铬钼钢焊接延迟裂纹分析(最终版)

时间:2019-05-14 03:28:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《铬钼钢焊接延迟裂纹分析(最终版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《铬钼钢焊接延迟裂纹分析(最终版)》。

第一篇:铬钼钢焊接延迟裂纹分析(最终版)

铬钼钢焊接延迟裂纹产生原因分析

这次检修焊接合格率出现问题主要是在铬钼耐热钢Cr5Mo和15CrMo上,铬钼钢焊接在我公司并不是新材料的焊接,而是有20几年的历史了,是比较成熟的焊接工艺。但是这次焊接施工不论是预制和安装都出现了大量的裂纹,以往是没有这样的结果的。通过这次的教训的确要总结一些问题来进行分析。

一、从焊接工艺来分析:铬钼钢Cr5Mo和15CrMo在退火状态下是珠光体,而在淬火状态下是马氏体,在焊接时在没有预热和缓冷的情况下焊接熔池快速形成、快速冷却,焊缝组织二次相变就停留在马氏体区间内,大家知道马氏体属于淬硬组织,在冷却过程中受焊接应力作用和时效作用下很容易产生冷裂纹,所以焊前预热,保证焊间温度和焊后缓冷是非常必要的。我公司的铬钼钢的焊接工艺评定规范是没有问题的,15CrMo钢,焊前预热150~200℃,层间温度150~200℃,焊后加热200℃后用保温石棉包裹缓冷;Cr5Mo焊前预热350~400℃,层间温度350~400℃,焊后加热300~350℃后用保温石棉包裹缓冷,再等焊后热处理.这都是铬钼钢常规工艺要求。而我门出现裂纹这么多问题是为什么呢?是执行焊接工艺不严谨而造成的,预热温度焊工应该都是作到了,而层间就没有做到那样严谨,填充盖面时中途喝喝水抽抽烟或中午吃饭放到下午再焊,没有加热也就焊完了,焊后也没有加热缓冷,包裹石棉布也不是很严实等,还有就是流水性作业抢进度,几道焊缝氩弧焊全打完底后再填充盖面焊接,层间温度肯定是不能保证的。这都是造成裂纹的直接原因;要说前期预制对工艺的疏忽,出现焊接裂纹质量问题后,后期现场安装按说已经严格了工艺措施,但还是出现裂纹,我是认为现在安装时还是在加热温度上有偏差,毕竟火焰加热是没有控制温度定量的,也不是每个队伍有测温仪可以用上的,室外的管道加热后,冷却速度也是比较快的,检修期间天气也不好下几天雨,湿度也比较高,造成氢致裂纹。还有些焊接位置比较复杂如水坑下焊接对于连续焊接造成时间延长影响层间温度下降的因素。这都是原因。

二、从焊接材料来分析:焊接材料对于焊接质量影响是非常大的,这次检修铬钼钢前期用热系列焊材,由于返工问题后工期使用奥氏体A307焊条,这在工艺上都是可行的,只是执行工艺到不到位而已。但不同的厂家的产品优劣却相差很大,除操作不当外,焊材造成缺陷程度也不同.记得前年在长炼焊铬钼钢在使用天津金桥焊条,几个公司的焊接合格率都96%以上,不料市场断货后改用珠州的焊条全部合格率都下降在40%左右,缺陷也是很多的裂纹,我们紧急求援自己公司,寄来库存金桥焊条才又使焊接质量提上去,没有改焊条厂家的其他公司质量就是起不来。这说明不同厂家焊材是有区别的,所使用焊接钢材和药皮的制作工艺有差别。这次在催化检修尾期进的A307焊条就有问题,焊接时成型差,还大块大块掉药皮,严重影响焊接质量。建议公司以后对于焊材在进料前作焊接材料鉴定,来选定焊材厂家。

三、从焊前焊件装配分析:前年焦化检修四道15CrMo,直径377mm焊缝,由于焊接盲目进行,没有进行现场焊前分析,焊缝强力组对,焊接工艺也执行也不严谨,结果造成焊缝产生裂纹,以至于泄露。今年检修特别是现场,为了抢进度忽视了组对质量,有些焊缝组对间隙大得撑进手指小又没有缝隙和错边是非常严重的,这给焊工施焊带来极大困难,缝过大容易焊瘤焊穿,产生的冷缩应力也是很大的,在打底较薄时冷却过快很容易产生裂纹;缝隙过小对于铬钼耐热钢用奥氏体焊材作填充钎料是是不利的,增加了母钢在焊缝中的融合比,使焊缝中奥氏体金属和母材之间的熔合区形成一个比较厚而高硬度的含碳化铬的夹层,在冷却过快时就很容易产生应力裂纹,就算是当时合格,在以后长时间在温变作用下,碳化铬晶粒组织和奥氏体晶粒组织膨胀系数不一样,这样两种组织间会产生间隙,也就是裂纹,在交变温差中裂纹会延长,从而减少焊缝服役寿命。错边是焊接应力集中位置,和焊接咬边同时作用下会产生叠加应力,应力峰值可能达到最高,极易使焊缝产生融合区断裂。焊缝在处于临界温度时更加出现无法料到的裂纹。所以对于铬钼钢焊接,无论什么钢材的焊接,焊缝的组对的质量是影响焊接质量的一个重要因素。焊工要对自己的焊缝质量负责,也一定对焊缝有一定的要求,不要再不计后果的焊接,也不要为了抢进度方便了别人可能苦了了自己,让自己的劳动成果白白流失。

四、从焊接环境分析:今年的检修连连降雨,对于铬钼钢焊接很不利的,湿度比较大,加上有风,使焊缝的温度下降较快,焊条吸潮加快,在激烈的焊接冶炼过程中混入的水分子分解成氢、氧离子,而氢离子以游离状态溶入液态金属中,在熔池结晶冷却过程中,氢离子析出聚集在晶界间或缺陷内(如气孔、夹渣空隙内)在冷缩应力下形成高内压,从而造成晶界开裂也就是氢致裂纹,是产生裂纹的一个重点因素。

五、从焊接管理来分析:目前工作中焊接技术管理,焊接质量放在了靠无损检测来保证。当焊接质量出现问题时,焊接人员不会致力于找焊接缺陷的形成原因,如何改进焊接工艺过程等问题,而关心的是检验人员的一句“合格”,探伤人员发现缺陷后,下达缺陷返修通知单,焊工返修后,然后再探伤,如再不合格再返修,直到检验人员认为“合格”为止。至于焊接工艺过程,也不严格执行,外观检验、焊接质量评定等工作有时也无专人负责,实际上已不复存在。监督部门一直要求的无损检测制度虽一直严格执行,但起到的“保证焊接质量”的作用却不尽人意。

传统的焊接质量评定是以无损检验一次合格率作为唯一的标准。然而对于目前正在大量应用的耐热钢而言,由于其焊接裂纹倾向大,焊缝和热影响区性能对工艺敏感性大,因此对焊接接头合格率除包含无损检验一次合格率外,还应包含“使用性能合格”,也就是说,即使该焊缝当时合格了,并不能说明焊缝的内部力学性能达到要求,而使用性能的合格是以焊接工艺作为技术支持的。因此在实际焊接过程中焊接人员要严格执行焊接工艺规定。综上所述仅靠无损检测来保证焊接质量根本行不通,加强焊接技术管理工作势在必行。

这次石化老催化检修,发生了焊接工艺进行操作的不严谨,铬钼钢的焊接大量出现裂纹。

而催化塔201的焊接,复合板焊接,焊接不当也是很容易在覆层马氏体不锈钢侧出现焊接裂纹的,尽管是第一次接触复合板焊接,但由于管理者和焊工都从思想上予以了高度重视,并严格按照工艺要求进行操作,一次合格率达到100%。由此可以看出同是一项工作,焊接技术管理工作加强了,在同等无损检测的条件下,焊接质量有天地之别。诸如此类的问题在同一个工程中也体现得很明显。如某个部件焊接过程中管理到位,一次合格率随之提高,反之一塌糊涂。因此加强焊接技术管理工作,对焊接质量的提高有着重要的意义。

六、从焊接人员来分析:改制的波动和人事体制及待遇问题造成了我公司人才的流失与不足。前几年低谷期人才的流失以及后备力量补充不足致使在近期工程安装和检修工作进行时,焊接技术人员和焊接特殊金属焊工的短缺。,说起来有60~70名焊工,其中有气焊三分之一,合同工三分之一,和不在岗位上的工作的焊工和学徒,但真正能够独当一面的只有上十个。由于人手的不够,加上工程繁忙,焊前培训很难做到,往往以干代训或外聘焊工。加上焊工的待遇一直没有体现特殊工种价值,对于工作都有一种消极的态度,有事就做,不积极认真对待工作中出现的问题。

七、针对这些实际工作当中存在的问题,我认为焊接工作应从如下几方面入手:

1、焊工的培训:

1)

意识方面:加强焊接人员的技术培训同时,也要增强其责任心,提高其自身素质,把所加工产品质量与个人的荣誉结合起来。焊接人员还应多参加焊接分析会,查找焊接缺陷的产生原因,改进焊接工作,促进焊接的技术革新和技术攻关。还有关键的是提高焊接人员的待遇。

2)

操作方面:要使每个焊接人员认真学习焊接操作技能,并要在以后任何环境要对自己所掌握的操作方法并按焊接工艺要求严格进行。

焊接人员并不是焊完了事,必须对自己每道焊缝认真对待,焊前对焊缝的组对间隙要求要严格,影响焊缝质量的组对,焊工要及时提出返工,直到可保证质量要求为止、焊道焊前必须严格清理除锈除污、焊条的严格选用型号和控制干燥度;焊接过程中严格使用焊接参数,严格操作方法,焊渣的清理,如有缺陷马上处理;焊后对焊缝外观进行自检,并进行表面清理。

3)

近期特别要针对耐热钢的焊接培训中,既要培训提高焊工的操作工艺,又要给焊工灌输并理解执行焊接工艺的必要性和重要性。查找焊接过程中存在的缺陷,改进焊接工艺,使受训焊工在焊接理论、焊接技术上有一大的飞跃。

2、焊接技术人员:发挥其的作用,在过程管理中发挥更大的指导和监督作用,不断加强焊接工艺和焊接过程的工作。

3、焊接过程管理:

从过去“焊后”的无损检验唯一标准,转变为“前、中、后”,也就是说: “焊前”准备工作的监督如:焊接材料的选用和控制,焊接环境的控制,焊件的组对控制,焊接前工艺的宣传等; “焊中”过程如:执行焊接工艺的过程是否执行或脱节,是否严格按照焊接操作方法,无达到施焊要求就施焊等;“焊后”对外观的检验,无损检验等

4、各级领导应高度重视焊接的工作的重要性,为我们工作的开展创造便利的条件。是保证焊接质量的关键。

第二篇:铬钼钢管道焊接质量剖析及处理

铬钼钢管道焊接质量剖析及处理

摘要

铬钼钢材质管道焊接是石油化工管道安装工程中难度较大的环节,要求工序较多,在实际操作中容易出现问题,本文从铬钼钢焊接施工现场发现的细节问题入手,进行综合深入分析,剖析原因,保证现场施工质量受控。

关键词 停监;报验;冷裂纹;热处理

第1章 前言

在MTO项目建设过程中,建设单位质量工程师在施工现场发现某施工单位没有按照质量监督站下发的《工艺管线监督计划》中的开工条件确认这一停监点的要求向质量监督组报监,就开始工艺配管的施工,正在施工的工艺管道介质为过热蒸汽管道(材质为1Cr5Mo,规格为Ф114x5mm),通过质量工程师的进一步检查,发现焊接施工中出现如下问题: 管端焊接坡口修磨后未进行100%渗透检验,就直接进行焊接施工。2 部分焊工在焊接施工过程中,未按照施工方案要求对焊口两端进行封堵,造成管段内有“穿堂风”流动。焊工焊接时未按要求采取焊前预热措施就进行焊接,且焊后消氢处理不及时。4 焊口热处理时,多个焊口加热用一个测温点进行温度控制,已完成热处理的个别焊口表面未发现加热氧化痕迹。焊接工艺指导书未发放到焊工,方案交底未落实,焊工在焊接施工中没有执行焊接工艺。现场施工是通过劳务分包进行分包施工,施工单位疏于管理,出现“以包代管”局面。

第2章 原因剖析

2.1管理原因分析

根据中国石化工程质量监督工作程序的规定:工程项目施工质量停监点的申报单位有建设单位负责确定。建设单位可以指定EPC总包单位、PMC、监理单位或者施工单位中的任何一家为停监点的申报责任主体,而且一个项目中停监点申报单位是唯一的,如有变更,必须有建设单位正式书面通知质量监督机构,在本项目中,施工单位被建设单位指定为停监点的申报责任主体,但该施工单位没有进行停监点的申报就开展下一工序的施工,严重违反了国家关于工程项目建设的法律法规,而其除了未履行停监点的报验义务外,施工单位现场施工自身质量管理存在重大缺陷,首先,其技术管理人员没有将有关技术要求向现场操作人员进行交底,现场施焊的焊工甚至连基本的焊接工艺指导书都没有;其次,未能有效地将分包队伍的管理纳入到自身的质量保证体系当中,从而使得对分包队伍管理流于形式;第三,施工单位内部的工序管理也存在失控现象,这也是引起管端焊接坡口未进行100%渗透检验和未采取焊接预热措施就直接施焊的重要原因,个别焊缝没有热处理痕迹就通过了交接验收就更加说明了施工单位的工序管理流于形式,工序之间的交接验收已经完全蜕变为毫无质量控制内容的工序移交活动;第四,现场施工技术人员对现场工序质量的控制也很不到位,在对焊缝进行热处理时,施工人员用一个测温点控制多个焊口的热处理温度,施工人员却熟视无睹,不予制止纠正。

2.2对焊口造成缺陷分析

施工单位的上述质量行为分别违反了《石油化工有毒、可燃介质管道工程施工及验收规范》SH3501-2002以及《石油化工铬钼耐热钢焊接规程》SH3520-2004的规定,也对焊缝的质量产生不利影响,现分析如下: 1、1Cr5Mo材质属于高合金钢,淬硬倾向较大,《石油化工有毒、可燃介质管道工程施工及验收规范》SH3501-2002规范7.2.6条明确规定材料淬硬倾向较大的管道坡口应进行100%渗透检测,该管道施工时管端焊接坡口未进行100%渗透检验就直接进行焊接施工会将母材原始缺陷或坡口加工过程中产生的缺陷遗留在焊缝中。

2、焊口的管子两端不封堵,预热,焊后消氢不到位对1Cr5Mo钢的冷裂纹控制不利。影响冷裂纹的主要因素有三个:钢的成分(反映淬硬倾向)、扩散氢(反映氢脆程度)及拘束度(反映拉伸应力)。焊接Cr-Mo钢时,工程上采用预热,焊后消氢以及消除应力热处理来防止冷裂纹产生。1)预热: 在钢和焊缝化学成分一定时,即碳当量一定,冷却速度增大,淬硬倾向增大。为限制组织硬化程度,唯一方法就是调整焊接条件以获得适宜的焊接热循环,常用t8/5(焊接熔池的温度从800°C降到500°C的时间,通过控制t8/5可以改变熔池的冷却速度,从而达到防止冷裂纹、控制组织以达到满意的性能)理论作为焊接条件确定依据。在焊接方法一定时,焊接线能量也不能随意变化,以防止过热脆化,此时为获得适宜的冷却速度,预热是最重要的手段,另外对减少残余应力和限制扩散氢也有一定作用,上述施工单位焊工焊口两端不封堵,管内流动的空气形成穿堂风,使根部焊接接头冷却速度加快,易形成硬化组织,《现场工业设备、管道焊接工程施工规范》GB50236-2011 规范7.3.7条明确规定:管子焊接时,管内应防止穿堂风。根据相关规范《石油化工铬钼耐热钢焊接规程》SH3520-2004及现场实际情况,该管道焊接焊前预热应采用电加热方式进行,预热温度宜在距对口中心50 mm~100 mm范围内进行测量,最低预热温度应为250-350°C,而且预热温度有热电偶控制。2)焊后消氢处理:

氢在金属中有两种形式,能运动的“扩散氢”和不能运动的“剩余氢”。只有扩散氢对钢的冷裂纹发生直接影响,扩散氢会造成氢脆,增大裂纹倾向。由于扩散氢能够运动,可以通过消氢处理来去除。氢致裂纹产生温度在-100-100°C之间,故消氢温度不应低于200°C;《石油化工有毒、可燃介质管道工程施工及验收规范》SH3501-2002消氢处理温度定为300-350°C,氢的扩散速度与温度有关,并需要一定时间,因此消氢处理必须按照规定的温度时间才能有效果,而且氢致裂纹不会立即出现,具有潜伏期,所以焊后消氢处理必须在冷裂纹尚在潜伏期未开裂前实施,尽量在焊后立即处理,上述案例由于施工单位不能确定焊后立即进行焊后热处理,因此消氢处理必须及时,如上述施工人员焊后消氢不及时会可能导致冷裂纹的出现,根据相关规范及现场实际情况,该管道焊接后消氢处理(后热)应采用电加热方式进行,温度为300-350°C,时间为1小时。3)焊后热处理:

焊后热处理的的作用是消除剩余应力,改善组织、除氢。其效果依赖于加热温度和保温时间,由于每个焊口的现场加热、散热条件不可能完全相同,如果几个焊口的热处理温度用一个电偶来控制,只能保证放置电偶焊口的温度,而不能保证其他焊口的热处理温度,上述施工单位施工中出现的已完成热处理工序的个别焊口表面没有加热氧化的痕迹就是热处理温度没有达到规定要求的表现,另外上述行为还有可能导致没有放置热电偶的焊口超过规定的热处理温度,甚至超过Ac1点使焊接接头的组织恶化。根据《石油化工铬钼耐热钢焊接规程》SH3520-2004、《现场设备、工业管 道焊接工程施工规范》GB50236-2011及现场状况,该管道焊接焊后热处理参数应选择为加热温度750-780°C,升温速度每小时小于200°C,保温时间为0.5小时,冷却采用空冷,实际操作中严格控制升温、恒温及降温过程,采用电加热方式,加热范围以焊缝中心为基准,两侧各不小于焊缝宽度的三倍,且不小于25 mm,加热区以外的100 mm范围应予以保温,且每道焊口必须在下方设置热电偶。

综上说述,施工单位的上述种种质量行为对铬钼钢的焊接质量是极其有害的,必须严格加以禁止。第3章 问题处理

上述问题主要是行为质量问题,表现在劳务分包单位与发包的施工单位内部质量管理体系没有健全,导致施工过程中质量管理体系运行失控,针对此状况,作为建设单位管理人员及时采取如下措施进行处理:

1.对施工单位下达暂时停工令,要求施工单位对质量管理体系出现问题进行原因分析,制定合适的整改措施,并督促分包单位立即建立相适应的质量管理体系及相应质量管理制度,责令施工单位立即委派相应管理人员对分包单位进行管理,并将劳务分包队伍纳入自己管理体系,严格施工工艺纪律,保障工序质量。要求相关监理单位加强现场监控,按照合同认真履行质量监督及管理,加大平行检验及旁站力度,确保质量管理体系始终处于受控状态。

2.要求施工单位对1Cr5Mo材质管道焊接及热处理施工重新进行技术交底,建设单位及监理单位参加,焊接作业指导书做到现场焊工人手一份,并加大对焊材管理,工序交接切实落实“自检、互检和专职质检员检查”三检制,并根据质量控制点及停监点要求及时报验,坚决杜绝上一工序未报验或不合格进入下一工序施工。3.在督促施工单位及监理单位严格执行工艺和加强过程管理的同时,建设单位委托第三方检验单位采取相应的检测手段,通过射线探伤、超声波探伤以及硬度检测对已成型的管道焊接质量进行全面合理检查,并根据检查结果,制定最佳解决方案,并在建设单位及质量监督部门监督下认真落实执行。

参考文献: SH3520-2004《石油化工铬钼耐热钢焊接规程》 GB50236-2011《现场设备、工业管 道焊接工程施工规范》 SH3501-2002《石油化工有毒、可燃介质管道工程施工及验收规范》 4 石油化工工程质量监督案例 GB50184-2011 《工业金属管道施工质量验收规范》 6 GB50517-2010《石油化工金属管道工程施工质量验收规范》

第三篇:在役压力容器焊接裂纹的成因分析及预防措施

在役压力容器焊接裂纹的成因分析及预防措施

陈冰川,陈伟民,朱伟青

(国核电站运行服务技术有限公司,上海 200233)

摘要:对某在役奥氏体不锈钢压力容器进行现场金相检测时发现其下封头的纵向焊缝处存在微裂纹。分析了裂纹的形成原因,结果表明该裂纹是由焊接引起的横向沿晶液化裂纹和由压制成型引起的纵向裂纹共同构成的混合型裂纹。针对如何预防此类裂纹,提出了相应的工艺改进措施。

关键词:奥氏体不锈钢; 压力容器; 焊缝; 裂纹; 应力分析 中图分类号:

文献标志码:A

文章编号:

The Cause Analysis and Prevention Measures of Welding Cracks on the In-service Pressure Vessel

CHEN Bing-chuan,CHEN Wei-min,ZHU Wei-qing(State Nuclear Power Plant Service Co.Ltd., Shanghai 200233, China)Abstract: In the local metallographic examination process for an austenitic stainless steel in-service pressure vessel, the microscopic cracks had been found in the longitudinal weld of its lower head.Formation mechanism of cracks is analyzed, the result show that those cracks are composed of transverse liquefaction cracks cause by welding and vertical cracks caused by the suppression molding in manufacture.Some measures have proposed to the prevention of this kind of cracks.Keywords: austenitic stainless steel;pressure vessel;weld;cracks;stress analysis

在压力容器、锅炉和管道等设备部件制造中,常常需要依靠焊接工艺实现两部分母材间的结合。由于在焊接过程中母材被瞬间加热熔化形成熔池,随后熔池液态金属快速冷却结晶而形成焊缝。在熔池金属结晶过程中,焊接接头的显微组织会发生变化,产生焊接应力和变形,同时可能产生各种焊接缺陷,从而影响焊接件的力学性能。因此焊接是一种比较容易出现缺陷的热加工工艺。

金山某化工厂的在役压力容器R2204A聚合反应器标称为II类容器,材质为316L超低碳奥氏体不锈钢,容器规格Φ5060×22 mm,运行介质为有机催化剂,设计温度200℃,业主方未提供其他有关的运行参数。该压力容器主要由筒体和上下封头组成,筒体为钢板卷曲为圆筒状后焊接而成,上下封头则为多块钢板拼焊后冷压制成椭圆形,最后筒体与上下封头通过环形焊缝焊接而成,具体的焊接工艺不详。在2009年12月国核电站运行服务技术有限公司按照《在用压力容器检验规程》的有关规定及业主方的委托,对其内部进行了定期无损检测和金相检验,检测部位见图1,包括椭圆形下封头拼接钢板的两条纵向焊缝和一条筒体与封头连接的丁字焊缝,图中所示的1#、2#和3#依次为这三条焊缝上的现场金相检验的取样部位。

图1 压力容器的检测部位示意图

Figure 1 Schematic diagram of pressure vessel inspection part 在对这三条焊缝进行渗透检测时,表面均未出现记录性缺陷显示。渗透检测对表面缺陷的检出灵敏度一般为1mm宽,低于这一尺寸的缺陷一般难以通过渗透检验检出。在渗透检验的焊缝中黑色区域为现场金相检验的取样部位,如图2所示。

a. 纵向焊缝的渗透检测及金相检验的1#取样部位

a.Penetration test and metallographic examination of No.1 sampling part on longitudinal weld

b. 丁字焊缝的渗透检测及金相检验的3#取样部位

b.Penetration test and metallographic examination of No.3 sampling part on T-weld 图2 焊缝的渗透检测及金相检验取样部位

Figure 2 Penetration test and metallographic examination sampling part on weld 现场金相检验结果发现封头上的两条纵缝(1#、2#取样部位)的熔合线靠近母材侧存在微裂纹,裂纹形貌如图3所示。

a.100倍 a.100X

b.400倍 b.400X

图3 纵向焊缝处的裂纹形貌

Figure 3 The cracks morphology of the longitudinal weld

检测结果交给业主方后,按照《在用压力容器检验规程》的安全状况等级评定有关内容,将该压力容器的安全状况等级降为4级。由于无法对在役压力容器进行破坏性试验,《在用压力容器检验规程》中所要求的检测方法主要包括无损检测、硬度测定、金相检验、应力测定和耐压试验等,而作为一种重要的分析手段,现场金相检验对压力容器的完整性影响极小,可以在不破坏其使用的情况下研究材料的微观组织变化,分析和推测这台压力容器产生微裂纹的产生原因,故对其的微裂纹成因分析主要借助于金相分析。裂纹的成因分析 1.1 横向裂纹的成因

1.1.1 各区域金相组织的差异

焊接接头包括焊缝、熔合区和母材热影响区三个区域,各区域的组织和力学性能差异较大。从图3可以看出,该焊接接头的焊缝组织为奥氏体柱状晶;在100倍的金相照片上可观察到,其熔合线上方有较宽的黑色条状区域,说明熔合区存在较严重的偏析和杂质聚集,这种化学成分的不均匀性会导致力学性能严重下降,其组织为奥氏体柱状晶+枝晶;熔合线下方为母材热影响区中的过热区,组织为较粗大的奥氏体孪晶。焊接接头上的微裂纹多位于熔合区附近,向母材热影响区沿晶扩展,一定数量的垂直于焊缝的横向裂纹与少量平行焊缝但尚未贯穿的纵向裂纹构成一条混合型裂纹带。

1.1.2 液化裂纹的形成机理

在母材与焊缝交界处,即熔合区或多层焊缝层间的金属由于在焊接过程中快速加热和快速冷却,且往往在晶间还存在低熔点合金和夹杂物,容易发生局部熔化而形成沿晶扩展的裂纹,这种裂纹称为液化裂纹 [1]。

图4 液化裂纹示意图

Figure 4 Schematic diagram of liquid cracks

从纵向焊缝的金相照片中观察到,该焊接接头的熔合区过宽、低熔点共晶体偏析严重说明化学成分控制不佳,这些都对液化裂纹的形成产生了重要影响。结合微裂纹的形貌特征,认为其中的横向裂纹主要是焊接热裂纹中的液化裂纹,呈沿晶开裂方式产生在熔合区附近,向母材热影响区中的过热区发展,如图4所示。

1.2 纵向裂纹的成因

纵向裂纹源于应力集中引起的开裂,该压力容器的封头采用拼板焊接后再压制成型工艺,在焊接完成后,内部容易产生焊接残余应力和焊接变形。当焊接后再进行封头压制成型时,焊接残余应力与冷压成型应力相叠加,造成焊缝局部区域应力过高,使焊缝产生新的塑性变形,故诱发了纵向裂纹。关于焊接残余应力和冷压成型应力的具体分析如下:

1.2.1 焊接残余应力

由于焊接过程是局部加热,焊接件各部分不能同步加热和冷却,也不能自由膨胀和收缩。在加热时,焊缝金属及其附近区域的母材受周围冷金属的拘束,不能自由膨胀而受到塑性压缩;在冷却后不能自由收缩而受拉应力,同时还可能发生焊接变形[2]。这种冷却后的拉应力如果不经过恰当的去应力处理便会成为焊接残余应力,影响焊接构件的承载能力。

但对于奥氏体不锈钢,一般不宜进行去应力处理。因为奥氏体不锈钢如果在500~850℃左右温度下热处理时易发生敏化,析出Cr23C6型碳化物[3],导致不锈钢的冲击韧性以及耐腐蚀性能大大下降,甚至诱发再热裂纹。显然,焊接后未进行去应力处理的奥氏体不锈钢便会有少量残余应力存在[4],为垂直于焊缝方向的拉应力。

1.2.2 冷压成型应力

该封头的制造工艺主要为三块奥氏体不锈钢拼板纵向焊接而成,之后在压制力F的作用下,封头拼板受压变形,最终达到所要求的形状。压制过程采用冷压成型工艺,工艺简图见图5。

压制力拼板焊缝

图5 封头压制成型工艺示意图

Figure 5 Schematic diagram of pressure molding process for lower head

在压制过程中,在两条纵向焊缝区域内,外加压制应力会引起内应力,其方向为垂直于焊缝的拉应力,如图6所示。这种拉应力与焊接残余应力相叠加,在力学性能最差的焊缝熔合区附近造成应力集中,导致焊缝熔合区内塑性较差的区域出现大量微裂纹。

a.拼板纵向焊缝剖面示意图

a.Schematic diagram of the section of longitudinal weld in splice plate

b.熔合区任一点应力分析

b.Stress analysis of random point in the fusion zone

图6 焊缝区域应力分析 Figure 6 Stress analysis of weld

按照断裂力学理论[5],断裂强度因子KI于含穿透裂纹的无限板,YYa,式中:Y表示裂纹形状系数,对

;表示裂纹扩展时受到的外加应力值;a表示裂纹长度。在已形成的微裂纹处,应力集中程度最高,一旦超过了微裂纹能够承受的应力值后就会使裂纹不断向前扩展,最终扩展为大致与焊缝平行的纵向裂纹。裂纹的预防措施

根据此种裂纹的成因分析结果,我们建议业主加强对该台容器的检测频率,重点跟踪微裂纹的扩展情况。同时,还为今后压力容器封头避免出现此类裂纹,提出了以下预防措施:

2.1 严格控制化学成分

严格限制奥氏体不锈钢焊接材料和母材中的硫、磷等低熔点杂质元素的含量;改进冶金技术,有效降低含碳量;适当添加钒、钛、铌等微量元素。

2.2 控制焊接接头质量

业主方虽未能提供实际所采用的焊接工艺,但从焊缝金相照片上的熔合线过宽可推断出焊接工艺存在问题,故建议在焊接方面应当控制焊接工艺参数以适当提高焊缝成形系数,一般不采用大热输入量进行焊接。焊条电弧焊时,宜采用小焊接电流,快速多道焊,对于工艺要求高的焊缝,甚至可以采用浇冷水等措施以加速冷却,防止焊缝晶粒严重长大和焊接热裂纹的形成。采用合理的焊接顺序来减小焊接应力,并控制焊接质量。在焊接后或封头压制完成后可进行低温去应力处理,温度范围控制在300~350℃,不宜超过450℃,以免析出高铬碳化物造成晶界贫铬,引起晶间腐蚀。同时在焊接过程中,应采用气体保护焊,避免其他杂质进入熔池。

2.3 优化封头制造工艺

随着原材料加工工艺的进步以及宽大的钢板制造能力的提高,以上的拼板焊接压制的封头制造工艺已经逐渐淘汰,而采用更先进的独幅板材压制成型技术来制造大型压力容器的封头。这种更先进的封头制造工艺以及合理的结构设计可以有效地避免焊接和冷压成型过程的应力集中问题。结论

综上所述,该容器的封头拼板焊缝由于焊缝熔合区的化学成分控制不佳,存在严重偏析和夹杂物,使力学性能下降,从而增加了横向的液化裂纹倾向;同时受到冷压成型应力和焊接残余应力的联合作用,在熔合区应力集中引发了纵向裂纹,一定数量的横向裂纹与少量尚未贯穿的纵向裂纹构成了一条混合型裂纹带。

参考文献 [1]王荣.焊接件的金相检验[M]// 徐祖耀,黄立本,鄢国强主编, 中国材料工程大典: 第26卷,材料表征与检测技术, 第7篇, 金相分析.北京:化学工业出版社, 2006;740~747.[2]王志海主编.热加工工艺基础[M].武汉:武汉工业大学出版社, 1996;174~179.[3]杨力.不锈钢、耐热钢及高温合金的金相检验[M]// 徐祖耀,黄立本,鄢国强主编, 中国材料工程大典:第26卷, 材料表征与检测技术, 第7篇, 金相分析.北京:化学工业出版社, 2006;719~722.[4]戈兆文主编.承压设备焊接工程师[M].昆明:云南科技出版社, 2004;105.[5]褚武扬编著.断裂力学基础[M].北京:科学出版社, 1978;11.

第四篇:焊接裂纹的形成机理与预防措施

焊接裂纹的形成机理与预防措施

1、产生焊接冷裂纹的原因

焊接冷裂纹在焊后较低的温度下形成。由于这种裂纹形成与氢有关,且有延迟开裂的特点,因此又称之为焊接氢致裂纹或延迟裂纹。

产生焊接冷裂纹的三个必要条件:

(1)氢。氢的主要来源是焊材中的水分和焊接区域中的油污、铁锈、水以及大气中的水汽等。这些水、铁锈或有机物经焊接电弧的高温热作用分解成氢原子而进入焊接熔池中。在焊接过程中氢除向大气中扩散外,余下的在焊缝中呈过饱和状态,即在焊缝中存在着扩散氢。根据氢脆理论,这种扩散氢将向应变集中区(如微裂纹或缺口尖端附近)扩散,当该区的氢浓度达到某一临界值时,裂纹便继续扩展。

(2)应力。依据目前国内及国际的施工水平,在球罐的组装过程中总会存在或多或少的强力组对,所以在组装完成后便存在着内应力,这种应力在焊后整体热处理完成后也不可能完全消除。再加上球罐焊接是一个局部加热过程,在焊接过程中产生应力与应变的循环,因此球罐焊接后必然存在残余应力。

(3)组织。焊接热影响区组织中过硬的马氏体含量越多越容易产生冷裂纹。

3、防止产生焊接冷裂纹的措施

(1)尽量选用对冷裂纹不敏感的材料选用内在质量好的母材。即选用碳当量低的优质钢材,尤其是避免母材大型夹渣。所以在球壳板制造前必须对板材进行严格的超声波检查,对有严重夹层等缺陷的钢材不得使用。

(2)尽量减少氢的来源。第一,球罐的焊接选用低氢型焊条,必要时要采用超低氢型的焊条;第二,焊条使用前一定要按产品使用说明进行烘干,并贮存在100~150℃的恒温箱中,在使用时放入保温筒内并随用随取,在保温筒内存放时间不得超过4h,否则要按原烘干温度重新烘干,重复烘干不得超过两次;第三,要彻底去除焊接坡口表面及坡口两侧20mm范围内的油污、水分,、铁锈及其他杂物;第四,不在雨雪天及空气相对湿度大于90%时施焊;第五,采取有效的防风措施,以防止吹弧,使焊接熔池得到有效的隔离保护。

(3)选用适当的焊前预热温度和预热范围。适当的预热温度降低了焊缝冷却速度,可使氢更易从焊缝熔池向大气中扩散,减少了焊缝中扩散氢含量,并且可以降低焊接区的温度梯度和焊缝的冷却速度,尽量减少马氏体的含量,减小温差应力。预热温度应通过工艺评定来确定,预热范围一般为坡口两侧三倍球壳板厚度且不小于100mm。当环境温度低时还应增大预热温度和预热范围。对纵缝应整条焊缝同时预热,不能分段预热。

(4)选用适当的后热温度和后热时间。随着焊接层数的增多,焊缝中扩散氢会逐渐积累。因此焊后应立即进行后热,使扩散氢有充分的时间溢出,同时还可以降低焊缝中的残余应力,减少冷裂纹产生的机率。

(5)焊接过程中保持适当的层间温度,适当的层间温度也能延缓焊缝的冷却时间,起到一定的去氢和降低残余应力的作用,层间温度不得低于预热温度下限值。

(6)采用合适的线能量。若焊接线能量过小,焊缝热影响区容易出现淬硬组织,再加上扩散氢的作用,焊缝容易产生冷裂纹;若线能量过大又会使焊缝热影响区的软化区宽度增加,使焊缝缺口的韧性降低,球罐整体的机械性能下降。

焊接缺陷是影响焊接质量最直接的原因,而焊接裂纹作为最难解决的焊接缺陷之一,在焊管生产中时有出现。

焊接裂纹有横向裂纹和纵向裂纹两种,其中纵向裂纹为可见典型裂纹断口,带圆弧的光滑自由面,有时有氧化物,电子探针发现没其他夹杂物。预防措施为:

1冶金因素

控制焊缝中S、P、C含量,是提高抗裂性、减少结晶裂纹的有效措施。在焊管生产中,选择合适的焊丝、焊剂,有效控制其S、P、C含量,使减少焊缝纵向裂纹的有效措施。

2接头坡口形式 合适的焊接坡口是减少焊接裂纹的有效措施,当卷板较厚,板位控制难时会增加裂纹成形几率,提高对头质量,尽量使钢管在成型过程中产生较小的残余应力,能减少结晶裂纹。

3工艺因素

减少热输入,能在焊缝中形成较小晶粒尺寸组织;降低焊接速度,可以使晶粒的端部并列长大挤压在一起,避免偏析集中;此外宽焊缝相对窄焊缝能防止晶粒长大直接鹏在一起,避免偏析集中。

焊接横向裂纹,其走向垂直于焊缝,具有沿晶和穿晶特点,预防措施为:

1冶金方面

1)要保证板材优良的力学性能,保证强度和韧性要求,尽量减少钢中杂质;

2)尽量选用低氢和高强度、高韧性的焊接材料,选用合适的焊丝、焊剂匹配,严格清理焊丝和焊接区域,烘干焊剂。

2工艺方面

1)焊接线能量过大,会使近缝区晶粒粗大;线能量过小,会使热影响区淬硬,这些都导致横向裂纹产生,应选择合适的焊接线能量;

2)预热可降低冷却速度,有效防止横向裂纹产生;

3)焊后延缓冷却可使氢充分逸出,也能防止焊缝横向裂纹产生

焊接是利用加热或加压等手段,使分离的两部分金属,借助于原子的扩散与结合而形成原子间永久性连接的工艺方法。焊接方法的种类很多,根据实现金属原子间结合的方式不同,可分为熔化焊、压力焊和钎焊3大类。

焊接方法具有如下优点:

(1)成形方便:焊接方法灵活多样,工艺简便;在制造大型、复杂结构和零件时,可采用铸焊、锻焊方法,化大为小,化复杂为简单,再逐次装配焊接而成。

(2)适应性强:采用相应的焊接方法,不仅可生产微型、大型和复杂的金属构件,也能生产气密性好的高温、高压设备和化工设备;此外,采用焊接方法,还能实现异种金属或非金属的连接。

(3)生产成本低:与铆接相比,焊接结构可节省材料10%~20%,并可减少划线、钻孔、装配等工序。另外,采用焊接结构能够按使用要求选用材料。在结构的不同部位,按强度、耐磨性、耐腐蚀性、耐高温等要求选用不同材料,具有更好的经济性。

焊接电弧是电极与工件之间的强烈而持久的气体放电现象。

电弧的构造:焊接电弧由阴极区、阳极区和弧柱区3部分组成。

采用直流弧焊机焊接时有正接法与反接法之分,正接是将工件接电源正极,焊条接负极;反接是将工件接电源负极,焊条(或电极)接正极。

用钢焊条焊接工件时,阳极区温度约为2600K,阴极区温度约为2400K,电弧中心区温度最高,可达6000~8000K。

焊条电弧焊时,对焊接电源的基本要求有:(1)具有陡降的特性;

(2)具有一定的空载电压以满足引弧的需要,一般为50~90V;(3)限制适当的短路电流,以保证焊接过程频繁短路时,电流不致无限增大而烧毁电源。短路电流一般不超过工作电流的1.25~2倍。

常用焊接电源的类型有交流弧焊机、直流弧焊机和交、直流两用弧焊机。

四、焊接冶金过程有何特点?焊接过程中为什么要对焊接区进行有效保护?

焊接冶金过程特点:电弧焊时,被熔化的金属、熔渣、气体三者之间进行着一系列物理化学反应,如金属的氧化与还原,气体的溶解与析出,杂质的去除等。因此,焊接熔池可以看成是一座微型冶金炉。但是,焊接冶金过程与一般的冶炼过程不同,主要有以下特点。

(1)冶金温度高:容易造成合金元素的烧损与蒸发;

(2)冶金过程短:焊接时,由于焊接熔池体积小(一般2~3cm3),冷却速度快,液态停留时间短(熔池从形成到凝固约10s),各种化学反应无法达到平衡状态,在焊缝中会出现化学成分不均匀的偏析现象。

(3)冶金条件差:焊接熔池一般暴露在空气中,熔池周围的气体、铁锈、油污等在电弧的高温下,将分解成原子态的氧、氮等,极易同金属元素产生化学反应。反应生成的氧化物、氮化物混入焊缝中,使焊缝的力学性能下降;空气中水分分解成氢原子,在焊缝中产生气孔、裂缝等缺陷,会出现“氢脆”现象。上述情况将严重影响焊接质量,因此,必须采取有效措施来保护焊接区,防止周围有害气体侵入金属熔池。

(7)防止强力组对。在球罐组对过程中选用合适的工艺和组装机具,尽量避免强力组对。强力组对将使球罐在焊接前就存在强大的附加内应力,这种内应力在焊后也不可能完全消除。

(8)减小错边和角变形。在错边和角变形存在的部位,曲率发生了突变,所以焊后将会存在强大的残余内应力。

(9)采用合理的焊接顺序。当采用合理的顺序焊接时,整台球罐将同时对称地收缩或膨胀,这样能控制焊接变形,减小焊接残余应力。球罐焊接应遵循先纵缝后环缝,先大坡口后小坡口,先赤道后温带最后极带的原则,而且焊工应对称、均匀施焊。球罐焊缝的打底焊要采用分段退焊法,分段长度为600~700mm。

(10)避免工艺缺陷的产生。咬边、未焊透、长条状夹渣等工艺缺陷部位是应力集中区,这些部位容易产生冷裂纹。

(11)确保封底焊缝的质量,封底焊缝要自上而下焊接,不能采用摆动、为了防止裂缝,减轻温度应力可以从控制温度和改善约束条件两个方面着手。

3.1控制温度的措施如下:

3.1.1采用改善骨料级配,用干硬性混凝土,掺混合料,加引气剂或塑化剂等措施以减少混凝土中水泥用量;

3.1.2拌和混凝土时加水或用水将碎石冷却以降低混凝土的浇筑温度;

3.1.3热天浇筑混凝土时减少浇筑厚度,利用浇筑层面散热;

3.1.4在混凝土中埋设水管,通入冷水降温;

3.1.5规定合理的拆模时间,气温骤降时进行表面保温,以免混凝土表面发生急剧的温度梯度;

3.1.6施工中长期暴露的混凝土浇筑块表面或薄壁结构,在寒冷季节采取保温措施。

3.2改善约束条件的措施是:

3.2.1合理地分缝分块;

3.2.2避免基础过大起伏;

3.2.3合理地安排施工工序,避免过大的高差和侧面长期暴露。

此外,改善混凝土的性能提高抗裂能力,加强养护,防止表面干缩,特别是保证混凝土的质量对防止裂缝是十分重要,应特别注意避免产生贯穿裂缝,出现后要恢复其结构的整体性是十分困难的,因此施工中应以预防贯穿性裂缝的发生为主。

在混凝土的施工中,为了提高模板的周转率,往往要求新浇筑的混凝土心早拆模。当混凝土温度高于气温时应适当考虑拆模时间,以免引起混凝土表面的早期裂缝新浇筑早期拆模,在表面引起很大的拉应力,出现“温度冲击”现象。在混凝土浇筑初期,由于水化热的散发,表面引起相当大的拉应力,此时表面温度亦较气温为高,此时拆除模板,表面温度骤降,必然引起温度梯度,从而在表面附加一拉应力,与水化热应力迭加,再加上混凝土干缩,表面的拉应力达到很大的数值,就在导致裂缝的危险,但如果在拆除模板后及时在表面覆盖一轻型保温材料,如泡沫海棉等,对于防止混凝土表面产生过大的拉应力,具有显著效果。

加筋对大体积混凝土的温度应力影响很小,因为大体积混凝土的含筋率极低。只是对一般钢筋混凝土有影响。在温度不太高及应力低于屈服极限的条件下,钢的各项性能是稳定的,而与应力状态、时间及温度无关。钢的线胀系数相差很小,在温度变化时两者间只发生很小的内应力。由于钢的弹性模量为混凝土弹性模量的7—15倍,当内混凝土应力过到抗拉强度而开裂时,钢筋的应力将不超过100—200kg/cm.因此,在混凝土中想要利用钢筋来防止细小裂缝的出现很困难。但加筋后结构内的裂缝一般就变得数目多、间距小、宽度与尝试较小了。而且如果钢筋的直径细而间距密时,对提高混凝土抗裂性的效果较好。混凝土和钢筋混凝土结构的表面常常会发生细而浅的裂缝,其中大多数量属于干缩裂缝。虽然这种裂缝一般都较浅但它对结构的强度和耐久性仍有一定的影响。

挑弧、灭弧的施焊方法

目前,砌体结构的房屋出现各种型式的裂缝,非常常见。其裂缝程度轻重不一,差别很大。轻则影响房屋正常使用和美观,严重的将形成结构安全隐患,甚至发生工程事故。随着住宅商品化的发展,房屋裂缝问题越来越引起人们的关注。

砌体属于脆性材料,裂缝的存在降低了墙体的质量,如整体性、耐久性和抗震性能,同时墙体的裂缝给居住者在感观上和心理上造成不良影响。特别是随着我国墙改、住房商品化的进展,人们对居住环境和建筑质量的要求不断提高,对建筑物墙体裂缝的控制的要求更为严格。由于建筑物的质量低劣,如墙体裂缝、渗漏等涉及的纠纷或官司也越来越多,建筑物的裂缝已成为住户评判建筑物安全的一个非常直观、敏感和首要的质量标准。因此加强砌体结构,特别是新材料砌体结构的抗裂措施,已成为工程量、国家行政主管部门,以及房屋开发商共同关注的课题。

砖砌体结构裂缝产生的原因

1、温差变形引发的砖砌体裂缝

这类裂缝较典型和普遍的是建筑物(特别是那些纵向较长的)顶层两端内外纵墙上的斜裂缝,其形态呈“八”字或“X”型,且显对称性,但有时仅一端有,轻微者仅在两端1~2个开间内出现,严重者会发展至房屋两端1/3纵长范围内,并由顶层向下几层发展。此类型缝对那种刚性屋面平屋顶、未设变形缝、隔热层的房屋,更易发生。产生的直接原因是混凝土结构屋面的伸缩变形牵引其下砖砌体超过其材料抗拉强度的结果。具体的机理可认为是:在阳光照射下(特别是南方地区)屋面板温度可高达60~70℃,而在其下的砖砌体仅为30~35℃,如此大的温差,加上混凝土线膨胀系数比砖砌体近似大一倍,可计算出砌体中的主拉应力。

2、地基基础不均匀沉降引起的裂缝

一般在建筑物下部,由下往上发展,呈“八”字、倒“八”字、水平及竖缝。当长条形的建筑物中部沉降过大,则在房屋两端由下往上形成正“八”字缝,且首先在窗对角突破;反之,当两端沉降过大,则形成的两端由下往上的倒摪藬字缝,也首先在窗对角突破,还可在底层中部窗台处突破形成由上至下竖缝;当某一端下沉过大时,则在某端形成沉降端高的斜裂缝;当纵横墙交点处沉降过大,则在窗台下角形成上宽下窄的竖缝,有时还有沿窗台下角的水平缝;当外纵墙凹凸设计时,由于一侧的不均匀沉降,还可导致在此处产生水平推力而组成力偶,从而导致此交接处的竖缝。对于不均匀沉降导致的裂缝应以预防为主,即无地质勘察资料严禁做施工图设计,严格按图施工,不得擅自更改、任意处理,根据本地区通病,如能在那些开大窗洞的教学楼底层窗台下设置构造圈梁与地梁构成刚度较大的复合墙梁结构,对防止所述裂缝有明显效果。

3、特殊砌体材料产生的裂缝

如混凝土小型空心砌块、灰砂砖等的砌体,前者致裂的主要原因是竖缝砂浆难以饱满以及特殊的构造要求未能跟上。后者一般使用南方地区蒸压灰砂砖,由于其本身对温差敏感、表面光滑等特殊性,虽然外观、尺寸指标均较好,但在实际使用中对严格的灰砂砖砌体施工规程不熟悉,缺少使用经验,导致除存在粘土砖常见裂缝外,还常见在较长墙段中及外墙窗台下的竖斜裂缝。

其机理可以认为:

1、刚出厂的灰砂砖稳定性差。灰砂砖主要由细砂和石灰组成,蒸压养护后,一般不到一周即已出厂,但根据生产经验,灰砂砖在出厂的一月内其释放的热量较大,存在着反复的化学反应过程,而且实际上一时难以完全反应,因此,体积极不稳定。

2、对含水率有苛刻的要求,据有关试验资料和使用经验表明,含水率控制在7%~10%之间砌体可获得较好的粘结力和抗剪强度,否则影响明显。

第五篇:浅谈长输管道焊接施工中裂纹的控制措施

浅谈长输管道焊接施工中裂纹的控制措施

摘 要:当前,随着我国社会和经济的快速发展,人口不断增加,我国社会对能源的需求逐步增大,然而实际上我国的能源资源十分有限且分布不均,管道作为能源运输的主要载体,管道安全已成为十分重要的问题。近年来,我国长输管道在实际运用过程当中出现了诸多的问题,其中焊接裂纹是常见且影响深重的问题之一。本文对影响长输管道焊接裂纹的因素进行了探讨,并对防止管道焊接裂纹提出了相应的对策。

关键词:长输管道;焊接缺陷;裂纹;控制措施

DOI:10.16640/j.cnki.37-1222/t.2017.10.104

社会经济的发展使得人们越来越依赖天然气资源,因此,就需要加强天然气的管道建设。为了让天然气输送得到更多的保障,就应该提高管道施工质量,而在管道施工中,焊接质量又是一项重要技术工艺,焊接质量的好坏直接决定管道的安全与否,所以,应该加强对天然气施工焊接的质量控制,从而提高天然气施工的整体质量。长输管道施工的焊接裂纹及影响因素分析

长输管道焊接中的裂纹主要由焊接工艺、组对或受环境影响导致根焊道温度变化不满足焊接质量要求而产生的焊接缝隙或裂开隐患。天然气长输管道焊接裂纹主要包括热裂纹、冷裂纹、再热裂纹以及层状撕裂。天然气长输管道中较常见的为热裂纹和冷裂纹,其主要影响的因素如下:

1.1 焊接方法的影响

长输管道中较为常用的焊接方法是手工下向焊和自动、半自动焊接等,焊接工艺和质量是决定管道焊缝裂纹的首要因素。其中,手工下向焊工艺具有劳动强度低,效率较高,焊接质量也较好的优点,但也存在受焊接环境和操作者的实际操作技能水平限制等缺点,焊口质量难以达到预期目标而产生裂纹;自保护半自动焊工艺具连续送丝、不用保护气体、抗风能力较强、焊工易操作等优点,但也存在着不能进行根焊,盖面焊焊层中容易产生气孔等问题.综合来看,在条件允许的情况下采用半自动和自动焊接可以有效减少因焊接能量不均、温度不稳定而带来的焊口热影响区晶间组织粗大不均而带来的焊接裂纹。

1.2 外界环境对焊接质量的影响

(1)流动性施工的影响。施工作业点随着施工进度不断迁移,焊接作业于是也就处于一个流动的状态,这与工厂的生产相比,它增加了施工管理难度,对于质量管理,安全管理等方面的问题产生一些困难。

(2)地形的影?。多种地形对于管道管道组对施工场地布置等影响较大,对于管道焊接中的应力和焊后热处理带来一定影响。天然气长输管道焊接裂纹防范对策

2.1 长输管道热裂纹的控制措施

热裂纹是焊缝和热影响区内的金属冷却,在高温间隔期内产生裂纹,它是一种不允许存在的最危险的焊接缺陷。因此,需要采取的避免热裂纹的措施主要有:调整焊缝金属的化学成分,以改善焊缝金相组织,细化晶粒,并提高塑性以减小或分散偏析程度;可以采用碱性焊接材料,降低焊缝中杂质的含量,改善偏析程度;合理选择焊接工艺参数,适当提高焊缝成形系数。当断弧时,采用了与母材材质相同的引出板或逐渐熄弧,并填满弧坑的措施,这样可以避免了在弧坑处产生热裂纹。

2.2 长输管道冷裂纹的控制措施

焊接接头冷却后产生的裂纹称为冷裂纹,其较为常见且具有很大的危害性。防止焊接冷裂纹的控制措施:清除焊前焊件的油污以及水分,以减少焊缝中扩散氢含量;可以选择低氢焊条,在烘烤说明书的规定下严格按照说明使用;选择合理的焊接工艺参数和热输入,减少小焊缝的淬硬倾向;对于淬硬倾向高的钢材,需要在焊前进行预热,焊后及时进行热处理,这样以改善接头的组织和性能;采取减小焊接应力的各种工艺措施。

2.3 优化长输天然气管道焊接工艺

(1)优选焊接中的工艺参数。对于天然气长输管道焊接裂纹的控制,应在焊接工艺性能评定基础上制定统一管道焊接工艺,对影响焊口裂纹的关键因素如焊前准备、管口净化、组对、焊材、熔深、熔宽、坡口等进行严格控制,减少因焊口晶体组织和应力产生焊接裂纹。

(2)优化焊接技术。在长输管道焊接中,环境及焊接操作供需都会影响焊接质量,导致焊接裂纹的发生。针对风力较大恶劣自然环境地区焊接中,需要在焊接中,应用药芯焊丝焊接,半自动下向焊接管道;在焊接过程中适当提高手工焊条的烘干温度及制定细致的防风保温措施,减少氢含量聚集产生裂纹隐患。

(3)加强焊接管理。对于长输管道焊接,减少焊接裂纹的因素,加强对焊接人员的管理,首先焊工要持证上岗,可以熟练操作焊接机,而且还掌握了焊接要点,需要焊接人员必须具有高度的责任感,焊接管道和配件的每一步都可以根据仔细操作的要求,以确保长输管道接口的焊接获得合格的标准。

(4)选择合理的焊接顺序。焊前注意管口预热,控制打底焊与第二道焊接的时间,减少热影响区晶体不均;在焊接工艺规范的范围内,选择较大焊接线能量来减缓焊缝的冷却速度,有利于氢的扩散。

(5)通过焊接预热减少焊接接头缺陷。对于焊接来说,它一旦出现问题,那么对整个管道的焊接质量而言,都会造成很大的影响,在对焊接质量的评定当中,其中最重要的就是对接头的质量评定。对焊接接头的质量进行评定,不仅对它缺陷的性质、大小和危害程度进行观察,还要根据相关的标准规范来进行,要保证焊接接头不存在裂纹,对于天然气管道的正常运行来说,这也是非常关键的一步。经过实践发现,为了避免产生裂缝,使用低氢焊条会取得很好的效果,这是一种非常有效的方式,这也是对焊接接头存在原因不断分析的结果,但是因为这种方法对焊接的要求很高,所以也没有得到普遍应用。因此,本文建议对焊接接头进行预热处理,但是在对焊接接头进行预热时,也应该根据相关的规范标准来进行,一般来说,温度应该要高于50℃,这样才不会产生裂缝。

(6)为确保管道准确对口,应该使用对口器。对于焊接质量来说,它还与管道对口有着十分重要的关系,因此,为了确保管道准确对口,应该使用到对口器,对口器不仅能准确对口,而且还能保证对口周围均匀受力,从而避免对口发生错边,严密均匀的对口就能够让焊接质量有所保证。

(7)强化焊接过程的监督。施工单位要严格按照设计要求和图纸进行施工,监理单位也要尽职尽责对施工单位进行监督与管理。假如在施工过程中出现了预期之外的问题,需要对图纸进行更改,那么就需要结合设计单位联合对图纸进行变更并请主管部门进行审核,主管部门同意之后才能够继续继续进行施工。

(8)设立专职的焊接安全人员。在长输管道每次带气焊接作业时,都必须有一名专职的安全员。安全员要做好现场勘察,检查所开挖的工作坑是否满足施工要求,若工作坑达不到要求时,要立即整改;安全员还要划定晚间作业处的安全范围,确定警戒线的设置位置;同时要以书面形式通知当地公安消防部门和燃气供气管理部门,告知燃气管道带气碰口接驳作业的具体时间和具体位置;安全员还要在工作前必须检查安全用品是否齐全,是否可靠;在作用现场必须针对本次工作做安全技术交底。另外,安全工作人员还要加强对安全标志的设立以及管理,在市政管道容易发生危险的地方设立警示标志,提升其他施工人员禁止在此进行作业。

(9)强化管道焊接过程中的质量管理,落实责任制。在实际焊接工作中,施工企业还要加强对管道焊接过程中的监督与管理,确保工作人员严格按照企业的相关管理制度开展工作。实际工作中,企业要将责任落实到每一个员工身上,并且可以适度的增加奖励与惩罚的力度,以便于消除员工的消极怠工心理,促使其?F结一致、克服工作难点,从而保证在工期内完成建设目标。另外,还要提升施工人员的专业素养。①施工人员是工程的直接执行者,他们的专业技能水平对工程质量有很大的影响。所以,企业要加强对员工培训的次数与力度,并使施工人员能够在施工工作中对学到的知识进行实践,提升其专业技能、沟通能力以及协调组织能力。②企业要健全人才培育和印记机制。企业的成功最终是企业用人的成功,所以建筑企业要不断地向企业中引入高素质高水平的专业人才,提升企业管理队伍的整体素养,促进工程项目管理水平的增长。

(10)制定并健全应急措施。鉴于长输管道的特性,设立应急措施来作为保证长输管道管道焊接安全的补充措施是非常必要的,应急处置的目的是最大限度的减少人员和财产的损失,提升市政燃气管道焊接作业的安全性。结束语

长距离输送管道是国家能源安全的重要保证,在大范围的地区,高压输送介质压力大,可燃性高,一旦泄漏可能会造成巨大的灾难性后果。因此,保证长输管道施工中裂缝的安全技术质量和控制措施是一项长期而艰巨的任务。随着焊接技术的迅速发展,研究人员应进一步研究新的焊接技术,以保证焊接质量的进一步提高,保证天然气管道的正常运行。

参考文献:

[1]曾惠林,苏戬朋,黄福祥.西气东输二线冬季焊接施工技术[J].电焊机,2009(05).[2]李计黎.北京16万吨/年乙烯工程的焊接施工[J].化工施工技术,1998(02).[3]杨行敬.提高石油化工行业焊接施工质量的途径[J].石油工程建设,1988(06).[4]隋永莉,杜则裕,赵事,曾惠林.油气管道焊接施工过程中的磁偏吹[J].焊接技术,2005(04).[5]田淑珍,陈克.国内外石油化工焊接施工技术发展水平、动向和趋势[J].焊接技术,1991(02).作者简介:赵广军(1968-),男,吉林延吉人,大专,专项工程师,高级技师,研究方向:管道施工焊接技术研究。

下载铬钼钢焊接延迟裂纹分析(最终版)word格式文档
下载铬钼钢焊接延迟裂纹分析(最终版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    钢结构焊接施工中裂纹和气孔的形成原因及预防措施

    钢结构焊接施工中裂纹和气孔的形成原因及预防措施 作者:陈临泉 (中国水利水电第三工程局有限公司) 摘要:本文通过阐述,详细介绍了焊接施工中焊缝常见的裂纹与气孔缺陷的分类以及......

    刚构桥砼裂纹分析5则范文

    连续刚构桥梁常见裂缝的起因和预防 主讲人:蔡国宏 职 称:教授级高工 单 位:交通部公路科学研究院 时 间:2009年6月 目 录 一、预应力混凝土连续刚构和连续梁桥发展简况 二、预应......

    ABAQUS中的断裂力学及裂纹分析总结

    ABAQUS中的断裂力学及裂纹分析总结 (转自simwe) (1) 做裂纹ABAQUS有几种常见方法。最简单的是用debond命令, 定义 *FRACTURE CRITERION, TYPE=XXX, 参数。。。 ** *DEBOND, SLA......

    模具钢淬火十种裂纹分析与措施

    模具钢淬火十种裂纹分析与措施 模具钢热处理中,淬火是常见工序。然而,因种种原因,有时难免会产生淬火裂纹,致使前功尽弃。分析裂纹产生原因,进而采取相应预防措施,具有显著的技术......

    我国延迟退休年龄问题分析

    我国延迟退休年龄问题分析 摘 要:随着人口老龄化的加剧,2012年开始我国的劳动人口以每年两三百万的速度递减,这对我国的劳动力富裕程度和劳动成本都会产生重要影响,我国的人口红......

    延迟退休背景及利弊分析

    延迟退休背景及利弊分析 摘 要:2016年2月28日,人社部研究所所长金维刚表示延迟退休方案将在明年正式出台。出台后会有五年左右的过渡期,到2022年正式实施。该消息一经发布,便在......

    焊接现状分析(xiexiebang推荐)

    企业人才观的偏颇,企业要求人才能够创造价值,而人才要求企业为其提供发展的平台,使人才在实现企业目标的过程中实现自身的目标,实现企业发展和人才发展的双赢,因此,企业在选才用才......

    我国延迟退休的政策分析

    我国延迟退休的政策分析 作者简介:施灵杰(1989-),男,汉族,南京师范大学公共管理学院硕士研究生,研究方向为政治哲学和公共人力资源。摘要:在人口老龄化和养老金缺口加大双重压力下,延......