百分数(精选五篇)

时间:2019-05-14 21:19:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《百分数》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《百分数》。

第一篇:百分数

百分数

分母是100的分数叫做百分数。这种定义着眼于形式,把百分数作为分数的一种特殊形式。

表示一个数(比较数)是另一个数(标准数)的百分之几的数叫做百分数。这种定义着眼于应用,用来表示两个数的比。所以百分数又叫百分比或百分率。

百分数与百分点的区别

百分数也称百分比,是相对指标最常用的一种表现形式。它是将对比的基数抽象化为100而计算出来的相对数,用“%”表示。它既可以表示数量的增加,也可以表示数量的减少。运用百分数时,也要注意概念的精确。如“比过去增长20%”,即过去为100,现在是“120”;比过去降低20%,即过去是因为100,现在是“80”;“降低到原来的20%”,即原来是100,现在是“20”。运用百分数时,还要注意有些数最多只能达到100%,如产品合格率,种子发芽率等;有些百分数只能小于是100%,如粮食出粉率等;有些百分数可以超过100%,如产品产量计划成情况等。要注意区别 “占”、“超”、“为”、“增”的含义和用法,“占计划百分之几”指完成计划的百分之几;“超计划的百分之几”,就应该扣除原来的基数;“为去年的百分之几”就是等于或相当于去年的百分几;“比去年增长百分之几”应扣掉原有的基数。

百分点是指不同时期以百分数形式表示的相对指标,如:速度、指数、构成等的变动幅度。它是分析百分比增减变动的一种表现形式。例如,工业增加值今年的增长速度为19%,去年的增长速度为16%,今年比去年的增长幅度提高了3个百分点(19%-16%)。今年物价上升了8%,去年物价上升了10%,今年比去年物价上升幅度下降了2个百分点(8%-10%)。股票价格指数某日为120%,而前一天为125%,就说该日的价格比前一天下降5个百分点。

百分数与百分率的区别

按现行小学教材中百分数的定义“百分数也叫百分率(或百分比)”这一规定来判断,百分数一定是百分率,它后面一定不能带任何单位名数,因为率和比后边是不能带任何单位名数的。但按《现代汉语词典》中的定义“百分数:分母是100的分数”来解释,百分数与百分率却是两个意义截然不同的两个概念,百分数表示分母是100的所有分数,它既可以表示一个具体的量(如:3厘米=3/100米读作“三厘米等于百分之三米”)又可以表示两个量的比即百分率百分比(如:这次会议缺席率为百分之三即3/100),而百分率只能表示两个量的倍比关系,它的后边是绝对不能带单位名数的,也就是说,所有的百分率百分比都要用百分数来表示,所有的百分率百分比都是百分数,但并不是所有的百分数都是百分率百分比,百分数只能在表示倍比关系的条件下才能成为百分率百分比。由此看来,百分数应该是百分率百分比的种概念,百分数与百分率百分比应该是种属关系而不应该是等同关系。

恩格斯系数与百分数

恩格尔系数指城镇或农村居民家庭总支出中用来购买食物的用所占的比例,是表示生活水平高低的一个指标。随着生活水平的提高,居民家庭总支出中用来购买食物的费用所占比例将下降。通常用百分率表示。

生活中的百分数信息

百分数的用途很广。百分数很重要,生活中离不开它。

1.生活中的百分数:

(1)一种衣服含棉80%,绦纶20%。(2)酒精度11.5%。

(3)一种牛奶含乳量≥60%。

(4)脂肪≥3.5%。

(5)人的泪水中,98.2%是水份。

(6)溧阳创建卫生城市时,有关部门对小摊上的食物进行检测,检测结果:食物的合格率是23.2%。

(7)清华大学今年招收的新生中有60%的同学体质差。

(8)一本书已看了40%。

(9)自行车厂上半年完成全年计划的60%。

2.如果你是顾客,你会买哪一种,请说说你的想法。

(1)羽绒服标签写着:

一种: 雅戈尔羽绒服 :鸭绒占90% 另一种: 康博羽绒服

:鸭绒占65%(2)宁波汤圆

一种:馅含量占 35% 另一种:馅含量占 26%

百分数的成语及名人名言

成语中的百分数

十拿九稳

百里挑一

十室九空

事倍功半

猜成语

100%的命中率。(百发百中)

生还的可能性只有10%。(九死一生)名人名言

天才=99%的汗水+1%的灵感

十全十美一箭双雕

第二篇:小数和百分数

专题讲座

小学数学“分数、小数和百分数”的教学研究与案

例评析

孙兴华(特级教师)

一、《课标》中分数、小数、百分数内容的理解

分数、小数的认识分散安排在两个学段,第一学段是分数和小数的初步认识;第二学段是认识分数和小数概念。百分数的认识安排在第二学段。《标准》中与分数、小数和百分数的认识有关的内容要求如下:

第一学段:能结合具体情境初步认识小数和分数,能读、写小数和分数。能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小。第二学段:结合具体情境,理解小数和分数的意义 , 理解百分数的意义(参见例一);会进行小数、分数和百分数的转化(不包括将循环小数化为分数)。能比较小数的大小和分数的大小。

分数、小数是数的概念的一次重要扩展,与学习整数相比,学生对于分数、小数的学习要困难得多。分数、小数无论在意义、书写形式、计数单位、计算法则等方面,还是在学生的生活经验等方面,都与自然数有较大不同。分数、小数的学习重点在于,结合学生的生活经验,初步理解分数和小数意义,能够认、读、写小数和分数。

分数与小数的共同点都是有理数,并且本质上小数是特殊的十进制分数。分数有两个含意,一是表示部分与整体的关系,是一个比率,比如,把一个月饼等分为 5 份,那么其中的一份是 1/5,两份是 2/5。分数还是一种无量纲的数,也就是说,无论是一块小月饼还是一个大蛋糕,如果分五份的话,那么每一份都是 1/5,与整体本身的大小无关。应当注意到的是,通过等分得到分数单位:前面所述的 1/5 就是分数单位,而 2/5 表示的是两个分数单位: 2/5 = 2 × 1/5 =1/5 + 1/5。分数的另一个含意是表示一个具体的量,如 1/3 米,1/3 千克等。分数大多数情况下是用来表示一个比率,因此,分数的第一种表示在实际教学应当成为重点。小数表示的是具体的数量,和整数一样是数量的抽象。在分数的意义中,分数单位很重要。利用分数单位,容易得到同分母分数的加法: 1/5 + 2/5 = 3/5。这个运算表示的是:一个分数单位加上二个分数单位等于三个分数单位。对于分母不同的分数的大小比较以及加法运算,必须对原有的分数单位进一步等分。比如,对分了 5 份的月饼的每份再二等分,得到的新单位是原来整体的 1/10,即 1/5 × 1/2 = 1/10。原来单位与新单位的关系是 1/5 = 2/10 ;进一步,原来单位的两份等价于新单位的四份: 2/5 = 2 × 1/5 = 2 × 2/10 = 4/10。正是因为这个原因,才有通常所说的分数的性质:分数的分子和分母同时扩大或者缩小相同倍数,分数大小不变;分母不同的分数的大小比较可以化为分母相同的分数比较,进而得到一般的异分母分数的加法运算法则。

小数的表征形式与整数相似,都是十进制。如果以个位为基础,向左扩展就是十位、百位、千位;如果向右扩展就是十分之一位(十分位),百分之一位(百分位)等。从这个意义上说,对小数的理解比对分数的理解更容易一些。百分数是特殊的分数,其数量上的意义与分数完全相同。由于百分数在实际应用中的特殊性,因此,将百分数作为一个专门的内容学习。所以学习百分数的重点在于应用,用百分数表示现实生活中的实际问题。

小数和分数的学习分为两个学段,第一学段是小数和分数的初步认识,第二学段是小数的意义和分数的意义的理解。两个学段的重点不同,呈现的方式和学习的方式也应当有区别。第一学段的初步认识在于从实际情境中具体的了解小数和分数,重在现实情境的选择和运用。如小数的认识一般从物品的标价引入。以元为单位,3.5 元就表示 3 元 5 角。分数的初步认识是从分物体出发,把一个饼、一个苹果平均分成 5 份,一份就是它的 1/5。第一学段的初步认识可以先认识分数,再认识小数。知道 1/10,再理解 0.1 就更容易一些。而在第二学段也可以先认识小数的意义,再认识分数的意义。因为,接下来的运算问题,小数要比分数容易,小数的运算过程与整数基本相同,分数的计算要复杂得多。

在学习了小数、分数和百分数之后,应当使学生了解它们之间的关系。可以通过具体的问题帮助学生了解分数、小数和百分数的含义,以及它们的联系。

例一:说明,0.25 和 25% 的含义。(《标准》例 25)在这个例子中,使学生了解,分数、小数和百分数都是有理数的常用表示方法,但含义是有所不同的。真分数通常表示部分与整体的关系,如全班同学人数的 ;小数通常表示具体的数量,如一支铅笔 0.25 元;百分数是同分母(统一标准)的比值,便于比较,如去年比前年增长 21%,今年比去年增长 25%。希望学生能够理解它们的含义,在生活中能够合理使用。

二、核心内容的深层理解与教学策略

(一)分数的意义

德国数学家克罗内克有一句名言:“上帝创造了自然数,其余都是人造的。”第一个“人为”的数是正分数。早在人类文化发展的初期,由于进行测量和均分的需要,人们引入并使用了分数。在拉丁文里,“分数”一词源于

frangere,是打破、断裂的意思,因此分数也曾被人叫做“破碎的数”。在数的历史上,分数几乎与自然数同样古老,在各个民族最古老的文献里,都能找到有关分数的记载,然而,分数在数学中传播并获得自己的地位却用了几千年的时间。

问题 1 :小学阶段分数扩充缘于什么需要?分数的作用是什么?分数的无量纲性的意义是什么?

分数的扩充一般由两种需要: 一是分东西的过程中,需要对一个物体进行切割与分配时,整体中的“部分”无法用自然数来表示,就需要有刻画“部分”的方式方法; 二是计算过程中,“2÷3= ?”无法用自然数表示计算的得数,就需要有刻画这类除法运算结构的方式方法。

分数的两个作用: 一个是作为有理数出现的一种数,作为运算中出现的一种数,它能和其他的数一样参加运算。另一个作用是以比例的形式出现的数。最重要的分数是真分数,它代表一件事物的一部分,其本质在于它的无量纲量性。比如:盘子大小的 1/2 代表的实际意义,与足球场大小的 1/2 代表的实际意义是不尽相同的,但在讨论分数时是等价的。

关于分数的无量纲性:“量纲”一词来源于物理,比较通俗地解释是:基本物理量的度量单位,例如长短、体积、质量、时间等等的单位。这些单位反映物理现象或物理量的度量,叫做“量纲”。无量纲就是没有单位的量。通常是比值或者概率。分数的本质在于它的无量纲性,即用分数表示部分与整体的关系时,不需要考虑物体的形状、大小,只看把这个物体或整体平均分成了几份,要表示这样的几份,分母、分子就对应的是几。

分数的无量纲性的意义在于,能够把事物的许多不可比的状态变成可比的状态。例如:一个小国家的老百姓的生活质量和富有程度,与一个大国家的老百姓的生活质量和富有程度,在很多情况下并不是可比的,但是,一旦转换成人均 GDP,得到了 GDP 指数,或者得到恩格尔系数就可以进行相互之间的比较了。通常用百分数来表示这种增长率:增长率 =[(今年 GDP– 去年 GDP)/ 去年 GDP]×100%。

问题 2 :分数的意义可以从哪些基本维度理解?

北京教育学院的张丹老师对分数从两个基本维度和四个具体方面进行了解释,这对我们理解分数有很大的启发。两个维度一个是比,一个是数。四个具体方面是比率、度量、运作、商。具体来说:

1.比率:是指部分与整体的关系和部分与部分的关系。

其中部分与整体的关系更多地体现在真分数的含义中。例如一个圆平均分成 4 份,每一份是整体的 1/4。又如,一个长方形面积是整个长方形的 1/3,整体图形的面积应该是多少?显然,整体图形的面积应该是这样的三份。这里的 1/4 和 1/3 所反映的就是取的份数与整体份数之间的关系。

部分与部分之间的关系更多地表现为是一种“记号”。例如小红有 5 个苹果,小丽有 3 个苹果,小红的苹果是小丽的 5/3 倍。对比率维度的理解,可以帮助学生完成对分数的基本性质以及通分、约分等相关知识的正确认识。2.度量:指的是可以将分数理解为分数单位的累积。例如 3/4 里面有 3 个 1/4,就是用分数 1/4 作为单位度量 3 次的结果。“数起源于数,量起源于量。”自然数主要用于数个数,即离散量的个数。当测量连续量(如物体的长度)时,先需要选定度量单位,数被测物体中包含多少个度量单位,不能数尽,为了得到更准确的值,把原来的度量单位分割为更小的度量单位(平均分为 10 等份,以其中一份作为新的度量单位)

3.运作:主要指的是将对分数的认识转化为一个运算的过程。例如,想知道 6 张纸的 2/3 是多少张纸,学生将理解为整体 6 张纸的 2/3,即将 6 张纸这个整体平均分成 3 份,取其中的 2 份,列出算式就是 6÷3×2,也就是 6×2/3。

4.商:这个维度主要是指分数转化为除法之后运算的结果,它使学生对于分数的认识由“过程”凝聚到“对象”,即分数也是一个数,也可以和其他数一样进行运算。

问题 3 :学生理解分数可以借助哪些模型?

1.分数的面积模型:用面积的“部分 —— 整体”表示分数。儿童最早是通过部分 —— 整体来认识分数的,因此在教材中分数概念的引入是通过平均分某个正方形或者圆,取其中的一份或几份(涂上阴影)认识分数的,这些直观模型即为分数的面积模型。对于分数的面积模型,在学习过程中学生经常遇到一些困难,如:

(1)能否认识到图形“面积相等”的必要性,即整体 1 是否一样大;(2)是否习惯于图形语言到符号语言表达的转换;(3)理解大于整体 1 的分数;

(4)从表示多于一个单位的图形中确定谁作为单位 1。

2.分数的集合模型:用集合的“子集 —— 全集”来表示分数。分数集合模型的核心是把多个看作整体 1,分数集合的优点是有利于用比较抽象的数值形式表示比与百分比。分数的集合模型的缺点是容易对假分数产生误解,这与面积模型的问题完全一样:谁作为整体 1,这既是认识分数的一个核心,同时也是一个难点。J·Martin 总结出整体“1” 可以分为以下六种情况(以 1/5 为例):

(1)1 个物体,例如一个圆形,平均分为 5 份,取其中的 1 份;(2)5 个物体,例如 5 块糖,其中的 1 块占 5 块的 1/5 ;

(3)5 个以上但是 5 的倍数,例如 15 块糖,平均分为 5 份,取其中的 1 份;

(4)比 1 多但比 5 少,例如 2 块巧克力作为整体;(5)比 5 个多不能被 5 整除,例如 7 根香蕉作为整体;

(6)一个单独物体的一部分的五分之一,例如,一米的四分之三的五分之一。以上六种情况不可能让学生同时学习,但学生逐步地经历这些情境对学习分数是非常必要的,特别是前三种情境;第四和第五种情境对于学生进一步理解分数与除法的关系非常必要;情境六则是学生很好地理解分数乘分数的模型。3.分数的数线模型:是用数线上的点表示分数。分数的数线模型与分数的面积模型相联系:一个分数可以表示单位面积的一部分,也可以表示单位长度的一部分,前者 2 维,后者 1 维是线性的,是用点来刻画分数。4.分数与除法 比的关系:对分数的另一种理解是把分数与除法联系起来,分数是除法的运算结果。分数与除法的互相转化有重要作用:把分数化为小数或百分数。

问题 4 :分数意义的教学策略有哪些?

1.分数的初步认识引入可以从以下方面考虑:

(1)从平均分东西中,由分得的结果是整数,过渡到分得的结果是分数。(2)从除法运算入手,当商不能用整数表示时,就引入分数表示两个数相除的商。

(3)从测量入手,得不到整数结果,可以用分数表示。

(4)在分数概念教学中,不但要强调“平均分”,还要强调它是一个“数”。

(5)在解决“用分数表示图形的大小”时,要让学生掌握解这类题的思维过程。

引入分数的情境应该让学生体会到分数产生的必要性。既然分数是人们要进行测量和均分才产生的,它的呈现应使人们解决这些问题。那么,我们教学的时候,可以遵循分数产生的历史,设计一个一定要用分数解决问题的情境,让学生感到,分数的出现在情理之中,学这个知识很有用,这样才能够引起学生的充分注意,引发学生的学习兴趣。

下面是三位特级教师上分数初步认识的案例: 例二:分数的初步认识情境 1

从孩子们熟悉的生活中单刀直入开始了知识的学习。“有 4 个桃子,平均分 2 个人,每人得到几个?”“啪 —— 啪”学生用两下整齐的掌声回答了问题。“有 2 个桃子,平均分 2 个人,每人得到几个?”“啪。”“只有一个桃子,平均分 2 个人,每人得到几个?”同学们你看看我,我看看你,面面相觑。突然有几个同学用右手尖点了一下右手心,“半个”;还有的同学两手心相对并不合上,表示“半个”。

吴老师继续说:“对,半个。半个该怎么写呢?小朋友们,能用你喜欢的方法来表示一个桃子的一半吗?”吴老师认真地看着同学们的板书,孩子们用不同的方式表示着自己心中的“一半”。接着,吴老师请这些同学一一介绍自己的表示方法,解释每种表示方法的含义。

吴老师不紧不慢地说:“小朋友们,你们用自己喜欢的方式表示了桃子的一半,说明你们很有办法。不过,我向大家介绍一种更科学、更简便的表示方法。当把一个桃子平均分成两份,表示这样的一份时,可以像这位同学一样用这个数 1/2 来表示。”她边说边走到黑板前,用红粉笔框住了 1/2。“你们知道这个数叫什么名字吗?”同学们不敢肯定地回答:“分数。”吴老师边出课题边肯定大家的答案:“对啦,叫做分数。”接着,吴老师又一次回到 1/2 前,给同学们引荐这位数的大家族中的新朋友---“分数”。孩子们在吴老师的带领下自然而然地进入了新知识的学习。例三:分数的初步认识情境 2 A.看连环画听故事

老师:喜欢听故事吗?那我们一起来听有关大头儿子的故事吧!

天热了,小头爸爸到商场买凉席。到了卖凉席垫的柜台,他遇到麻烦了 „„ 于是给他的大头儿子打电话。

小头爸爸:我忘了量床的长了,你找把尺子量一量床有多长。大头儿子:噢!

旁白:大头儿子在家里找来找去,就是没找到一把尺子,怎么办呢?(停 3—5 秒)突然他想了个好主意。

大头儿子:爸爸,你今天打领带了吗?小头爸爸:打领带?哦,真是个聪明的大头,快量吧!

旁白:大头儿子拿来一根爸爸的领带。他用领带一量,嘿!巧啦,床正好是两个领带长。

大头儿子:爸爸,床是两个领带长。

小头爸爸:儿子真有办法!我知道了。嗳,儿子再量一下沙发的长吧!旁白:大头儿子再用这根领带去量沙发。唉,沙发没有一个领带长。怎么办呢?大头儿子把领带对折来量。唉,沙发又比对折后的长一些。大头儿子再想办法,他将领带对折再对折。一量,巧啦,沙发正好有 3 个这么长。大头儿子真高兴啊!可是,他也碰到难题了。

大头儿子:(自言自语地)床是 2 个领带长,现在我怎么跟爸爸说沙发是多少个领带长呢? B.帮助解疑

大头儿子:“怎么跟爸爸说这个沙发有多少个领带长呢?” 你有办法表示出这样 4 份中的 3 份吗? 学生在纸上创作,教师巡视,指名展示。C.揭示分数

老师:小朋友很会动脑筋,用自己喜欢的方式表示出这样 4 份中的 3 份。你认为哪个最好?你想知道大人们是怎样表示的吗?嗯,与这位同学想的一样。(红笔框)你知道这样的数叫什么?(板书:分数)老师: 3/4 是什么意思呢?任选一张你喜欢的纸片,想办法表示出 3/4 的意思。可以折一折,也可以画一画。学生用不同的方法表示了 3/4。

老师板书:平均分,分 4 份,取 3 份 „„ 例四:分数的初步认识情境 3

师: 1×2 和 2×1 这两个算式都是用 1 和 2 组成的乘法算式,请你用 1 和 2 这两个数组成尽可能多的加法、减法、乘法、除法算式(能写几个就写几个)。

学生听清要求后,开始动笔书写,教师巡视,不一会,学生自信地举起了一双双小手。

生 A : 1×2 = 2、2×1 = 2、1 + 2 = 3、2 + 1 = 3、2÷1 = 2、2 - 1 = 1。

生 B :我补充,从大姐姐的书上看到过倒过来写“1 - 2”的算式,可是等于多少,我看不懂。学生 B 的语调由自信渐趋信心不足,并抓耳挠腮起来。这时,还有几个学生迫不及待地把手高举过头,唯恐老师没注意。生 C :爸爸教过我 1 - 2 =- 1。

生 D :我还有补充,2÷1 倒过来可以写出 1÷2 的除法算式。

师:你们知道的真多!1 减 2 的确等于负 1,今天这节课我们不研究 1 - 2,我们来研究 1÷2= ?

师:根据除法的意义,想想 1÷2 是什么意思?

学生愕然,有的紧锁眉头,有的摇头,教师用亲切的目光扫视着学生;学生用期盼的目光凝视着老师。

师:想知道吧!我们还是从除法的意义开始吧!

教师引导学生回顾并板书了“被除数 ÷ 除数 = 商”后,紧接着先后出示了“4÷2= 2”、“2÷2= 1”让学生分别说出了“平均分”的具体意义。师: 1÷2= ?表示什么?

生 E :把 1 个苹果平均分成 2 份,每份是半个。生 F :把 1 块饼平均分成 2 份,每份是半块。

生 G :把 1 个东西平均分成 2 份,每份是 2 份里的 1 份,也就是 1÷2。师:半个东西原来是指把一个东西平均分成 2 份,是一个分数,它是 1÷2 的商。

师追问:如果把 1 看成是一张纸的话,1÷2= 表示什么?

2.分数的再认识,重点要让学生理解单位“1”的含义,可以从以下考虑:(1)先复习由一个图形组成的单位“1”,然后把这个图形平均分若干份,让学生直观地认识到,分成的若干份可以合成一个整体,形成单位“1”的概念。

(2)联系学生的生活实际,先说一说“多”和“1”,再引出单位“1”的含义。如:大家来说“多”和“1” ——4 个人组成 1 个小组; 6 个小方块组成 1 个整体; 13 亿人组成 1 个国家; 30 个人组成 1 个班级; 50 朵花装满 1 只花篮; 48 个班级组成 1 个学校; 12 个三角形组成 1 个整体; „„

(二)小数的意义 1.小数的产生 世纪荷兰的数学家、物理学家同时也是一位军人的斯蒂文最早发明小数,当时是为了便于计算复杂的利息问题。斯蒂文发现,当利率都是以 10、100、1000 等作为分母时,按照复利计算的利息问题将变得简单,其结果都是以分母是 10、100、1000 等的分数表示,但还是不太便于比较大小和计算。于是他发现用“小数”(当时的小数书写形式不是现在的样子,没有小数点)表示非常方便,于是创造出“十进小数”,进行小数的四则计算非常简单,类似于自然数的四则计算。从其发生的本源来看,小数是基于十进分数而创造出来的,是“原创的”。实际上,人为的“约定”、“规定”就是人的一种创造,是一种新的顿悟与发现。世纪人们才建立起稳定的十进位小数表达形式,这比微积分的出现还要晚 100 多年。建立小数的概念,一方面是为了现实世界中数量表达的需要,比如: 6 元 7 角 5 分就可以表示为 6.75 元;另一方面是为了数学本身的需要,主要是为了表示无理数。比如:虽然人们很早就知道

和,但无法进行这两个无理数的加法运算。如果借助小数,就可以把这两个无理数分别表示为:

=1.4142135„ 和 =1.7320508„,这样,于是就可以进行加法运算了:

+ = 1.4142135„ + 1.7320508„=3.1462643„。

小数是一种特殊的分数,但是又独立于分数,小数是十进制记数向相反方向延伸的结果。无限循环小数使得我们不得不正面处理无限,向无限进军。小数产生的两个前提:一是十进制记数法的使用;二是分数概念的完善。小数产生的两个动因:一是十进制计数法扩展完善的需要;二是分数书写形式的优化改进。小数的出现标志着十进制记数法从整数扩展到了分数,使分数与整数在形式上获得了统一。我们现在的小数定义就是根据这种形式变换过程来定义的,将十进分数改写成不带分母形式的数就叫做小数。(英文 a decimal fraction ; a decimal figure ; a decimal)

小数的出现,是基于十进制表示数量的需要。人们在度量物体的过程中,总是把人容易感知、触及的量作为合适的单位,如一尺、一斤、一元等,然后依十进制发展出大数目的位值系统。然而社会生活往往还需要比单位 1 更小的计量,于是有了尺以下的寸、分;斤以下的两、钱;元以下的角、分。按照十进制的要求,产生 10 寸为一尺,10 两为一斤,10 角为 1 元的设置。这是十进制记数的制度,沿着相反方向延伸。小数产生的本原在于计量的需要,并非分数概念的附庸。2.小数的教学策略

生活中的小数的经验远比分数要多。货币中的元、角、分,长度度量中的米、分米、厘米都是实际使用的小数。所以学习小数具有充分的实践基础。小数的认识在教学中应注意以下几个方面:

(1)引导学生经历小数形成的过程,整体感悟小数与整数、分数之间的内在联系,感悟小数的各个数位及其含义。

(2)引导学生对小数进行分类和根据数位顺序表进行小数的读写。(3)引导学生了解小数在生活中的意义和作用,理解小数的不同组成。(4)引导学生对整数和小数基本概念的梳理,使学生形成对数概念认知的结构化,同时也为后续的学习奠定基础。

小数的教学具体可以从以下几个方面进行把握:

(1)基于学生的生活经验学习小数,在具体的“量”中理解小数的现实意义。这里具体的量主要指钱数、长度,可以从“生活中的小数(价钱)”引入,理解用小数表示的价钱是什么意思,通过呈现小数在生活中的应用场景让学生感受到小数是一个生活中常见的“数”,进而以“米制系统”为直观模型认识一位小数就是十分之几的分数、二位小数就是百分之几的分数,认识小数数位上的数字的“分数意义”以及“现实意义”。在此基础上,再用整数、分数、小数表示“钱数”,进一步让学生认识到“同一个量,既可以用自然数表示,也可以用小数、分数表示”。其难点是当两位小数中十分位、百分位是“0”时如何用小数表示现实的量。(2)利用学生的旧知经验引导探索发现小数的意义。小数的本质意义不是十进分数的另一种写法,而是基于“十进制计数法”的拓展。因此,教师要创作一个素材,让学生把小数和十进分数联系起来,而且是能形象地看到这种联系的现象,那么学生就能自主发现小数的意义了。比如有的老师做了这样的设计:长度是 10 厘米 的长方形纸条,当把纸条看做 1 元时,让学生表示出 0.3 元,借用了学生的已知经验 1 元 =10 角来进行分数、小数的联系。这样的设计利用了学生的已知经验来探索,变抽象的数学概念为直观的数学模型,让学生经历这个“再创造”的过程,远比告知学生“十分之几就可以记作零点几”更有价值,学生从这一探索中发现的不仅是小数,而是研究小数的方法和意义。

(3)利用学生的实际经验突破混小数的认识。认识混小数要突破学生总认为小数是比 1 小的数的错误思维定势。如:有的老师利用了学生已知的量身高的经验理解几点几。先出示一个婴儿的身高,用 1 米去量足够了,然后再量三年级同学的身高,当 1 米量三年级同学的身高不够时怎么办?学生自然而然想到了再接一段,再接的那段是 0.3 米,然后 1 米和 0.3 米合起来是 1.3 米,这一教学环节很好地沟通了纯小数和混小数的联系,让学生从实际生活经验中轻松地理解了混小数的意义。

(4)用可视化的“形”认识抽象的“数”。教学不应停留在教师直接的讲解和“告诉”,而应让学生充分展开探索过程,借助于直观图示的形象支撑,建立起了一位小数的“直观模型”(长方形等分、涂色)。然后将一位小数(纯小数、混小数)的认识拓展到“米制系统”,进而再在半抽象、半形象的“数轴”上认识小数(从“米尺”到“数轴”的抽象过程非常巧妙)。从借助“面积模型”、“线段图模型”到“数轴”来认识小数,所用的工具从直观形象到半抽象半形象,符合学生的认知特点,有助于学生数学学习过程的顺利展开与实施。其实更为重要的是,恰当地运用这些直观模型为学生理解和运用“数形结合”思想积累了数学活动经验。

(三)百分数的认识

百分数在形式上不同于分数,但是,它们都是从分数中分离出来的。分数中分离出十进分数,将其改写成不带分母形式的数(按计数原则进行计数)就是小数;分数中分离出分母是 100()的分数,将其改写成带有(类似于)百分号(%)形式的数就是百分数(十分数、百分数、千分数、万分数、„„)。

百分数有两种不同的定义: 1.分母是 100 的分数叫做百分数。这种定义着眼于形式,把百分数作为分数的一种特殊形式。

2.表示一个数(比较数)是另一个数(标准数)的百分之几的数叫做百分数。这种定义着眼于应用,用来表示两个数的比。所以百分数又叫百分比或百分率。百分数通常不写成分数形式,而采用符号“ % ”来表示,叫做百分号。百分数与分数的区别:

1.意义不同,百分数只表示两个数的倍比关系,不能带单位名称;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可带单位名称。2.百分数的分子可以是整数,也可以是小数;而分数的分子不能是小数只是除 0 以外的自然数;百分数不可以约分,而分数一般通过约分化成最简分数。3.任何一个百分数都可以写成分母是 100 的分数,而分母是 100 的分数并不都具有百分数的意义。

4.应用范围的不同,百分数在生产和生活中,常用于调查、统计、分析和比较,而分数常常在计算、测量中的不到整数结果时使用。百分数一般有三种情况:

1.可以大于 100%,如:增长率、增产率等。2.只能 100% 以下,如:出油率、出面粉率等。3.最大只能 100%,如:正确率,合格率。

第三篇:百分数教案

百分数的认识

------李晓明

教学目标:

1.让学生在具体情境中理解百分数的意义;

2.正确读写百分数,了解百分数和分数在意义上的不同; 3.让学生经历收集,处理信息的过程,培养学生分析、比较、抽象、概括的能力。

教学过程:

一、导入:

(出示A品牌汽车销售情况)

师:观察这段话中的数字,和我们以前学的有什么不同?(百分数)

师:不仅仅这两个数叫做百分数,又如14%、65.5%、120%„„都叫做百分数。(百分数)

师:关于百分数,你想学习哪方面的知识?(自由回答)

二、交代学习任务:

这节课我们一起来认识百分数,会读、会写。

三、探索新知:

1、百分数的读写

师:谁能说几个百分数?同学们说了这么多百分数,那么怎么写呢?(出示百分号)强调“/”有时可以表示除号、分数线或者比号。百分号本身就表明两个数相除的一种关系。先写/,再从上到下写小圆圈,圆圈不能写的太大,以免和前边的数字混淆,学生书空。

以14%为例教学百分数的书写过程(先写分子,再写百分号)

生在练习本上写几个自己喜欢的百分数,注意百分数的写作顺序。

14%读作:百分之十四,强调大写形式。(生练写)练习(略)2.百分数的意义

出示图片,指名说出百分数所表示的意义。

师:同学们,课前老师让同学们收集生活中的百分数,你们都带来了吗?同桌互说百分数的含义

展台演示(谁占谁的百分之几,强调100%的含义)总结:百分数表示一个数是另一个数的百分之几 师:观察百分数,有什么发现?

(没单位,分子都小于100)(整体包含部分)理解为什么不带单位(百分数又叫做百分率或百分比)出示导入材料,解释分子为什么大于100(用于比较)活动:

30秒的时间学生写百分数,并汇报个数,用百分数表示。4.百分数与分数的区别:

小组讨论:百分数与分数的相同点和不同点。

四.巩固练习:

1.那个数能用百分数表示

2.联想风暴 3.你猜我猜大家猜 …… 五.总结:

用百分数对这节课的表现做个总结 教师寄语:天才=99%的汗水+1%的灵感。

第四篇:百分数教案

一创设情境

师:同学们,当看到我班戴眼镜的同学时,我想问你们一个问题,你们知道近几年来中小学生的近视情况吗?

师:让我们一起来看一条有关这方面的信息,请看大屏幕。

师:从这条信息中你知道了些什么?(板书:18%、49%、64.2%)师:有没有同学知道这样的数它叫什么? 师:对,它们都叫百分数(板书:百分数)二探索交流

师:你能读出下面百分数?

师:既然大家都正确读出百分数,让我们一起看看生活中还有哪些百分数。你能结合具体情境,找出并读出。

师:你们看,百分数在生活中的运用非常的广泛,那么这些不同的百分数究竟表示什么意义呢?让我们一起来探讨一下百分数的意义。请看大屏幕(板书:意义)师:这里的18%表示什么意义?把你想到的先给同学说一下。师:谁来汇报一下。

师:这里的18%是指小学生近视的人数占全体小学生人数的18/100.你们发现18%是谁和谁比较的结果。

师:那么49%,谁是谁的49/100。64.2%,谁是谁是64.2/100。60%,谁是谁的60/100。65%,谁比谁的65/100。98%,谁是谁的98/100。

师:我们能说出百分数具体含义,那么谁能用一句话来总结百分数的意义是什么? 师:像小学生近视眼人数;参加兴趣班的人数,都可以变成“一个数”,像全体学生,全校学生可以变成另一个数。像18/100、49/100我们称之为百分之几,像18%、49%我们称之为百分数。

师:通过预习百分数还叫(百分率、百分比)

师:根据百分数的意义,在小组内说说这幅情景图中百分数所表示的意义。

师:百分数和我们学过的哪一种数比较相似,那百分数与分数有什么联系和区别。分数是一个数、两个数之间的关系。百分数是两个数之间的关系。

师:我们已经充分了解了百分数,但是通常不写成分数的形式,而在原来的分子后面加上%(板书:写法)

师:谁能大胆尝试写出这几个百分数。

师:既然大家都能正确写出百分数,请你们拿出笔和纸,做一个小游戏。看谁能在老师规定的时间内即规范又熟练地写出这些百分数,准备好了吗?开始——停笔。师:汇报一下你们完成的结果。你完成了几个。看来大家都能准确写出百分数。

师:老师规定15秒完成10个,那么你用百分数怎么表达?

师:把你完成的情况用百分数告诉大家?大家猜猜他写了几个?

三、巩固应用

师:百分数不仅广泛应用于生活中,而且在一些成语里还藏着百分数呢?

第五篇:百分数教案

百分数应用题教学设计

大板镇大板中心小学

于国福

教学内容:六年级数学上册教材第84-----86页例1.做一做及练习

教学目标:

1.掌握求一个数的百分之几是多少和稍复杂的已知一个数的百分之几是多少求这个数的应用题的解答方法。

2.把百分数应用题纳入分数应用题的认知结构,提高解答应用题的能力。

教学重点:弄清题意,找出等量关系。

教学过程: 一.复习准备

1.什么叫百分数?

2.把下列各数化成百分数。(保留一位小数)0.75=

1.25=

0.786=

1.763≈

3.六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,小结:这是求一个数是另一个数的几分之几的应用题。因为所求的问题是表示两个数量之间的倍数关系,所以用除法计算。关键是找单位“1”,用单位“1”做除数。二.讲授新课

改变准备题为例题,把“几”改成“百”。

例1 六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?

1.读题,说出例题与准备题有什么不同?百分数表示什么?(表示两个量之间的倍数关系。)这道题与准备题的解题思路一样吗? 2.说解题思路。(小组互说,集体订正。)这道题的关键句是“占六年级学生人数的百分之几”,把问题补充完整,也就是已达到《国家体育锻炼标准》的120人占六年级学生人数的百分之几。和六年级人数比,六年级人数是单位“1”,做标准量。达到国家体育锻炼标准的120人是和六年级学生人数相比的量。3.列关系式:

已达到国家体育锻炼标准的人数÷六年级总人数 4.列式:

(板书)120÷160=0.75=75% 答:占六年级学生人数的75%.三.质疑再探 过渡到例2。百分数还可以叫做什么?(百分率,百分比。)你在日常生活中,听到过哪些率?(发芽率,出勤率,合格率„„)求这些率有什么作用?表示什么意思呢?

例2 某县种子推广站,用300粒玉米种子做发芽试验,结果发芽的种子有288粒。求发芽率。1.默读题,说已未知条件。2.什么叫发芽率?(同桌互说)3.根据发芽率公式,自己列式。集体订正。问:结果有单位名称吗?为什么?

4.根据发芽率的公式,你们能说出求下列百分率的公式吗?(边说边投影。)5.练习:第137页“做一做”。强调先写公式,再列式计算。(集体订正。)小组讨论分析,谁是单位“1”,谁是和单位“1”相比的量?会列式吗?集体订正。

4.根据:“24,60”两个数编“求一个数是另一个数的百分之几”的题。四.课堂总结

这节课我们学习了什么知识?解题步骤是什么?解题关键是什么? 板书

百分数应用题 120÷160=0.75=75%

答:占六年级学生人数的75%.

下载百分数(精选五篇)word格式文档
下载百分数(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    百分数解决问题

    【解决问题】 题型一:求A是B的百分之几?→A÷B×100%=百分数(注意:没有单位!)例如:求“去年产值是今年的百分之几”应该用( 去年产值)÷(今年),再把求出的结果化成百分数。 1、电视机厂......

    用《百分数》

    《百分数的认识》教学设计 《百分数的认识》教学设计 主题:北师大版小学数学五年级下册第六单元百分数之百分数的认识(教材P90—P93) 一、教学目标: 1、知识目标:在具体情境中理......

    最新百分数练习题

    在一次测验中,小明做对的题数是11道,错了4道,小明在这次测验中正确率是百分之几? 大米加工厂用2000千克的稻谷加工成大米时,共碾出大米1600千克,求大米的出米率。 林场春......

    百分数(精选五篇)

    解读探索提升 ——人教版六年级上册第五单元《百分数》说课标说教材 三小王艳霞 尊敬的各位老师: 大家好,很荣幸与大家交流人教版小学数学六年级上册第五单元的内容:百分数。......

    百分数 教案

    百分数的意义和读写法 大阳小学 孙彤 一、引入新课: 课前老师让同学们到生活中找百分数,谁找到了?好了,先说到这里吧,同学们找到了这么多生活中的百分数,说明一个问题,百分数在生......

    百分数 教案

    教学目标: 1、进一步理解百分数意义,掌握百分数和分数、小数的互化方法。 2、能熟练运用百分数知识解决百分数的实际问题,并且能分局百分数问题的结构特征,进一步归纳百分数问题......

    百分数:成数

    新人教版六年级下册数学第二单元百分数成数教案板书作业设计 百分数:成数 教学内容第9页“成数”、做一做及练习二第4、5题。教学目标1、知识与技能:明确成数的含义。能熟练的......

    关于百分数造句

    百分数拼音【注音】: bai fen shu百分数解释【意思】:用100做分母的分数,通常用百分号来表示,如11%。百分数造句:1、如果我们得到的数据不能转化为简单的百分数怎么办?2、这意味着,我们要......