第一篇:2011绍兴县中考数学试卷评析
2011绍兴县中考数学试卷评析
陶毅试题的指导思想
2011年绍兴县初三毕业生学业考试数学卷,是以教育部制定的《全日制义务教育数学课程标准(实验稿)》为依据,力求符合《浙江省初中毕业生学业考试标准和说明》及《2009年绍兴市初中毕业生学业考试补充说明》,结合绍兴市数学课程改革的实际,体现了《标准》的评价理念:即有利于引导和促进数学教学全面落实《标准》所设立的课程目标;有利于改善学生的数学学习方式、丰富学生的数学学习体验、提高学生学习数学的效益和效率;有利于高中阶段学校综合、有效地评价学生的数学学习状况.在试题命制过程中遵循了以下基本原则:
(1)考查内容依据《标准》,体现基础性;
(2)试题素材、求解方式等体现公平性;
(3)试题背景具有现实性;
(4)试题具备科学有效性.试题内容与要求
根据《标准》的总体目标关注初中数学体系中基础和核心的内容,考试内容以《标准》中的“内容标准”为基本依据,不超越,突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实,数学活动经验)以及基本的数学思想方法和必要的应用技术的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能做到了重点考查.主要考查方面包括:基础知识与基本技能;数学活动过程;数学思考;解决问题能力;对数学的基本认识等.3试题特点
本卷具有不少新的特点与亮点.总体上看,试卷内容关注了对数学核心内容、基本能力和基本思想方法的考查.对数学核心内容的考查有:函数与坐标系、方程、不等式、直线形、尺规作图、统计与概率、三角函数等.关注对应用数学解决问题能力的考查,突出试题的教育价值;关注对数学活动过程的评价;突出了对数学思想方法的考查.涉及到的数学思想与方法有:分类讨论、数形结合、整体、化归、图形的变换、方程、类比、轴对称等思想,有效地检测了学生学习数学的综合能力.全卷满分150分,分容易题、稍难题、较难题,依次约占70%、20%和10%,即各约占105分,30分,15分.各块内容分值分布:数与代数约占43%,空间与图形约40%,统计与概率约占12%,课题学习约5%.
第二篇:2017中考数学试卷分析(范文模版)
2017年数学中考试卷分析今年的题目与去年相比,在延续以往成功做法的基础上有所创新:选择题由8个题改为10个,填空题由7个调整为5个。概率计算在选择题中考查,第18题对圆的考察由动态型题目改为常规的几何证明与计算,同时第21题不再是考查函数学习过程的探究题,替换为第20题考察反比例函数与一次函数的综合应用;使得整套试题梯度更为合理,有助于学生发挥出自己的数学学习水平!
整套试卷在继续对初中数学的重点知识进行重点考查的同时,着重突出对数学思想和方法的考查。
今年的试卷中着重考查了转化,数形结合(20题),分类讨论,运动思想(第15、22、23等题)。此外,21题应用题以海报的形式呈现,题型新颖有趣,体现了数学来源于生活实际,又服务于于生活实际!但21题的描述“所需费用相同”容易产生歧义,估计会造成学生丢分。整套试卷进一步加强对开放性、探索性试题的考查,如22题的类比探究,23题的“和谐点”等内容,为学生提供自主探索与创新的空间;符合课程标准的要求,体现了对学生数学核心素养的考查要求。2017年的中招数学试卷通过试题的设计,既可给学生更广阔的思维空间,使其创造性的发挥,为他们提供展示自己聪明才智的机会,又有助于引导师教师在平时的教学中以学生发展为本,尽量发挥学生思维活跃的优势,培养学生的创新精神和实践能力。为学生的可持续发展打好基础!
今后复习方向:
一、切实抓好“双基”的训练。
初中数学的基础知识、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。一是要紧扣教材,依据教材的要求,不断提高,注重基础。二是要突出复习的特点上出新意,以调动学生的积极性,提高复习效率。从复习安排上来看,搞好基础知识的复习主要依赖于系统的复习,在每一个章节复习中,为了有效地使学生弄清知识的结构,让学生按照自己的实际查漏补缺,有目的地自由复习。要求学生在复习中重点放在理解概念、弄清定义、掌握基本方法上,然后让学生通过恰当的训练,加深对概念的理解、结论的掌握,方法的运用和能力的提高。
二、抓好教材中例题、习题的归类、变式的教学。
在数学复习课教学中,挖掘教材中的例题、习题等的功能,既是大面积提高教学质量的需要,又是对付考试的一种手段。因此在复习中根据教学的目的、教学的重点和学生实际,对相关例题进行分析、归类,总结解题规律,提高复习效率。对具有可变性的典例题,引导学生进行变式训练,使学生从多方面感知数学的方法、提高学生综合分析问题、解决问题的能力。
三、落实各种数学思想与数学方法的训练,提高学生的数学素质。
理解掌握各种数学思想和方法是形成数学技能技巧,提高数学的能力的前提。通过不同形式的训练,使学生熟练掌握重要数学思想方法。推荐参考书的建议:
在今后的复习中,用哪些参考书较好,我个人认为,只要是重基础,灵活性较强,难易程度适中,有梯度,紧扣大纲的,都是好书。像今年用的《试题研究》就不错,如果针对每个知识点有对应的习题,我想会更好一点。
第三篇:中考数学试卷分析
中考数学试卷分析
**年的荆门市数学中考试题在继承我市近几年中考命题整体思路的基础上,坚持“整体稳定,局部调整,稳中求变、以人为本”的命题原则,贯彻《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)和《荆门市**年初中毕业生学业考试数学科大纲》(以下简称《数学科》)所阐述的命题指导思想,突出对基础知识、基本技能和基本数学思想的考查,关注学生的数学基础知识和能力、数学学习过程和数学创新意识。
一、总体评价
试题命制严格按照《课程标准》和《学科说明》的相关要求,充分体现
和落实新课程改革的理念和精神、整套试题覆盖面广,题量适当,难度与《数学科大纲》的要求基本一致、在考查方向上,体现了突出基础,注重能力的思想;在考查内容上,体现了基础性、应用性、综合性。
1、整体稳定,局部调整
今年中考,荆门市实行网上阅卷,为此,今年的数学试卷在保证整体格局稳定的基础上,作出了一些调整:填空题由原来的10个小题减至8个;解答题由原来的8个小题减至
7、部分试题的分值和考查重点,也作了相应的调整。
2、全面考查,突出重点
整套试题所关注的内容,是支撑学科的基本知识、基本技能和基本思想、强调考查学生在这一学段所必须掌握的通法通则,淡化繁杂的运算和技巧性很强的方法,回避了大阅读量的题目。
试题重点考查了代数式、方程(组)与不等式(组)、函数、统计与概率、三角形与四边形等学科的核心内容,同时关注了函数与方程思想、数形结合思想、分类讨论思想等数学思想,以及特殊与一般、运动与变化、矛盾与转化等数学观念、试题突出了对学生研究问题的策略和运用数学知识解决实际问题能力的考查。
3、层次分明,确保试题合理的难度和区分度
同时在试题的赋分方面,既尊重了学生数学水平的差异,又能较好地区分出不同数学水平的学生,较好地保证了区分结果的稳定性,从而确保了试题具有良好的区分度。
4、科学严谨,确保试题的信度、效度
试卷题目陈述简明,图形、图象规范美观、凡是联系实际题目,情景不仅不会干扰学生对其内容的分析与理解,而且有助于学生对其中数量关系的把握,这就确保了考试具有较高的信度。
试题的设置,在提问方式、分值和位置等方面,充分考虑了学生不同的
解答习惯、学习水平和承受能力、除压轴题以外的几道解答题,设2~3问,形成问题串,起点很低,循序渐进,层层铺垫;压轴题思维含量较高,具有一定的挑战性,要解答完整、准确,则需要具备较强的数学能力、这样的布局,能确保考试具有较高的信度和效度。
具体情况见下表:(略)
二、试题的主要特点
1、注重“三基”核心内容的考查,恰当渗透人文性、教育性。
2、贴近生活实际,考查学生数学应用意识。
应用数学解决问题的能力既是《课程标准》中的一个重要的课程目标,也是学生对相关教学内容理解水平的一个标志。数学课程标准明确指出:中学阶段的数学教学应结合具体的教学内容采用“问题情境——建立模型——解释、应用与拓展”的模式展开,教学中要创造这种模式的教学情境,让学生经历数学知识的发生、形成与应用过程,新课程
标准特别强调数学背景的“现实性”和“数学化”。如第21题,以学生日常生活中的常见事例为题材,设置的一道背景公平的实际问题,主要考查考生的商品意识和建模意识,考查的知识有方程与不等式、方程,通过这类试题的考查,使学生更加关注身边的数学,生活中的数学,用数学的眼光去观察、分析社会,用所学的数学知识去解决实际问题,培养学生的数学应用意识。
3、设置开放探究问题,关注学生的数学思考。
承认差异,尊重个性,给每一位学生充分的发展空间是《课标》提倡的一个基本理念,而给学生以更多的自主性,让不同类型,不同水平的学生尽可能地展示自己的数学才能是近年来提倡的一个命题原则。试卷在这方面作了一些努力,通过设计开放探究性问题,打破单一的思维模式,形成灵活多样的思维结构,使学生对问题的思考更自由、更发散、更创新,从而进一步发展学生 的思维个性。如第18题属规律探究归纳题,要求考生具备有从特殊到一般的数学思考方法和有较强的归纳探究能力,才能正确地作出解答。
4、设置图形变换,考察学生实践操作能力。
《课标》一再强调学生学习方式的变革,认为:“有效的数学学习活动不能以单纯的模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式”。对学生动手操作和探究能力的培养和考查,是素质教育所要求的重要内容之一,让学生亲自参与活动,进行探索与发现,以自己的体验获取知识与技能是新课标的目标,为了体现新课标精神,试卷设计了计算量小、思维空间大的操作探索题目。如第3题旨在考查三角形中角之间的关系,但打破过去单一的问题呈现方式,而是与折叠操作相结合,有机的融入了轴对称变换的相关知识。
5、设置字母参数,考查综合能力
对于初中毕业生来说,不仅要掌握必要的数学基础知识和基本技能,还应具备有一定的分析问题和解决问题的能力及数学综合素质,对这种要求的考查,一般都是放在压轴题来实现。而这类压轴题都以所学的重点知识为载体,融数形结合为一体,以探究性试题形式呈现。在设计方法上注重创新,都善于放在主干知识的交汇点上;在考查意图上,极力让学生探索研究问题的实质,突出对学生发展思维能力、探索能力、创新能力、操作能力的考查。
第25题压轴题,融方程、函数、数形结合,分类讨论等重要数学思想于其中的综合题,考查的知识主要有:抛物线的对称性、抛物线的平移、一元二次方程等重点知识,此题对学生的能力要求较高,只要把抛物线的解析式用含m的式子表示出来,所有问题便迎刃而解,但如果考生的思维走入了“求出m的具体值”这一误区,此题的失分就在所难免了,这就要求考生仔细分析题目,正
确把握“m为常数”这一信息,才能作出正确的解答。
三、教学建议
(一)命题建议:
2、表述上应更加严密些。压轴题的第(1)小问中“求抛物线的解析式”若用括号说明“用含m的式子表示”,那么第(1)小问的难度将会大大降低。
(二)教学建议:
1、加强研究,转变观念
想要提高学生的数学能力,适应当前中考的变化,最有效的途径就是加强对《课程标准》、《数学科大纲》和教材自身的学习与研究,不断转变我们的教学观念、《课程标准》、《数学科大纲》和教材既是中考命题的依据,也是衡量日常教学效果的重要标尺、我市近几年中考数学的试题,均严格遵循《课程标准》、《数学科大纲》的要求,紧扣教科书、也就是说,《课程标准》、《数学科大纲》和教材才是编拟中考数学试题的真正
“题源”、所以,我们的教学要紧扣课标,吃透考试要求,回归教材,发挥其示范作用、唯有这样,教学和复习才会起到事半功倍的作用、2、正确认识数学基础知识、基本技能和常用的数学方法中蕴涵的数学思想
当前中考试题考查的重点,仍是数学的基础知识和基本技能和常用的数学方法中蕴涵的数学思想、加强“三基”的训练是提高数学成绩的一个重要环节,但我们首先要对加强“三基”有一个正确的认识。
中考中要求的基础知识、基本技能和常用的数学方法中蕴涵的数学思想,是解决常规数学问题的“通法通则”,而并非特殊的方法和技巧,因此抓好“三基”,绝不是片面追求解偏题、难题和怪题,更不是刻意去补充课标和教材要求之外的知识与方法。
加强“三基”,很重要的一个方面是对学生解题规范性的培养、只有做到
答题规范、表述准确、推理严谨,才能保证学生考试时会做的题不丢分、建议教师在日常的教学中,充分重视对学生解题步骤和解题格式的规范要求。
加强“三基”,不能通过要求学生机械记忆概念、公式、定理、法则来实现,而是要将这些核心知识的理解与掌握,置于解决具体数学问题的过程中,所以适当的解题训练是必要的、但加强“双基”,又不能仅靠大量的不加选择的解题来完成,更不能把数学课变成习题课,搞题海战术。
要认识到,“三基”的提升不是一蹴而就的,需要一个循序渐进的过程、在日常教学中,学生对数学知识的初次认知尤为重要,因此一定要留给学生充分的探究发现、归纳概括的时间,扎扎实实地掌握好每一个数学概念、任何匆忙追求教学进度、最后依靠机械性的强化训练的做法,都不可能取得真正良好的效果。
3、关注数学方法和数学思想的渗
透
要想在中考取得理想的成绩,除了理解基础知识,掌握基本技能外,还必须关注数学方法和数学思想,而这正是目前教学中较为薄弱的环节之一。
值得注意的是,对数学方法和数学思想的教学不能孤立进行,它应以具体的数学知识为载体,所以我们要注意在日常教学中对数学方法和数学思想的渗透、如在“分式”教学中渗透类比思想(与分数的类比),在方程组的教学中渗透转化思想(与方程的转化)等等、只要我们平时注重这一点,数学思想方法就会自然的“内化”在学生的思维方式之中。
4、注重过程教学,培养思维品质
“重结论、轻过程”,仍是当前教学中的一个重要误区、这种忽视知识形成过程的教学,会导致学生只重视结论本身,甚至死记硬背结论,“只知其然而不知其所以然”,也就更谈不上在考场上灵活运用与迁移转化了。
因此在教学过程中,一定要从重视知识结论转向重视知识的形成过程、要真正改变现有的教学方式,关注学生的学习方式,使教学的过程变成一个学生思维方式不断发展的过程。
培养思维能力,还应在提高学生的思维品质上下功夫、如培养学生思维的灵活性、全面性、严密性,以及思维的广度和深度等等。
中考数学试卷分析
(二)为了解我县初中数学教学的现状,及时掌握初中数学教学中存在的问题,探索提高初中数学教学水平的方法,并以此推动初中数学教育教学改革,提高初中数学教育教学质量。下面从以下几个方面对河南省**中考数学试卷作以分析:
一、试卷总体评价
**年的中考数学试题,与去年相比,试卷考查的内容有改变,但试卷的体例结构、考题的数量均较稳定,试题注重通性通法、淡化特殊技巧,解答题
设置了多个问题,形成入口宽、层次分明、梯度递进的特点,有较好的区分度。有利于高中阶段学校综合、有效地评价学生的数学学习状况。所有试题的考查内容及试题编排由易及难,坡度平缓,一部分试题情景来源于教材,对考生具有相当的亲和度,有利于考生获得较为理想的成绩。
1、试题题型稳中有变
2、试题贴近生活,时代感强
3、试卷积极创设探索思考空间
4、试卷突出对数学思想方法与数学活动过程的考查
二、学生答题得分统计
基本情况(抽样分析不计零分和缺考人数)
三、试题错因分析
1、选择题失分情况分析
2、填空题失分情况分析
填空题涉及的知识面较广注重对学生双基能力的考查。其中7、8、9、10、11答题较好,出现的错误集中反应在第 14、15两题。这两题也可称作为填选题的压轴题,属于拉开学生成绩档次的题目。其中14题求点A’可移动的最大距离,我们可以用折叠的方式找出起点和终点,这样就迎刃而解了。大部分学生看到这样的题就怕了。也不动手去折一下,而在给出的图形上思考,而给出的图形既不是起点也不是终点。
第四篇:2013桂林市中考数学试卷
2013年桂林市初中毕业升学考试试卷
数学
(考试用时:120分钟满分:120分)
注意事项:
1.试卷分为试题卷和答题卡两部分,在本试题卷上作答无效. ..........
2.答题前,请认真阅读答题卡上的注意事项. ...........
3.考试结束后,将本试卷和答题卡一并交回. .......
一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑). ...
1.下面各数是负数的是
A.0
2.在0,2,-2,A.2 B.2013 C.2013 D.1 20132这四个数中,最大的数是 3B.0 C.-2 D.2
33.如图,与∠1是同位角的是
A.∠2 B.∠3 C.∠
4C.52535 D.∠5 第3题图 4.下列运算正确的是A.525356 B.(52)355 D
.2
55.7位同学中考体育测试立定跳远成绩(单位:分)分别是:8,9,7,6,10,8,9,这组数据的中位数是
A.6 B.8 C.9 D.10
6.下列物体的主视图、俯视图和左视图不全是圆的是 ...
A.橄榄球 B.兵乓球C.篮球 D.排球
7.不等式x+1>2x-4的解集是
A.x<5 B.x>5 C.x<1 D.x>
18.下面四个图形中,既是中心对称图形,又是轴对称图形的是
A
BCD
数学试卷第1页(共4页)
9.下列命题的逆命题不正确的是
A.平行四边形的对角线互相平分B.两直线平行,内错角相等
C.等腰三角形的两个底角相等D.对顶角相等
10.如图,菱形ABCD的对角线BD、AC分别为
2、,以B为圆心的弧与AD、DC相切,则阴影部分的面积是
A
.B
.第10题图
C
.的值是
A.a=1D
. 11.已知关于x的一元二次方程x22xa10有两根为x1和x2,且x12x1x20,则aB.a=1或a2C.a=2 D.a=1或a=
212.如图,已知边长为4的正方形ABCD,P是BC边上
一动点(与B、C不重合),连结AP,作PE⊥AP交
∠BCD的外角平分线于E,设BP=x,△PCE面积
为y,则y与x的函数关系式是
A.y2x1B.y1x2x22第12题图 1C.y2xx2 2D.y2x
二、填空题(共6小题,每小题3分,共18分,请将答案填在答题卡上). ...
13.分解因式:3ab2a2b
14.我国雾霾天气多发,PM2.5颗粒物被称为大气的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是毫米.15.桂林市某气象站测得六月份一周七天的降雨量分别为0,32,11,45,8,51,27(单位:
mm),这组数据的极差是
16.如图,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,则AE.
第16题图
17.函数yx的图象与函数y
交于点B,点C是函数y4的图象在第一象限内 x4在第一象限图象上的一 x
个动点,当△OBC的面积为3时,点C的横坐标是.
第17题图
数学试卷第2页(共4页)
18.如图,已知线段AB=10,AC=BD=2,点P是CD
上一动点,分别以AP、PB为边向上、向下作正
方形APEF和PHKB,设正方形对角线的交点分
别为O1、O2,当点P从点C运动到点D时,线
段O1O2中点G的运动路径的长是.
三、解答题(本大题共8题,共66分,请将答案写在答题卡上). ...
19.(本题满分6
分)计算:(102sin60
3x2y1920.(本题满分6分)解二元一次方程组: 2xy1第18题图
21.(本题满分8分)如图,在矩形ABCD中,E,F为
BC上两点,且BE=CF,连接AF,DE交于点O.
求证:(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.第21题图
22.(本题满分8分)在重阳节敬老爱老活动中,某校计划组织志愿者服务小组到“夕阳红”
敬老院为老人服务,准备从初三(1)班中的3名男生小亮、小明、小伟和2名女生小丽、小敏中选取一名男生和一名女生参加学校志愿者服务小组.(1)若随机选取一名男生和一名女生参加志愿者服务小组,请用树状图或列表法写出
所有可能出现的结果;
(2)求出恰好选中男生小明与女生小丽的概率.23.(本题满分8分)在“美丽广西,清洁乡村”活动中,李家村村长提出了两种购买垃圾
桶方案;方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元;设方案1的购买费和每月垃圾处理费共为y1元,交费时间为x个月;方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.
(1)直接写出y1、y2与x的函数关系式;
(2)在同一坐标系内,画出函数y1、y2的图象;
(3)在垃圾桶使用寿命相同的情况下,哪种方
案省钱?
数学试卷第3页(共4页)第23题图
24.(本题满分8分)水源村在今年退耕还林活动中,计划植树200亩,全村在完成植树40
亩后,某环保组织加入村民植树活动,并且该环保组织植树的速度是全村植树速度的1.5倍,整个植树过程共用了13天完成.(1)全村每天植树多少亩?
(2)如果全村植树每天需2000元工钱,环保组织是义务植树,因此实际工钱比计划节
约多少元?
25.(本题满分10分)如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于D,过
点D作DE⊥AD交AB于E,以AE为直径作⊙O.(1)求证:点D在⊙O上;
(2)求证:BC是⊙O的切线;
(3)若AC=6,BC=8,求△BDE的面积.26.(本题满分12分)已知抛物线的顶点为(0,4)且与x轴交于(-2,0),(2,0).(1)直接写出抛物线解析式;
(2)如图,将抛物线向右平移k个单位,设平移后抛物线的顶点为D,与x轴的交点为
A、B,与原抛物线的交点为P.①当直线OD与以AB为直径的圆相切于E时,求此时k的值;
②是否存在这样的k值,使得点O、P、D三点恰好在同一条直线上?若存在,求出k值;若不存在,请说明理由.第25题图
第26题图 第26题备用图
数学试卷第4页(共4页)
第五篇:2012年中考数学试卷分析
2012年中考数学试卷分析
分值分析:
选择题6题,4分/题,难度系数A级,预防粗心,共24分;填空12题,4分/题,共48分,第18题难度B+,正确率为50%;计算题19题,10分;解方程20题,10分;21题解直角三角形,10分;22题一次函数的实际应用10分,23题简单的几何证明和计算10分;24题函数和平面直角坐标系的混合运用,难度系数C,12分;25题第一问较简单,难度系数A,第2问难度系数C,第3问难度系数C+,共14分。
知识点分析:
1、单项式和多项式,初一上册内容;2、概率和统计,中位数、众数和平均数;3、解不等式,解集的确定;4、二次根式、分母有理化、化简和求值;5、轴对称图形和中心对称图形;6圆与圆的位置关系;7、计算,求绝对值;8、因式分解-提取公因式法;9、函数的增减性;10、解根式方程;11、一元二次方程根的情况;12、函数的平移;13、概率的计算;14、频率分布和统计;15、向量的计算-三角形法则和平行四边形法则;16、相似三角形性质的运用;17、正三角形多心合一的问题及应用;18、平移和翻折的运用(画图能力);19、计算,细心,难度系数A-;20、解方程,难度系数A;21题解直角三角形的运用,建立直角三角形,难度系数A+;22、应用题或一次函数的运用,难度系数A+;23、三角形一边平行线、比例线段的运用和平心四边形,几何部分,难度系数B;
24、函数。平面直角坐标系和锐角三角比的综合运用,难度系数不是很大,但是因涉及知识点和计算较多,故定为B+或C,25、圆的综合运用,往往会和相似三角形混合运用,但是今年没有涉及到,圆的比重增加;
分数占比:初一上118分,初一下20分,初二上20分,初二下30分,初三上32分,初三下30分;难易比例为:2:8
做试卷要求:1-6必须全部正确;12-17全部正确,18题正确率50%,19-23全部正确,24,前两问,25题第一问,只要准确率保证,学员基本能考到130分。
解题技巧:前17题必须要十分的仔细,整体难度系数和含金量较低,但却是粗心学生的噩梦;18题多解和画图能力;19-20,考验学生的基本功,技术含量低;21-23解题步骤的设置很重要。24-
25、先做前2问,最后一问哪怕不会做,也要写出相关的步骤。25题侧重辅助线的作法.重难点:
重点:函数、解方程、三角形的全等的证明和运用、函数、相似三角形、圆、四边形。难点:旋转和翻折、三角形的相似的证明和运用。圆与四边形的综合运用。函数和几何的综合运用。