AD=AB,利用全等三角形的判定,可证得Rt△DAE≌Rt△ABF,从而可证得结论。(2)根据已知易证Rt△BFG∽Rt△DEA,得出对应边成比例,再在Rt△DEF和Rt△BEF中,根据锐角三角函数的定义,分别表示出tanα、tanβ,从而可推出tanα=tanβ。

(3)设正方形ABCD的边长为1,则BG=k,分别表示出△ABG、△ABD的面积,再根据

=k,求出S1及S2,再求出S1与S2之比与k的函数解析式,求出顶点坐标,浙江省杭州市2018年中考数学试题

然后根据k的取值范围,即可求解。

第五篇:2018年杭州市中考数学试卷含答案解析(Word版)(本站推荐)

浙江省杭州市2018年中考数学试题

一、选择题

1.=()

A.3 B.-3 C.D.2.数据1800000用科学计数法表示为()

A.1.86 B.1.8×106 C.18×105 D.18×106 3.下列计算正确的是()

A.B.C.D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。计算结果不受影响的是()

A.方差 B.标准差 C.中位数 D.平均数 5.若线段AM,AN分别是△ABC边上的高线和中线,则()

A.B.C.D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。已知圆圆这次竞赛得了60分,设圆圆答对了 道题,答错了 道题,则()

A.B.C.D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()

A.B.C.D.8.如图,已知点P矩形ABCD内一点(不含边界),设,若,,则()

A.B.C.9.四位同学在研究函数 小值;乙发现

时,是方程

D.(b,c是常数)时,甲发现当

时,函数有最的一个根;丙发现函数的最小值为3;丁发现当

.已知这四位同学中只有一位发现的结论是错误的,则该同学是()

A.甲 B.乙 C.丙 D.丁

10.如图,DE∥BC,在△ABC中,点D在AB边上,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S

1,S

2,()

A.若 C.若,则,则

B.若 D.若,则,则

二、填空题

11.计算:a-3a=________。

12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。

13.因式分解: ________

14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。

15.某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间v单位:(含10点和11点)追上甲车,则乙车的速度(千米/小时)的范围是________。

16.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=________。

三、简答题

17.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时)。

(1)求v关于t的函数表达式

(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?

18.某校积极参与垃圾分类活动,以班级为单位收集可回收的垃圾,下面是七年级各班一周收集的可回收垃圾的质量频数和频数直方图(每组含前一个边界值,不含后一个边界值)。

(1)求a的值。

(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得的金额能否达到50元。

19.如图,在△ABC中,AB=AC,AD为BC边上的中线DE⊥AB于点E。

(1)求证:△BDE∽△CAD。

(2)若AB=13,BC=10,求线段DE的长

20.设一次函数

是常数,)的图象过A(1,3),B(-1,-1)

(1)求该一次函数的表达式;

2(2)若点(2a+2,a)在该一次函数图象上,求a的值;

(3)已知点C(x

1,y1),D(x

2,y2)在该一次函数图象上,设m=(x1-x2)(y1-y2),判断反比例函数 的图象所在的象限,说明理由。

21.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD。

(1)若∠A=28°,求∠ACD的度数;

AC=b;(2)设BC=a,①线段AD的长度是方程 ②若线段AD=EC,求 22.设二次函数 的值.

(a,b是常数,a≠0)

的一个根吗?说明理由。(1)判断该二次函数图象与x轴交点的个数,说明理由.

(2)若该二次函数的图象经过A(-1,4),B(0,-1),C(1,1)三个点中的其中两个点,求该二次函数的表达式;

(3)若a+b>0,点P(2,m)(m>0)在该二次函数图象上,求证:a>0.

23.如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG,于点E,BF⊥AG于点F,设。

(1)求证:AE=BF;

(2)连接BE,DF,设∠EDF=,∠EBF= 求证:

(3)设线段AG与对角线BD交于点H,△AHD和四边形CDHG的面积分别为S1和S2 求 的最大值.,答案解析部分

一、选择题

1.【答案】A

【考点】绝对值及有理数的绝对值

【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。2.【答案】B

【考点】科学记数法—表示绝对值较大的数

【解析】【解答】解:1800000=1.8×

10n。其中1≤|a|<10,此题是绝对值较大的数,【分析】根据科学计数法的表示形式为:a×因此n=整数数位-1,即可求解。3.【答案】A

【考点】二次根式的性质与化简

AB、【解析】【解答】解:∵ 因此C、D不符合题意; 故答案为:A 【分析】根据二次根式的性质,对各选项逐一判断即可。4.【答案】C

【考点】中位数

【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响 故答案为:C 【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。5.【答案】D

【考点】垂线段最短

【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN 当BC边上的中线和高不重合时,则AM<AN

B不符合题意;CD、,因此A符合题意;∵,∴AM≤AN 故答案为:D 【分析】根据垂线段最短,可得出答案。6.【答案】C

【考点】二元一次方程的实际应用-鸡兔同笼问题

【解析】【解答】根据题意得:5x-2y+0(20-x-y)=60,即5x-2y=60故答案为:C 【分析】根据圆圆这次竞赛得分为60分,建立方程即可。7.【答案】B

【考点】概率公式,复合事件概率的计算

【解析】【解答】解:根据题意可知,这个两位数可能是:31、32、33、34、35、36,一共有6种可能得到的两位数是3的倍数的有:

33、36两种可能 ∴P(两位数是3的倍数)=

【分析】利用列举法求出所有可能的结果数及得到的两位数是3的倍数的可能数,利用概率公式求解即可。8.【答案】A

【考点】三角形内角和定理,矩形的性质

-∠PAB 【解析】【解答】解:∵矩形ABCD∴∠PAB+∠PAD=90°即∠PAB=90° ∵∠PAB=80°-80°=100° ∴∠PAB+∠PBA=180°-∠PAB+∠PBA=100°① ∴90°即∠PBA-∠PAB=10°-50°-90°=40°② 同理可得:∠PDC-∠PCB=180°

由②-①得:∠PDC-∠PCB-(∠PBA-∠PAB)=30°∴

故答案为:A

-∠PAB,再根据三角形内角和定理可得出∠【分析】根据矩形的性质,可得出∠PAB=90°PAB+∠PBA=100°①;同理可证得∠PDC-∠PCB=40°②,从而可得出∠PBA-∠PAB=10°再将②-①,可得出答案。9.【答案】B

【考点】二次函数图象与系数的关系,二次函数的最值

【解析】【解答】解:根据题意得:抛物线的顶点坐标为:(1,3)且图像经过(2,4)设抛

2物线的解析式为:y=a(x-1)+3 ∴a+3=4 解之:a=1

22∴抛物线的解析式为:y=(x-1)+3=x-2x+4 当x=-1时,y=7,∴乙说法错误 故答案为:B 【分析】根据甲和丙的说法,可知抛物线的顶点坐标,再根据丁的说法,可知抛物线经过点(2,4),因此设函数解析式为顶点式,就可求出函数解析式,再对乙的说法作出判断,即可得出答案。10.【答案】D

【考点】三角形的面积,平行线分线段成比例

【解析】【解答】解:如图,过点D作DF⊥AC于点F,过点B作BM⊥AC于点M

∴DF∥BM,设DF=h

1,BM=h2 ∴ ∵DE∥BC ∴ ∴ ∵若 ∴设

=k<0.5(0<k<0.5)

∴AE=AC∙k,CE=AC-AE=AC(1-k),h1=h2k ∵S1= ∴3S1= AE∙h1= AC∙k∙h1,S2=

CE∙h2=

AC(1-k)h2

k2ACh

2,2S2=(1-K)∙ACh2 ∵0<k<0.5 ∴ k2<(1-K)

∴3S1<2S2 故答案为:D

【分析】过点D作DF⊥AC于点F,过点B作BM⊥AC于点M,可得出DF∥BM,设DF=h1,BM=h2,再根据DE∥BC,可证得,若,设

=k<0.5(0<k<0.5),再分别求出3S1和2S2,根据k的取值范围,即可得出答案。

二、填空题

11.【答案】-2a

【考点】合并同类项法则及应用

【解析】【解答】解:a-3a=-2a故答案为:-2a 【分析】利用合并同类项的法则计算即可。12.【答案】135°

【考点】对顶角、邻补角,平行线的性质

【解析】【解答】解:∵a∥b∴∠1=∠3=45° ∵∠2+∠3=180°-45°=135° ∴∠2=180° 故答案为:135°【分析】根据平行线的性质,可求出∠3的度数,再根据邻补角的定义,得出∠2+∠3=180°,从而可求出结果。13.【答案】

【考点】提公因式法因式分解

【解析】【解答】解:原式=(b-a)(b-a)-(b-a)=(b-a)(b-a-1)【分析】观察此多项式的特点,有公因式(b-a),因此提取公因式,即可求解。14.【答案】30°

【考点】垂径定理,圆周角定理

【解析】【解答】解:∵DE⊥AB∴∠DCO=90°∵点C时半径OA的中点 ∴OC= OA= OD ∴∠CDO=30° ∴∠AOD=60°∵弧AD=弧AD ∴∠DEA=

∠AOD=30° 故答案为:30°【分析】根据垂直的定义可证得△COD是直角三角形,再根据中点的定义及特殊角的三角函数值,可求出∠AOD的度数,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求出结果。15.【答案】60≤v≤80

【考点】一次函数的图象,一次函数的实际应用,一次函数的性质

3=40千米/小时2≤t≤3 【解析】【解答】解:根据题意得:甲车的速度为120÷40=80千米/小时 若10点追上,则v=2×若11点追上,则2v=120,即v=60千米/小时 ∴60≤v≤80 故答案为:60≤v≤80

【分析】根据函数图像可得出甲车的速度,再根据乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,可得出t的取值范围,从而可求出v的取值范围。16.【答案】或3

【考点】勾股定理,矩形的性质,正方形的性质,翻折变换(折叠问题)

【解析】【解答】∵当点H在线段AE上时把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上 ∴四边形ADFE是正方形 ∴AD=AE ∵AH=AE-EH=AD-1 ∵把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上 ∴DC=DH=AB=AD+2 222在Rt△ADH中,AD+AH=DH 222∴AD+(AD-1)=(AD+2)解之:AD=3+2 ∴AD=3+2,AD=3-2(舍去)

当点H在线段BE上时 则AH=AE-EH=AD+1 222在Rt△ADH中,AD+AH=DH 222∴AD+(AD+1)=(AD+2)

解之:AD=3,AD=-1(舍去)故答案为: 或3 【分析】分两种情况:当点H在线段AE上;当点H在线段BE上。根据①的折叠,可得出四边形ADFE是正方形,根据正方形的性质可得出AD=AE,从而可得出AH=AD-1(或AH=AD+1),再根据②的折叠可得出DH=AD+2,然后根据勾股定理求出AD的长。

三、简答题

17.【答案】(1)有题意可得:100=vt,则

(2)∵不超过5小时卸完船上的这批货物,∴t≦5,则v≧ =20 答:平均每小时至少要卸货20吨。

【考点】一元一次不等式的应用,反比例函数的性质,根据实际问题列反比例函数关系式

【解析】【分析】(1)根据已知易求出函数解析式。

(2)根据要求不超过5小时卸完船上的这批货物,可得出t的取值范围,再求出t=5时的函数值,就可得出答案。

18.【答案】(1)观察频数分布直方图可得出a=4(2)设收集的可回收垃圾总质量为W,总金额为Q∵每组含前一个边界值,不含后一个边界

W<2×4.5+4×5+3×5.5+1×6=51.5kg Q<515×0.8=41.2元 ∵41.2<50 ∴该年级这周的可回收垃圾被回收后所得全额不能达到50元。

【考点】频数(率)分布表,频数(率)分布直方图

【解析】【分析】(1)观察频数分布直方图,可得出a的值。

(2)设收集的可回收垃圾总质量为W,总金额为Q,根据每组含前一个边界值,不含后一个边界,求出w和Q的取值范围,比较大小,即可求解。

19.【答案】(1)证明:∵AB=AC,∴∠ABC=∠ACB,△ABC为等腰三角形 ∵AD是BC边上中线 ∴BD=CD,AD⊥BC 又∵DE⊥AB ∴∠DEB=∠ADC 又∵∠ABC=∠ACB ∴△BDE∽△CAD(2)∵AB=13,BC=10BD=CD= AD=12 ∵△BDE∽△CAD ∴ ∴DE=,即

BC=5,AD2+BD2=AB2

【考点】等腰三角形的性质,勾股定理,相似三角形的判定与性质

【解析】【分析】(1)根据已知易证△ABC为等腰三角形,再根据等腰三角形的性质及垂直的定义证明∠DEB=∠ADC,根据两组角对应相等的两三角形是相似三角形,即可证得结论。

(2)根据等腰三角形的性质求出BD的长,再根据勾股定理求出AD的长,再根据相似三角形的性质,得出对应边成比例,就可求出DE的长。20.【答案】(1)根据题意,得所以y=2x+1 22(2)因为点(2a+2,a)在函数y=2x+1的图像上,所以a=4a+5,解得k=2,b=1 解得a=5或a=-1(3)由题意,得y1-y2=(2x1+1)-(2x2+1)=2(x1-x2)所以m=(x1-x2)(y1-y2)=2(x1-x2)2≥0,所以m+1>0 所以反比例函数 的图像位于第一、第三象限

【考点】因式分解法解一元二次方程,待定系数法求一次函数解析式,反比例函数的性质

【解析】【分析】(1)根据已知点的坐标,利用待定系数法,就可求出一次函数的解析式。(2)将已知点的坐标代入所求函数解析式,建立关于a的方程,解方程求解即可。

2(3)先求出y1-y2=2(x1-x2),根据m=(x1-x2)(y1-y2),得出m=2(x1-x2)≥0,从而可判断m+1的取值范围,即可求解。

21.【答案】(1)因为∠A=28°,所以∠B=62°又因为BC=BD,所以∠BCD= =59°

-59°=31° ∴∠ACD=90°(2)因为BC=a,AC=b,所以AB= ①因为

=0

22所以线段AD的长是方程x+2ax-b=0的一个根。

×-62°(180°)

所以AD=AB-BD=

= ②因为AD=EC=AE= 所以 所以

因为b≠0,所以 =

22是方程x+2ax-b=0的根,即4ab=3b

【考点】一元二次方程的根,等腰三角形的性质,勾股定理,圆的认识

【解析】【分析】(1)根据三角形内角和定理可求出∠B的度数,再根据已知可得出△BCD是等腰三角形,可求出∠BCD的度数,从而可求得∠ACD的度数。

(2)根据已知①BC=a,AC=b,利用勾股定理可求出AB的值,①再求出AD的长,再根据AD是原方程的一个根,将AD的长代入方程,可得出方程左右两边相等,即可得出结论;②根据已知条件可得出AD=EC=AE= 与b之比。

22.【答案】(1)当y=0时,2

2(a≠0)因为△=b+4a(a+b)=(2a+b),将 代入方程化简可得出4ab=3b,就可求出a 所以,当2a+b=0,即△=0时,二次函数图像与x轴有1个交点; 当2a+b≠0,即△>0时,二次函数图像与x轴有2个交点。(2)当x=1时,y=0,所以函数图象不可能经过点C(1,1)所以函数图象经过A(-1,4),B(0,-1)两点,所以

解得a=3,b=-2所以二次函数的表达式为

(3)因为P(2,m)在该二次函数的图像上,所以m=4a+2b-(a+b)=3a+b 因为m>0,所以3a+b>0,又因为a+b>0,所以2a=3a+b-(a+b)>0,所以a>0

【考点】待定系数法求二次函数解析式,二次函数图像与坐标轴的交点问题

2【解析】【分析】(1)根据题意求出△=b-4ac的值,再分情况讨论,即可得出答案。

(2)根据已知点的坐标,可排除点C不在抛物线上,因此将A、B两点代入函数解析式,建立方程组求出a、b的值,就可得出函数解析式。

(3)抓住已知条件点P(2,m)(m>0)在该二次函数图象上,得出m=3a+b,结合已知条件m的取值范围,可得出3a+b>0,再根据a+b>0,可证得结论。

23.【答案】(1)因为四边形ABCD是正方形,所以∠BAF+∠EAD=90°,又因为DE⊥AG,所以∠EAD+∠ADE=90°,所以∠ADE=∠BAF,又因为BF⊥AG,所以∠DEA=∠AFB=90°,又因为AD=AB 所以Rt△DAE≌Rt△ABF,所以AE=BF(2)易知Rt△BFG∽Rt△DEA,所以 tanβ=

=

=

=

=tanα

在Rt△DEF和Rt△BEF中,tanα=,所以ktanβ= 所以

k因为△ABD的(3)设正方形ABCD的边长为1,则BG=k,所以△ABG的面积等于 面积等于 又因为 所以S2=1-所以 k-

=k,所以S1= =

有最大值

=-k2+k+1= 因为0<k<1,所以当k=,即点G为BC中点时,【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质,解直角三角形

【解析】【分析】(1)根据正方形的性质及垂直的定义,可证得∠ADE=∠BAF,∠ADE= ∠BAF及AD=AB,利用全等三角形的判定,可证得Rt△DAE≌Rt△ABF,从而可证得结论。(2)根据已知易证Rt△BFG∽Rt△DEA,得出对应边成比例,再在Rt△DEF和Rt△BEF中,根据锐角三角函数的定义,分别表示出tanα、tanβ,从而可推出tanα=tanβ。

(3)设正方形ABCD的边长为1,则BG=k,分别表示出△ABG、△ABD的面积,再根据

=k,求出S1及S2,再求出S1与S2之比与k的函数解析式,求出顶点坐标,然后根据k的取值范围,即可求解。

下载2018年广州市中考数学试卷(含答案)word格式文档
下载2018年广州市中考数学试卷(含答案).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2018年浙江省嘉兴市中考数学试卷含答案解析(合集五篇)

    浙江省嘉兴市2018年中考数学试卷 一、选择题(共10题;共20分) 1.下列几何体中,俯视图为三角形的是( )A. B. C. D. 2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月......

    2018年浙江省绍兴市中考数学试卷含答案解析(合集五篇)

    浙江省绍兴市2018年中考数学试卷 一、选择题 1.如果向东走2m记为+2m,则向西走3米可记为( ) A. +3m B. +2m C. -3m D. -2m 2.绿水青山就是金山银山,为了创造良好的生态生活环境......

    2017中考数学试卷分析(范文模版)

    2017年数学中考试卷分析今年的题目与去年相比,在延续以往成功做法的基础上有所创新:选择题由8个题改为10个,填空题由7个调整为5个。概率计算在选择题中考查,第18题对圆的考察由......

    中考数学试卷分析

    中考数学试卷分析 **年的荆门市数学中考试题在继承我市近几年中考命题整体思路的基础上,坚持“整体稳定,局部调整,稳中求变、以人为本”的命题原则,贯彻《全日制义务教育数学......

    2011绍兴县中考数学试卷评析

    2011绍兴县中考数学试卷评析 陶毅 1 试题的指导思想 2011年绍兴县初三毕业生学业考试数学卷,是以教育部制定的《全日制义务教育数学课程标准(实验稿)》为依据,力求符合《浙江省......

    2013桂林市中考数学试卷

    2013年桂林市初中毕业升学考试试卷数学(考试用时:120分钟满分:120分)注意事项:1.试卷分为试题卷和答题卡两部分,在本试题卷上作答无效. ..........2.答题前,请认真阅读答题卡上的注意事项. ...........3.考试......

    2018年中考数学试卷江苏省宿迁市(含答案解析)(精选多篇)

    江 苏 省 宿 迁 市 2018年中考数学试卷 一、选择题 1. 2的倒数是( ) A. 2 B. C. 【答案】B 【解析】【分析】倒数定义:乘积为1的两个数互为倒数,由此即可得出答案. 【详解】∵2......

    2018年江苏省盐城市中考数学试卷含答案解析(Word版)

    2018年江苏省盐城市中考数学试卷 一、选择题(本大题共8小题,每小题3分,共24分) 1. - 2018的相反数是 A. 2018 B. -2018 C. D. 2.下列图形中,既是轴对称图形又是中心对称图形的......