第一篇:大跨度桥梁的发展趋势调研报告..
大跨度桥梁的发展趋势调研报告
前言:
根据《公路桥梁设计规范》规定:单跨跨径大于40m即为大桥,一般认为单跨跨径大于100m的桥梁即为大跨度桥梁。随着世界经济的快速发展,大跨径桥梁的建设在20世纪末进入了一个高潮时期。众所周知,大跨径桥梁建设反映了一个国家的综合实力和科学技术的发展水平。近百年来。特别是本世纪30年代以来,世界上大跨径桥梁建设发展十分迅速。不同桥型大跨径桥梁的发展,日益被各国桥梁界人士所关注。我国进入90年代以来,出现了建造大跨径桥梁的高潮。进入21世纪的中国必将迎来更大规模的大跨径桥梁建设时期。随着我国城市建设和高等级公路、道路建设的发展,修建大跨径城市桥梁也将成为必然的趋势。城市大跨径桥梁,除考虑运输、航运、地理、地质、水文、环境等因素外,还有区别于跨越一般江河大跨径桥梁的特殊因素。因此应研究城市大跨径桥梁的特点和发展趋势,积极探索我国城市大跨径桥梁发展的有效途径,以推动桥梁建设事业的更大发展。
关键词:大跨度桥梁 结构形式 跨度 历史 现状 发展
1.大跨度桥梁类型
大跨度桥梁在现今世界发展十分迅速。桥梁的发展史就是桥梁跨度不断增长的历史,也是桥型不断丰富的历史。大跨度桥梁可分为:斜拉桥、悬索桥、连续钢构、连续梁桥和拱桥。
1.1板式桥
板式桥(如图1.1)是公路桥梁中量大、面广的常用桥型,它构造简单、受力明确,可以采用钢筋混凝土和预应力混凝土结构;可做成实心和空心,就地现浇为适应各种形状的弯、坡、斜桥,因此,一般公路、高等级公路和城市道路桥梁中,广泛采用。尤其是建筑高度受到限制和平原区高速公路上的中、小跨径桥梁,特别受到欢迎,从而可以减低路堤填土高度,少占耕地和节省土方工程量。
实心板一般用于跨径13m以下的板桥。因为板高较矮,挖空量很小,空心折模不便,可做成钢筋混凝土实心板,立模现浇或预制拼装均可。空心板用于等于或大于13m跨径,一般采用先张或后张预应力混凝土结构。先张法用钢绞线和冷拔钢丝;后张法可用单根钢绞线、多根钢绞线群锚或扁锚,立模现浇或预制拼装。成孔采用胶囊、折装式模板或一次性成孔材料如预制薄壁混凝土管或其他材料。
钢筋混凝土和预应力混凝土板桥,其发展趋势为:采用高标号混凝土,为了保证使用性能尽可能采用预应力混凝土结构;预应力方式和锚具多样化;预应力钢材一般采用钢绞线。板桥跨径可做到25m,目前有建成35~40m跨径的桥梁。在我看来跨径太大,用材料不省,板高矮、刚度小,预应力度偏大,上拱高,预应力度偏小,可能出现下挠;若采用预制安装,横向连接不强,使用时容易出现桥面纵向开裂等问题。由于吊装能力增大,预制空心板幅宽有加大趋势,1.5m左右板宽是合适的。
图1.1 板式桥 1.2梁式桥
1.2.1简支T型梁桥
80年代以来,我国公路上修建了几座具有代表性的预应力混凝上简支T型梁桥(如图1.2.1),如河南的郑州、开封黄河公路桥,浙江省的飞云江大桥等,其跨径达到62m,吊装重220t。
T形梁采用钢筋混凝土结构的已经很少了,从16m到5Om跨径,都是采用预制拼装后张法预应力混凝土T形梁。预应力体系采用钢绞线群锚,在工地预制,吊装架设。其发展趋势为:采用高强、低松弛钢绞线群锚:混凝土标号40~60号;T形梁的翼缘板加宽,25m是合适的;吊装重量增加;为了减少接缝,改善行车,采用工型梁,现浇梁端横梁湿接头和桥面,在桥面现浇混凝土中布置负弯矩钢束,形成比桥面连续更进一步的“准连续“结构。预应力混凝土T形梁有结构简单,受力明确、节省材料、架设安装方便,跨越能力较大等优点。其最大跨径以不超过50m为宜,再加大跨径不论从受力、构造、经济上都不合理了。大于50m跨径以选择箱形截面为宜。
图1.2.1 简支T型梁桥
1.2.2连续箱形梁桥
箱形截面(如图1.2.2)能适应各种使用条件,特别适合于预应力混凝土连续梁桥、变宽度桥。因为嵌固在箱梁上的悬臂板,其长度可以较大幅度变化,并且腹板间距也能放大;箱梁有较大的抗扭刚度,因此,箱梁能在独柱支墩上建成弯斜桥;箱梁容许有最大细长度;应力值σg+p较低,重心轴不偏一边,同T形梁相比徐变变形较小。
箱梁截面有单箱单室、单箱双室(或多室),早期为矩形箱,逐渐发展成斜腰板的梯形箱。箱梁桥可以是变高度,也可以是等高度。从美观上看,有较大主孔和边孔的三跨箱梁桥,用变高度箱梁是较美观的;多跨桥(三跨以上)用等高箱梁具有较好的外观效果。
由于连续箱梁在构造、施工和使用上的优点,近年来建成预应力混凝土连续箱梁桥较多。其发展趋势为:减轻结构自重,采用高标号混凝土40~60号;随着建筑材料和预应力技术发展,其跨径增大,葡萄牙已建成250m的连续箱梁桥,超过这一跨径,也不是太经济的。
图1.2.2 箱形截面
1.2.3连续刚构桥
连续刚构可以多跨相连,也可以将边跨松开,采用支座,形成刚构一连续梁体系(如图1.2.3)。一联内无缝,改善了行车条件;梁、墩固结,不设支座;合理选择梁与墩的刚度,可以减小梁跨中弯矩,从而可以减小梁的建筑高度。所以,连续刚构保持了T形刚构和连续梁的优点。连续刚构桥适合于大跨径、高墩。高墩采用柔性薄壁,如同摆柱,对主梁嵌固作用减小,梁的受力接近于连续梁。柔性墩需要考虑主梁纵向变形和转动的影响以及墩身偏压柱的稳定性;墩壁较厚,则作为刚性墩连续梁,如同框架,桥墩要承受较大弯矩。由于连续刚构受力和使用上的特点,在设计大跨径预应力混凝土桥时,优先考虑这种桥形。当然,桥墩较矮时,这种桥型受到限制。
图1.2.3 连续刚构桥
1.3钢筋混凝土拱桥
拱桥(如图1.3)在我国有悠久历史,属我国传统项目,也是大跨径桥梁形式之一。石拱桥由于自重大,在料加工费时费工,大跨石拱桥修建少了。山区道路上的中、小桥涵,因地制宜,采用石拱桥(涵)还是合适的。大跨径拱桥多采用钢筋混凝土箱拱、劲性骨架拱和钢管混凝土拱。
钢筋混凝土拱桥的跨径,一直落后于国外,主要原因是受施工方法的限制。我国桥梁工作者都一直在探索,寻求安全、经济、适用的方法。根据近年的实践,常用的拱桥施工方法有:(1)主支架现浇;(2)预制梁段缆索吊装;(3)预制块件悬臂安装;(4)半拱转体法;(5)刚性或半刚性骨架法。
钢筋混凝土拱桥自重较大,跨越能力比不上钢拱桥,但是,因为钢筋混凝土拱桥造价低,养护工作量小,抗风性能好等优点,仍被广泛采用,特别是崇山峻岭的我国西南地区。
图1.3 钢筋混凝土拱桥
1.4 斜拉桥
斜拉桥(如图1.4)是我国大跨径桥梁最流行的桥型之一。我国斜拉桥的主梁形式:混凝土以箱式、板式、边箱中板式;钢梁以正交异性极钢箱为主,也有边箱中板式。现在已建成的斜拉桥有独塔、双塔和三塔式。以钢筋混凝土塔为主。塔型有H形、倒Y形、A形、钻石形等。
斜拉桥的钢索一般采用自锚体系。近年来,开始出现自锚和部分地锚相结合的斜拉桥,如西班牙的鲁纳(Luna)桥,主桥440m;我国湖北郧县桥,主跨414m。地锚体系把悬索桥的地锚特点融于斜拉桥中,可以使斜拉桥的跨径布置更能结合地形条件,灵活多样,节省费用。斜拉桥的施工方法:混凝土斜拉桥主要采用悬臂浇筑和预制拼装;钢箱和混合梁斜位桥的钢箱采用正交异性板,工厂焊接成段,现场吊装架设。钢箱与钢箱的连接,一是螺栓,二是全焊,三是栓焊结合。斜拉桥发展趋势:跨径会超过10O0m;结构类型多样化、轻型化;加强斜拉索防腐保护的研究;注意索力调整、施工观测与控制及斜拉桥动力问题的研究。
图1.4 斜拉桥 1.5 悬索桥
悬索桥(如图1.5)是特大跨径桥梁的主要形式之一,可以说是跨千米以上桥梁的唯一桥型(从目前已建成桥梁来看说是唯一桥型)。但从发展趋势上看,斜拉桥具有明显优势。但根据地形、地质条件,若能采用隧道式锚碇,悬索桥在千米以内,也可以同斜拉桥竞争。根据理论分析,就目前的建材水平,悬索桥的最大跨径可达到3500m左右。已建成的日本明石海峡大桥,主跨已达1990m。正在计划中的意大利墨西拿海峡大桥,设计方案之一是悬索桥,其主跨3500m。当然还有规划中更大跨径的悬索桥。
图1.5 悬索桥
2.大跨度桥梁历史现状及发展趋势
2.1 梁桥历史起源
世界上的第一座桥究竟出自何处、谁人之手,已无法考证。因为自从有了道路之后,当人们遇到河流、沟壑阻碍时,就会想到要采用某种方式跨越障碍。最初的桥可能只是架在小河沟两岸或河中礁石上的一根树干、一块石板。后来在此基础上出现了最早的木桥和石桥。石拱桥──我国河北省赵县城南5里有一座拱形大石桥,这就是举世闻名的赵州桥,它也是世界上现存最古老的石拱桥之一。这座桥是隋朝工匠李春、李通等建造的,距今已近1400年。它造型美观,结构别致。像这样的桥,欧洲19世纪中叶才发现,比我国晚1200余年。
铁桥──1779年,英国的亚伯拉罕─达比在英格兰中部科布鲁克代尔建造了世界上第一座铁桥。这座横跨塞汶河的铁桥,使用5列铸铁肋构成30米长的单跨半圆拱。桥的铸件有不少精巧的构想。
悬索桥──原始悬索桥柔软易弯,不利于车辆行走。现代悬索以钢缆悬挂加肋的桥板,已解决了这个问题。西文第一座水平桥面的悬索桥设计,见于1595年奥地利主教瓦兰佐奥的著作中。该设计把铁杆连在一起构成悬索。1801年芬利首先在美国宾夕法尼亚州的雅各溪上建造了悬索桥,桥长21米。
1803年,法国率先建造钢丝缆索桥。塞昆建造了几座跨度长达90多米的桥。维克发明了在桥上用一根根钢丝构成缆索。而不必把沉重的钢丝缆索吊到桥塔项上。
钢筋混凝土桥──世界上第一座钢筋混凝土桥是1899年建于苏格兰连芬南的混凝土高架桥,每拱跨度为15米。21个桥拱顶上各有一铰链,使墩基可以移动。工程师梅拉特最早懂得三铰链作用,他于1901年在瑞士建成首座三铰拱桥,是细长的钢筋混凝土桥。预应力混凝土桥──第二次世界大战后,制出高强度钢材,佛莱辛奈将其应用于桥梁设计中。他于1948年至1950年间在法国马恩河上先后建造了5座预应力混凝土桥,分别位于爱斯勃利、安奈、特里巴度士、查吉斯和尤西。各桥采用平拱,远较过去的桥拱平坦得多。公元35年东汉光武帝时,在今宜昌和宜都之间,出现了架设在长江上的第一座浮桥。建于1706年的沪定铁索桥跨长约100米,宽约2.8米,由13条锚固于两岸的铁链组成,1935年中国工农红军长征途中经渡此桥,由此更加闻名。
灌县的安澜竹索桥建于1803年,是世界上最著名的竹索桥,全长34O余米,分8孔,最大跨径约61m,全桥由细竹蔑编粗五寸的24根竹索组成,其中桥面索和扶挡索各半。
在秦汉时期,我国已广泛修建石粱桥。世界上现在是保存着的最长、工程最艰巨的石粱桥,就是我国于1053一1059年在福建泉州建造的万安桥,也称洛阳桥,此桥长达800米,共47孔,位于“波涛汹涌,水深不可址”的海口江面上。此桥以磐石铺遍桥位底,是近代筏形基础的开端,并且独具匠心地用养殖海生牡蛎的方法胶固桥基使成整体,此也是世界上绝无仅有的造桥方法,近千年前就能在这种艰难复杂的水文条件下建成如此的长桥,实是中华桥梁史上一次勇敢的突破。
1240年建造的福建潭州虎渡桥,也是最令人惊奇的一座粱式大桥,此桥总长约335m,某些石粱长达23.7m,沿宽度用三根石粱组成,每根宽1.7m,高1.9m,重达200多吨,该桥一直保存至今”历史记载,这些巨大石梁桥是利用潮水涨落浮运建设的,足见我国古代加工和安装桥梁的技术何等高超。
2.2 大跨桥梁的现状
在世界经济全球化的推动下,沟通洲际之间,国家之间和本土与岛之间以及跨海湾工程显得越来越迫切在20世纪桥梁工程取得了大发展的基础上,人们更能畅想21世纪的宏伟蓝图。就中国来说,国道主干线同江至三亚就有5个跨海工程、杭州湾跨海工程、珠江口伶仃洋跨海工程,以及琼州海峡工程。其中难度最大的有渤海湾跨海工程,海峡宽57公里,建成后将成为世界上最长的桥梁;琼州海峡跨海工程,海峡宽20公里,水深40米,海床以下130米深未见基岩,常年受到台风、海浪频繁袭击。此外,还有舟山大陆连岛工程、青岛至黄岛、以及长江、珠江、黄河等众多的桥梁工程。在世界上,正在建设的著名大桥有土耳其伊兹米特海湾大桥(悬索桥,主跨1668米)、希腊里海安蒂雷翁桥(多跨斜拉桥,主跨286+3×560+286米);已获批准修建的意大利与西西里岛之间墨西拿海峡大桥,主跨3300米悬索桥,其使用寿命均按200年标准设计,主塔高376米,桥面宽60米,主缆直径1.24米,估计造价45亿美元。在西班牙与摩洛哥之间,跨直布罗陀海峡也提出了一个修建大跨度悬索桥的方案,其中包含2个5000米的连续中跨及2个2000米的边跨,基础深度约300米。另一个方案是修建三跨3100米+8400米+4700米的巨型斜拉桥,其基础深度约300米,较高的一个塔高达1250米,较低的一个塔高达850米。2.2.1悬索桥
悬索桥一般在特大跨径桥梁范围占统治地位。人们将不断研究悬索桥主索的取材、制作架设、锚固和防护、选择主索跨比、初始拉力、荷载分布以及如何调整和解决施工各阶段索形和桥面预拱度等设计和施工中诸多问题,以使建桥技术达到新的水平。悬索桥的新形式仍在不断探索中,如美国式(采用竖直吊杆及桁架加劲梁)、英国式(采用矮扁平翼状钢箱加劲梁及三角形的斜吊杆)、丹麦式(亦称混合式,即用竖吊杆和钢箱加劲梁)及其他形式的悬索桥(如带斜拉索桥)等,以期丰富悬索桥的内容和形关。着力研究高强、轻质新型材料。倘若人类在新型材料的研究上取得突破,不仅连接欧洲和非洲间的直布罗陀特大桥(L=5000m,水深450m)将成为现实,而且权威专家预言建造主跨L=8000m的跨海峡悬索桥的理想也是可以实现的。2.2.2斜拉桥
今后斜拉桥在结构体系上仍以飘浮式或半飘浮式为主,主要的目的是为了抵抗温度及地震。主梁采用的材料上,混凝土斜拉桥仍将是斜拉桥的主要形式;对超大跨径的斜拉桥,叠合梁和复合桥面系统显示出极大的优越性。塔和索的形式也随着斜拉桥跨径的增加而取得新的进展。譬如将不断采用双塔对称、单塔不对称、多塔多跨等形式以满足桥梁的功能,取得与环境的协调的效果;为解决随着斜拉桥跨径增大、索的钢束的重度也愈大、刚度在降低的矛盾,将采取增加辅助索等方式。在结构分析方面将考虑结构的初始内力等,并对动静力的分析也将更加深入;权威专家认为,随着世界建桥技术的理论水平、材料水平和工艺水平的不断发展,21世纪建造跨度在1600m的斜拉桥将成为现实。
2.2.3拱桥
随着拱桥的无支架施工方法的应用和发展,拱桥在跨径200~500m是有竞争力的,我国的云南、贵州和四川3省及重庆直辖市等,将因地制宜地建造更多的拱桥,我国建造拱桥的前景将是极为广阔的。拱圈将向着轻型化的方向发展,且一些大跨径拱桥在施工阶段采用钢-混凝土组合杆件,或钢管混凝土合龙后再浇筑拱圈,可大大减轻吊装重量。因此,带有钢管的半刚性骨架很可能成为特大跨径拱桥最有前途的施工方法。多孔连拱的长拱桥,作为经济桥型之一,将会得到极大的发展。因为拱圈的轻型化,减少了对下部构造的要求,使连拱结合采用桩基柔性墩成为可能。中承拱、系杆拱有更多采用的趋势。在平原地区通航河流上,往往考虑采用中承拱桥,可达到降低桥高的效果。这种桥型矢跨比大,可减少推力;且造型美观,造价也较低,将为城镇起到增添景色的作用。
2.2.4预应力混凝土梁式桥
连续梁桥结构在40~60m范围,将继续占绝对优势。顶推法、移动模架法、逐孔架设法等施工方法将更加成熟。预应力混凝土连续梁将更广泛地应用于城市桥梁,而且,为充分利用城市空间,并改善城市桥梁交通的分道行驶,将不断采用双层桥面的形式以及钢筋混凝土结合梁的形式。在预应力钢筋布置方面,国内外将趋于使用大吨位钢束和张拉锚固体系;将更广泛地应用部分预应力筋、预弯预应力筋、双预应力筋、体外布筋等预应力新技术。在一切适宜的桥址,更多地设计和修建连续刚桥这种结构体系。通过墩梁的固结,以尽可能不采用养护和调换不易的大吨位支座。不断加强高强轻质材料的研究和应用,以达到减小结构尺寸和自重,加大桥跨、降低建筑高度和造价等功能;同时充分发挥三向预应力的优点,采用长悬臂顶板的单箱截面等,既可节约材料减轻结构自重,又可充分利用悬臂施工方法的特点加快施工进度。随着高速公路和城市立交桥的发展,越来越要求路线顺畅、行车舒适,必然会出现斜桥、弯桥、坡桥和异型桥,在需要大幅度降低梁高、增大净空时,将更广泛采用双预应力和预弯预应力梁。
2.3 大跨桥梁的发展趋势
2.3.1向更长、更大、更柔的方向发展
研究大跨度桥梁在气动、地震和行车动力作用下其结构的安全和稳定性,拟将截面做成适应气动要求的各种流线型加劲梁,以增大特大跨度桥梁的刚度;采用以斜缆为主的空间网状承重体系;采用悬索加斜拉的混合体系;采用轻型而刚度大的复合材料做加劲梁,采用自重轻、强度高的碳纤维材料做主缆。2.3.2新材料的开发和应用
新材料应具有高强、高弹模、轻质的特点,研究超高强硅粉和聚合物混凝土、高强双相钢丝纤维增强混凝土、纤维塑料等一系列材料取代目前桥梁用的钢和混凝土。
2.3.3在设计阶段采用高度发展的计算机
计算机作为辅助手段,进行有效的快速优化和仿真分析,运用智能化制造系统在工厂生产部件,利用GPS和遥控技术控制桥梁施工。
2.3.4桥梁建成交付费用
使用后将通过自动监测和管理系统保证桥梁的安全和正常运行,一旦发生故障或损伤,将自动报告损伤部位和养护对策。
2.3.5重视桥梁美学及环境保护
桥梁是人类最杰出的建筑之一,闻名遐尔的美国旧金山金门大桥、澳大利亚悉尼港桥、英国伦敦桥、日本明石海峡大桥、中国上海杨浦大桥、南京长江二桥、香港青马大桥等这些著名大桥都是一件件宝贵的空间艺术品,成为陆地、江河、海洋和天空的景观,成为城市标志性建筑。宏伟壮观的澳大利亚悉尼港桥与现代化别具一格的悉尼歌剧院融为一体,成为今日悉尼的象征。因此,21世纪的桥梁结构必将更加重视建筑艺术造型,重视桥梁美学和景观设计,重视环境保护,达到人文景观同环境景观的完美结合。
3.大跨度桥梁实例
3.1杭州湾跨海大桥
杭州湾跨海大桥(如图3.1)全长36公里,其中桥长35.7公里,双向六车道高速公路,设计时速100km。总投资约107亿元,设计使用寿命100年以上。大桥设北、南两个通航孔。北通航孔桥为主跨448m的双塔双索面钢箱梁斜拉桥,通航标准35000吨;南通航孔桥为单塔单索面钢箱梁斜拉桥,通航标准3000吨。大桥两岸连接线工程总长84.4公里,投资52.1亿元。其中北连接线29.1公里,投资额17.8亿元;南岸接线55.3公里,投资额34.3亿元。大桥和两岸连接线总投资约140亿元,实际建设工期43个月。
大桥的结构为双塔钢筋混凝土斜拉桥,双向6车道,设计时速100公里,设计使用寿命100年,建设期限5年。建成后,宁波杭州湾大桥将成为世界上最长、工程
图3.1 杭州湾跨海大桥
量最大的世界第一跨海大桥。大桥设南、北两个航道,其中北航道桥为主跨448米的钻石型双塔双索面钢箱梁斜拉桥,通航标准为3.5万吨级轮船;南航道桥为主跨318米的A型单塔双索面钢箱梁斜拉桥,通航标准为3000吨级轮船。其余引桥采用30米至80米不等的预应力混凝土连续箱梁结构。非通航孔分北、中、南引桥3大块,其中海上部分桥梁长32公里。
大桥36公里的长度,使之超过了美国切萨皮克海湾桥和巴林道堤桥等世界名桥,而成为目前世界上已建成或在建中的最长的跨海大桥。据初步核定,大桥共需要钢材76.9万吨,水泥129.1万吨,石油沥青1.16万吨,木材1.91万立方米,混凝土240万立方米,各类桩基7000余根,为国内特大型桥梁之最。南滩涂50米*16米箱梁采用整孔预制,大型平板车梁上运梁的工艺,开创了国内外重型梁运架的新纪录。水中区引桥70米*16米箱梁采用整孔制、运、架一体化方案,单片梁重达2180吨,为国内第一。水中区引桥打入钢管桩直径1.5-1.6米,桩长约80米,总数超过4000根,其钢管桩工程规模全国建桥史上第一。
3.2金门大桥
早在1872年就讨论过要在金门海峡修建一座大桥的想法,但是直到1937年才在海峡上修了一座悬索桥。金门大桥(如图3.2)横跨南北,将旧金山市与Marin县连结起来。花费四年多时间修建的这座桥是世界上最漂亮的结构之一。它已不是世界上最长的悬索桥,但它却是最著名的。金门大桥的巨大桥塔高227米,每根钢索重6412公吨,由27000根钢丝绞成。1933年1月始建,1937年5月首次建成通车。
金门大桥桥身的颜色为国际橘,因建筑师艾尔文·莫罗认为此色既和周边环境协调,又可使大桥在金门海峡常见的大雾中显得更醒目。由于这座大桥新颖的结构和超凡脱俗的外观,所以它被国际桥梁工程界广泛认为是美的典范,更被美国建筑工程师协会评为现代的世界奇迹之一。它也是世界上最上镜的大桥之一。
图3.2 金门大桥
4.结语
桥梁建筑对于具有卓越才能和自信心的工程师来说是一项既吸引人又富有挑战性的艰巨任务。桥梁建筑的重要意义不仅仅是满足于交通,还在于桥梁一旦胜利建成,它将会使人们感到无限的快乐和极大的满足。桥梁建筑能使人产生一种激情,在建桥人的一生中总是那样的清新绮丽,那样的朝气蓬勃,那样富有激励性。回顾20世纪桥梁工程的成就,技术发展起了决定性作用,特别是20世纪末期发展速度更快,必然对21世纪的发展打下了良好的基础。中国在建设特大桥梁上有广阔的市场,在无数设计师的共同努力下,一定会创造更辉煌的成就。
参考文献
[1]刘夏平《桥梁工程》 2005年科学出版社
[2]周念先 《21世纪斜张桥的展望》 1998年江苏交通工程第四期
[3]项海帆 《21世纪世界桥梁工程的展望》 2000年土木工程学报第33卷第3期 [4]陈秉玲 《国内外大跨径桥梁发展概况.城市道路与防洪》 1997.2第2期 [5]穆祥纯
《城市大跨径桥梁设计有关问题的探讨》 第十三届全国桥梁结构学术大会论文集
第二篇:大跨度桥梁结构选型调研报告
大跨度桥梁结构选型调研报告
摘 要: 大跨度桥梁形式多样,有斜拉桥、悬索桥、拱桥、悬臂桁架桥及其他的一些新型的桥式,如全索桥、索托桥、斜拉—悬吊混合体系桥、索桁桥等等。其中,悬索桥和斜拉桥是大跨径桥梁发展的主流。本文针对大跨度桥梁结构选型和设计这一问题做了综合性的总结和归纳。
关键词: 大跨度桥梁;斜拉桥;悬索桥;桥梁造型设计;1 引 言 世纪90 年代以来, 随着世界经济和科学技术的高速发展, 大跨度桥梁的建设出现了前所未有的高潮。目前, 悬索桥的最大跨径已经达到1 991m , 斜拉桥的最大跨径达到890 m。随着桥梁跨径的逐步增大, 桥梁结构的柔性化趋势日趋明显, 桥梁结构的安全性、行车舒适性、架设方便性等一系列问题开始变得愈来愈突出。如何更好地解决伴随着桥梁跨径长大化而出现的这些问题, 成为21世纪世界桥梁工作者共同面对的挑战。本文简要回顾了大跨度桥梁的发展历史, 对现有大跨度桥梁建设的成就与问题进行了系统的分析, 在此基础上, 提出了有关大跨度桥梁设计的一些新构想, 希望对未来桥梁设计的发展有所帮助。2 现代斜拉桥的发展与演变 2.1 早期的斜拉桥
斜拉桥由索塔、拉索、主梁三部分组成。从历史上看, 影响斜拉桥发展的技术因素主要有三个第一, 力学分析手段的进步。第二, 材料性能的改进。第三, 施工技术的发展。从力学分析的角度讲, 斜拉桥属于多次超静定体系, 在没有电子计算机帮助的条件下, 手工进行力学分析相当复杂。现存的早期斜拉桥中, 较有代表性的是1867 年建造的新加坡Cavenagh 桥和1874 年建造的伦敦Albert桥。二十世纪五、六十年代, 斜拉桥获得了较快的发展。1955 年, 瑞典建成了主跨183m 的Stromsund桥;1959 年, 联邦德国建成了主跨302 m 的Severin桥。早期建造的斜拉桥有两个比较显著的特点: 一是单柱式索塔比较多;二是斜拉索很少2.2 密束斜拉体系的出现
随着有限元技术的发展和计算机技术的普及, 高次超静定结构的力学分析开始变得简单易行。1967 年, 联邦德国建成了主跨280m 的Friedrich2E2bert 桥, 从此拉开了密束体系斜拉桥建设的序幕。通过将导入拉索的预应力分布式地传递给主梁, 可显著减小梁中的弯矩, 并且易于采用悬臂法进行施工。因此, 密束体系斜拉桥的出现加速了斜拉桥跨度, 特别是预应力混凝土斜拉桥跨度的迅速增长。1986 年, 加拿大建成了主跨465 m 的An2nacis 桥;1991 年, 挪威建成了主跨530 m 的Skaron2sundet 桥。
二十世纪九十年代, 世界斜拉桥的建设进入了一个鼎盛时期。1993 年, 中国建成了跨度位居当时世界第一的主跨602 m 的上海杨浦大桥;1995 年,法国建成了主跨856 m 的Normandy 大桥;1999 年, 日本建成了跨度位居世界第一的主跨890m 的多多罗大桥。九十年代的大跨度斜拉桥建设有两个特点: 一是大部分出现在中国;二是倒Y 型和分离式倒Y型(有文献称之为钻石型)索塔被广泛采用。倒Y型和分离式倒Y型索塔的广泛使用, 既有技术方面的原因, 也有审美习惯和技术传统的影响, 下文将对此做具体的分析。2.3 斜拉桥索塔的造型与选择
索塔的形态可以多种多样, 需要指出的是, 索塔的形态通常和斜拉索的配置密切相关。如果采用单索面, 则通常会选用单柱塔或倒Y型塔。单柱塔可能存在的问题主要有两点: 一是从人体工程学的角度看, 如果桥面不是太宽的话, 单柱塔相对宽大的塔柱会对汽车驾驶员的运动视线产生一些阻断,给人某种程度的压迫感。二是从建筑美学的角度看, 由于单柱塔上塔柱和下桥墩的剖面尺寸有时相差悬殊, 给人以整体不协调的感觉.单索面的使用通常有两个前提条件: 一是主梁(桥身)要有固定拉索的中央分割带;二是主梁本身要有比较大的抗扭刚度。虽然采用单索面的日本鹤见翼大桥, 其主梁跨度达到了510 m , 但对于大多数桥梁设计师来说, 在设计大跨度斜拉桥时, 处于技术和心理感受两方面的考虑, 他们通常更倾向于选择双索面布置。和单索面桥构造上最接近的是双侧单索面桥, 即在桥面的两侧各布置一根互不相连的塔柱, 每根塔柱独立张拉出一面索。象荷兰的Waal 大桥这样采用双根单柱桥塔的斜拉桥实际上并不多见, 原因有技术方面的, 也有心理感受方面的。从技术的角度看, 由于垂直索面的结构刚度相对比较弱, 风载作用下存在发生振动发散的可能。从心理学的角度看, 设计师通常更倾向于结构在横桥向存在某种形式上的连接。一方面是出于结构受力方面的考虑, 另一方面是出于寻找视觉上的支撑, 两种因素汇合起来的结果, 使设计师们更倾向于用横梁将两根独立的单柱联接在一起, 以形成垂直于桥面纵轴的框架型桥塔支撑体系。当横梁在塔顶将两根独立的单柱联接在一起时, 便形成了门型桥塔。而当横梁在塔的中部将两根独立的单柱联接在一起时, 便形成了H 型桥塔。将门型桥塔的塔柱向内侧倾斜至极限,可形成倒V 型桥塔;将H 型桥塔的塔柱向内侧倾斜至极限, 则形成了倒A 桥塔。究竟是什么原因促使设计师纷纷将塔柱向内倾斜? 塔柱向内倾斜的直接好处是什么? 不利之处在哪里? 有什么办法能够平衡兼顾, 扬长避短。加斜拉索的最初目的是给主梁提供一个竖向支撑, 从而减小主梁由于重力荷载而产生的竖向弯矩和变形, 使主梁在跨度增加的同时, 并不显著增加梁的内力和变形。仅从抵抗重力荷载的角度考虑, 索平面应尽可能地和主梁平面垂直, 以保证斜拉索在沿桥向(纵向)铅垂面上的投影, 和水平面的夹角最大。因此, 单柱塔、双根单柱塔、门型塔和H 型塔是该条件下比较合适的塔型选择。但实际面对的问题是, 主梁除了要承受竖向重力荷载外, 还必须承受横向风荷载等其它方向的荷载, 并且横向风荷载的影响程度随主梁跨度的增加迅速增长。从力学分析的角度看, 要有效地抵抗横向风荷载, 索平面应和主梁平面保持比较适当(注意, 不是最大)的夹角, 以保证索力在横桥方向上的投影, 有比较合适的大小。因此, 此时的最优塔型,应当是适度扁平的倒V 型或倒A 型桥塔。随着桥面宽度的增大, 相对扁平的倒V 型和倒A 型桥塔, 会使桥墩基础的占用空间增大。比较简单的解决办法有两种: 一是在增大塔柱陡度的同时增大索力;二是将柱塔在主梁以下向内收缩间距, 形成所谓的钻石型塔身。显然, 抵抗竖向重力荷载和抵抗横向风荷载对最优塔型的要求存在一些矛盾。另外, 大跨度斜拉桥还需要考虑抗扭曲的问题。综合几个方面的因素, 人们发明了一种最简单和最直接的解决办法, 即在倒V 型(包括钻石型)桥塔的顶部向上增加一根垂直立柱, 并将斜拉索锚固在新增加的垂直立柱上。倒V 型桥塔加垂直立柱形成的新塔型, 就是目前在大跨度斜拉桥建设中广
泛采用的倒Y型桥塔
当桥梁跨度比较大的时候(500 m~600 m 以上), 倒Y型桥塔中的垂直立柱会变得比较粗, 结果使桥塔沿桥向和横桥向的风阻大大增加。降低桥塔风阻的最简单、也是最实用的办法之一, 是将倒Y型桥塔中的垂直立柱横桥向压扁、沿桥向镂空,也就是将立柱变成横桥向的比较细长的H 型或日型框架, 由此形成的桥梁塔型, 本文称之为分离式倒Y型桥塔。事实上, 倒A 型桥塔也可以归类为分离式倒Y型桥塔。
当桥梁跨度低于500 m 时, 同样可以采用分离式倒Y型桥塔。分离式倒Y型桥塔近年来得到广泛采用的原因主要有以下几点: 一是桥塔本身的造型比较美观;二是对桥面宽度变化的适应能力比较强;三是垂直立柱分离使正桥向原先存在的索面空间闭合状态被打破, 由此形成的开放式视觉空间,可以有效降低倾斜索面对行车人视觉可能产生的压迫感。
从拓扑关系看, 分离式倒Y型桥塔可根据变形路径的不同, 退化演变为倒Y型、H 型和门型桥塔中的任何一种。换句话说, 从分离式倒Y型塔型出发进行结构拓扑优化, 可以发现目前已知常用塔型中的最优塔型。
斜拉桥的跨度最大能够达到多少是人们非常关心的一个话题。在正面回答这个问题之前, 我们先分析一下影响斜拉桥跨度急速增大的因素主要有哪些。显然, 有技术方面的因素, 也有经济和美学方面的因素。事实上, 正是多因素的复合限制了斜拉桥跨度的急速增大。从力学的角度看, 斜拉桥跨度急速增大带来的主要问题是: 第一, 由于斜拉索索力的水平分量需由主梁中的内力来平衡, 随着斜拉桥跨度的增加, 塔处主梁根部的压应力急剧增大,因此, 主梁的抗压稳定性将成为制约斜拉桥跨度急速增大的一个主要因素。第二, 长柔的拉索比较容易发生独立索振动, 加稳定索和抗风阻尼器虽在一定程度上可以缓解这一问题, 但因此付出的经济代价是否值得则有待商榷。从经济学和美学的角度看, 限制斜拉桥跨度急速增大的主要因素是: 第一, 斜拉索的最小倾斜角有一个合理的下限, 这个下限值大致在20 度左右。第二, 斜拉桥索塔的高度有一个合理的上限, 这个上限值大致在300 m~350 m左右。综合这两个因素, 我们估计斜拉桥最大可以接受的跨度应当在1 250 m~1 500 m 左右。3 现代悬索桥的发展与演变 3.1大跨度悬索桥的出现与流行
悬索桥通常由主塔、主缆、吊索、加劲梁、锚碇五部分组成。悬索桥自古就有, 但近代意义上的大跨度悬索桥则出现在十九世纪中叶。1855 年, J1A1 Roebling 建成了世界首座跨度为250 m 的铁路悬索桥。1883 年, 美国布鲁克林桥的跨度达到了486m。1931 年, 乔治·华盛顿大桥的跨度首次超过1000 m。1937 年, 跨度1 280 m 的金门大桥在美国建成。1981 年, 英国建造了跨度1 410 m 的亨伯桥。1998 年, 日本明石海峡大桥的跨度接近2 千米, 达到1 991 m。
悬索桥跨度的不断增大一方面来源于材料科技和建造技术的进步, 但最主要的原因恐怕直接来源于设计思想的根本性转变。
在近代悬索桥的发展历史上, 曾经出现过3 次比较大的设计思想变革。第一次变革出现在二十世纪初。1888 年, Me2len 提出了考虑载荷引起的变形对结构内力计算影响的挠度理论, 奠定了近代悬索桥设计的理论基础。挠度理论发现, 悬索桥的整体刚度主要由主缆的重力刚度构成, 加劲梁自身的刚度对结构整体刚度的贡献不大。因此, 随着桥梁跨度的增加, 加劲梁的高度可基本维持不变。1909 年, 采用挠度理论设计的曼哈顿桥在美国建成。
第二次变革出现在二十世纪四十年代。1940年, 美国建成了塔科玛桥。4 个月之后, 在19m·s-1的风速下, 发生剧烈弯扭振动而坍塌。塔科玛桥坍塌的事故导致了两个积极的结果: 第一, 人们开始重新审视挠度理论, 发现加劲梁保持必要的刚度, 特别是抗扭刚度十分必要。第二, 桥梁的抗风设计, 或者说桥梁的抗风稳定性问题开始引起人们的高度重视。试验发现, 风引起的扭转或弯扭耦合模态的发散性振动是导致塔科玛桥坍塌的主要原因。为加强结构的抗扭刚度, 加劲梁的高度开始出现大幅反弹, 普遍达到7 m~12 m。桁架式加劲梁几乎成了大跨桥加劲梁的固定做法。
第三次变革出现在二十世纪六十年代。塔科玛旧桥坍塌事件对桥梁设计思想的影响, 在北美和在欧洲是完全不同的。美国人的做法是采用桁架式加劲梁解决减小风阻的问题, 并将加劲梁的高度大幅增加以提高断面的抗扭刚度。英国人则认为, 改善桥梁气动稳定性的合理方式, 应当是采用合理的加劲梁剖面形式, 主要通过降低风阻和控制气流分离的办法减小扭矩, 通过将横剖面闭合的办法增加箱梁的抗扭刚度。1966 年, 英国人的设计思想在塞文桥中得以实现。当时, 塞文桥988 m的跨度虽然并不起眼, 但它首次采用的流线型扁平钢箱梁设计却使整个桥梁界产生了强烈的震撼。塔科玛旧桥垮桥事件后, 对于大跨悬索桥, 桁架式加劲梁曾被认为是最有效的加劲梁形式, 这一看法由于塞文桥的出现而开始受到人们的质疑。塞文桥的设计思想, 在土耳其的博斯普鲁斯I 桥上得以再次展现。1981 年, 英国人建造了跨度1 410 m的亨伯桥。亨伯桥不仅从美国的维拉扎诺海峡桥(, 跨度1 298 m , 建于1964 年)那里夺走了跨径世界第一的宝座, 而且在造型上的特征异常鲜明: 一是桥塔很矮, 只有155 m。二是边跨比很小, 且左右不对称(分别为0120 和0138)。
塞文桥的著名并不在于它的跨度是否曾经达到过世界第一, 而在于它首创了一个全新的设计理念。唯其如此, 著名德国桥梁设计师F1 Leonhardt认为, 塞文桥的出现标志着现代悬索桥设计风格的开始[4 ]。3.2索桥主塔的造型与选择
现代悬索桥的主塔形式主要有三种: 第一种是使用水平杆件将两根塔柱相连的刚架式;第二种是使用水平横杆和交叉斜杆将两根塔柱相连的桁架式;第三种是路面以上为刚架, 加劲梁下用交叉斜杆连接的混合式。在悬索桥(同样适用于斜拉桥)桥塔的设计中, 有几点是需要仔细处理的: 第一, 要合理安排下、中、上三个塔段的高度分割比例。依据美学原则, 类似甘蔗的节, 按由短到长顺序设置的塔段高度给人以稳重、流畅的感觉。如果做到下短上长有困难, 则应逐步减小上层塔柱的截面尺寸。第二, 如果桥面以上塔柱的高度低于桥面以下塔柱高度的2 倍,则桥面以上的塔柱间应使用单横梁。强度不够时可将顶部横梁的高度加大, 横梁下缘做成拱型曲面。第三, 桥上、桥下的塔段设计风格应当尽可能地和谐。适度的变化是允许的,只要构造上蕴涵的内在节奏和韵律不遭到破坏。第四, 需要仔细安排塔柱剖面尺寸、横梁剖面尺寸和塔高间的相对比例关系, 不要使塔柱和横梁显得过于笨重, 给人以不舒服的沉重感。
塔型设计是一门综合性的艺术, 是结构工程学和建筑美学的有机结合。塔型设计同时又是一门个性化的艺术, 她的身上不可避免地镌刻着建筑传统和设计师个人风格的烙印。前者要求塔型构造除了本身各部分之间应相互协调之外, 还必须和加劲梁的设计风格相协调。而两者的综合则可以解释一些令人费解的现象。
伊藤学发现了一个有趣的现象: 日本的大跨悬索桥比较多地采用了桁架式的塔型设计, 而欧美的同类桥梁则比较多地采用了刚架式的塔型设计。比较典型的有桁架式的日本明石海峡大桥和刚架式的美国金门大桥等。伊藤学认为,造成这一现象的主要原因是, 日本的地震和强风等横向荷载比较大, 采用桁架式的塔型设计比较经济。我们认为, 日本明石海峡大桥和美国金门大桥设计风格上的差异更多地源于设计传统和设计师的个人风格, 而不是源于地理上的差异。日本人的确喜欢使用交叉桁架式的塔型, 如日本的关门桥、南、北备赞濑户大桥、因岛大桥等, 但未必源于地理环境上的差异。第一, 金门大桥的桥位位于著名的加利福尼亚强地震带上, 并且和明石海峡大桥一样, 曾经遭受过强地震的洗礼。第二, 欧洲和美国也都有一些桁架式塔型的大跨度悬索桥, 如葡萄牙里斯本的塔古斯河桥、美国的奥克兰海湾桥、英国苏格兰福斯湾公路大桥(图15)等。第三, 日本人采用刚架式塔型的大跨度悬索桥也不少, 如日本的来岛大桥、大岛大桥、东京港彩虹桥、下津井濑户大桥等。还有一个有趣的现象: 美国人设计的桥塔比较刚劲, 而英国人设计的桥塔则比较纤柔。我们对这一现象的解释是: 美国人设计的这些桥梁采用了高度7m~12 m 的高大的桁架式加劲梁, 无论从美学还是从力学的角度看, 桥塔都应该设计得比较刚劲。而英国人设计的这些桥梁采用了高度为310 m~415 m的扁平的钢箱梁, 无论从美学还是从力学的角度看, 桥塔都应该设计得比较纤柔。事实上, 由英国人设计的香港青马大桥, 由于加劲梁的高度为717m , 其桥塔同样设计得刚劲有力(图17)。因此,对桥梁设计而言, 体现设计师的个人风格和魅力固然重要, 但桥型设计和桥梁的内在功能及与周边环境的关系保持协调则更为重要。我们的看法是, 如果采用扁平的钢箱梁为加劲梁, 则桥塔造型以采用刚架式为宜.4 结语
人类已开始向跨海工程挑战。世界上宽度在100km以内的海峡有20多处。独立于大陆之外,具有开发价值的近海岛屿无数。它们将是21世纪人类用桥梁去征服的目标。
21世纪桥梁将实现大跨、轻质、灵敏的国际桥梁发展新目标,意大利与西西里岛之间墨的西拿海峡大桥,主跨3300米悬索桥,其使用寿命200年。高强度铝合金、玻璃钢、碳纤维等太空材料将取代当代的桥梁钢、混凝土,成为桥梁建筑的主体材料,从而实现轻质目标;不同类型轻质材料组合拼装的各类新型斜拉桥、悬索桥、轻质拱桥将一跨而过大川巨流或小海湾,实现1500米以上大跨目标;桥梁上装配的计算机系统、传感器系统将可以感知风力、气温等天气状况,同时可以随时得到并反映出大桥的承载情况、交通状况。综观大跨径桥梁的发展趋势,可以看到世界桥梁建设必将迎来更大规模的建设高潮。
参考文献
[1].周先念, 周世忠.21 世纪特大跨桥梁的展望[A].中国公路学会桥梁与结构工程学会2000 年桥梁学术讨论会论文集[C].北京: 人民交通出版社, 2000 , 13 —18.[2].周世忠.悬索桥的总体设计[A].江阴长江公路大桥工程建设论文集[C].北京: 人民交通出版社, 2000 , 95 —100.[3].Leonhardt F.Bridges Aesthetics and Design [M].MIT Press , 1984 [4].伊藤学.桥梁造型[M].北京: 人民交通出版社, 1998.[5].盛洪飞.桥梁建筑美学[M].北京: 人民交通出版社, 1999.[6].董 聪.现代结构系统可靠性理论及其应用[M].北京: 科学出版社, 2001.
第三篇:大跨度桥梁设计的论文
一、非线性地震反应分析
大跨度桥梁结构的非线性可分为材料非线性(又可称为物理非线性或弹塑性)和几何非线性两种,一般情况下结构的几何非线性可通过考虑所谓的P-△效应来进行在结构非线性地震反应分析的计算理论研究方面,备受关注的是结构的弹塑性分析,这不仅是因为相对于几何非线性而言,结构的弹塑性性能对于结构的抗震性能影响较大,而且更由于问题的复杂性。所以国内外众多学者针对后者开展了大量的研究工作。在大跨度公路桥梁弹塑性地震反应分析的力学模型中,根据各种构件的工作状态,将结构简化为杆系结构是合理的,同时对计算而言也是非常经济的。若按构件所处的空间位置可把力学模型分为平面模型和空间模型两种。若按模型中所采用的单元应力水平的种类来分,又可分为微观模型(采用应力空间)和宏观模型(采用内力空间)两种。由于微观模型要求将结构划分为足够小的单元,尽管很有效但所需的计算量较大,只适用较小规模的结构或构件的非线性分析,因此在实际工作中应用的范围比较有限,所以这里仅按前一种分类方法来加以讨论。
在结构弹塑性地震反应分析中,构件恢复力模型的确定是基本的步骤而构件的恢复力关系又集中反映在滞回特性曲线上,基本指标有曲线形状、骨架曲线及其特征参数、强度、刚度及其退化规律、滞回耗能机制、延性和等效滞回阻尼系数等。国内外在这方面已进行了大量的试验研究并取得了相应的研究成果。在平面模型中,根据所采用的塑性铰类型可把它分为集中塑性铰模型和分布塑性铰模型两大类。在集中塑性铰模型中,有代表性的一种是Clough等于1965年提出的双分量单元模型,该单元模型采用两根平行杆来模拟构件,其中一根用来表示具有屈服特性的弹塑性杆,另一根用来表示完全弹性杆,非弹性变形集中于杆件两端的集中塑性铰处,该模型的最大不足是不能考虑构件刚度退化。另一种有代表性的是1969年Giber-son提出的单分量模型,它克服了Clough双分量模型的不足,同时只用两个杆端塑性转角来刻划杆件的弹塑性性能,而杆件两端的弹塑性参数又是相互独立的,因此应用起来较为简便。其缺点是基本假设中有地震过程中反弯点不能移动的限制,所以对一些与基本假设不甚相符的特殊情况其使用的合理性就受到了限制。
二、多点激振效应
通常桥梁结构的地震反应分析是假定所有桥墩墩底的地震运动是一致的。而实际上,由于地震机制、地震渡的传播特征、地形地质构造的不同,使得入射地震在空间和时间上均是变化的。即使其他条件完全相同,由于地面上的各点到震源的距离不同,它们接收到的地震波必然存在着时间差(相位差),由此导致地表的非同步振动。这一点已被地震观测结果所证实。因此,多点地震输入是更合理的地震输入模式。特别是大跨度桥梁结构,当地震波的波长小于相邻桥墩的跨度时,入射到各墩的地震波的相位是不同的,由于在桥长范围内各墩下的基础类型和周围的场地条件可能有很大的差别,因此入射到各墩的地震波的波形也可能是不同的。有关实际震害表明,入射地震波的相位差可增大桥跨落梁的危险性。所以就地震波传播过程中的多点激振效应进行研究是有很大的实际意义的。
从概念上看,仅考虑入射地震波的相位变化情况属于行波效应分析问题。若再考虑地震波的波形变化就属于地震波的多点输入问题。从计算方法上看,由于多点地震输入算法与同步激振的计算方法不同,因此必须重新推导结构体系的动力平衡方程。美国学者Penzien和Clough于1975年推导了多自由度体系考虑地震波多点输入时的动力平衡微分方程及求解方法,通过所谓的影响矩阵,实现了地震波的多点输入算法。这种方法后来被广泛应用,目前所有考虑地震波多点输入的结构地震反应时程分析算法均以此为基本出发点。
综上所述,大跨度公路桥梁的多点激振效应分析是一个比较复杂的计算问题,其复杂性一方面在于计算方法上面,更重要的是对于不同类型的桥梁结构体系可能有着截然不同的计算结果。因此实际计算时只能针对具体的桥梁结构进行具体的分析,不能一概而论。从计算方法上看,目前有关研究基本上仍局限于线弹性体系的多点激振效应分析,而非线性多点激振效应与结构体系非线性地震反应分析的力学模型是密切相关的.
三、结构设计
上部构造形式的选择,应结合桥梁具体情况,综合考虑其受力特点、施工技术难度和经济性。简支空心板结构的桥型,施工方便,施工技术成熟;但跨径小,梁高大;由于桥梁跨径受限制,往往造成跨深沟桥梁高跨比不协调,美观性差;上部构造难以与路线小半径、大超高线形符合,且高墩数量增加;桥面伸缩缝多,行驶条件差。因而,在山区大跨度中,该类桥型一般用于地形相对平缓、填土不高的中、小桥上。预制拼装多梁式T梁在中等跨径桥中具有造价省、施工方便的特点,其造价低于整体式箱梁,是中等跨径直梁桥的常用桥型。但对于曲线梁来说,T梁为开口断面,抗扭及梁体平衡受力能力均较箱梁差,曲梁的弯矩作用对下部产生的不平衡力大。但当曲线桥的弯曲程度较小时,曲线T梁桥采用直梁设计,以翼缘板宽度调整平面线形,可减少曲梁的弯扭作用,在一定程度上可弥补曲线T梁桥受力和施工上的不足。虽然直线设置的曲线桥仍有部分恒载及活载不平衡影响及曲线变位存在,但较曲线梁小。此外,可以采取加强横向联系的措施,提高结构的整体性。对于大跨径桥梁,最好采用悬臂浇筑箱梁。但是对于中等跨径的桥梁,箱梁桥不论采取何种施工方式,费用都较高,与预制拼装多梁式T梁相比,处于弱势。
下部结构应能满足上部结构对支撑力的要求,同时在外形上要做到与上部结构相互协调、布置均匀。桥墩视上部构造形式及桥墩高度采用柱式墩、空心薄壁墩或双薄壁墩等多种形式。柱式墩是目前公路桥梁中广泛采用的桥墩形式,其自重轻,结构稳定性好,施工方便、快捷,外观轻颖美观。对于连续刚构桥,要注意把握上下部结构的刚度比,减小下部结构的刚度比,减小下部结构的刚度,可减小刚结点处的负弯矩,同时减小桥墩的弯矩,也可减小温度变化所产生的内力。但是桥墩也不可以太柔,否则会使结构产生过大变形,影响正常使用,并不利于结构的整体稳定性。对于高墩,除了要进行承载能力与正常使用极限状态验算外,还要着重进行稳定分析。对于连续梁结构或连续刚构桥,各墩的稳定性受相邻桥墩的制约影响,应取全桥或至少一梁作为分析对象。稳定分析的中心问题就是确定构件在各种可能的荷载作用和边界条件约束下的临界荷载,下面以连续梁为例进行说明。介于梁、墩之间的板式橡胶支座,梁体上的水平力H(车辆制动力和温度影响力等)是通过支座与梁、墩接触面上摩阻力而传递给桥墩的,它不但使墩顶产生水平位移,而且板式橡胶支座也要产生剪切变形。当梁体完成水平力的传递以后,梁体暂时处于一种固定状态,但由于轴力及墩身自重的影响,墩顶还会继续产生附加变形,这就使得板式支座由原来传递水平力的功能转变为抵抗墩顶继续变形的功能,支座原来的剪切变形先恢复到零,逐渐达到反向的状态。
四、结语
山区大跨度作为公路工程的一部分,很多方面需要探讨。山区大跨度方案的确定应遵循“安全、舒适、经济、美观”的原则,只有把握好规律,抓住侧重点,山区高速桥梁的布置和设计才能准确无误。
参考文献
[1]李伟,朱慈勉,胡晓依.考虑P-Δ效应压杆几何非线性问题的解析法[J].同济大学学报(自然科学版),2006,(10).
[2]阎兴华,苏志宏,朱清峰.钢—混凝土混合结构弹塑性动力分析综述[J].北京建筑工程学院学报,2006,(9).
[3]肖汝诚,郭文复.结构关心截面内力、位移混合调整计算的影响矩阵法[J].计算力学学报,1992,(1).
[4]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].西南交通大学,2003
第四篇:调研报告(桥梁方面)
土木10103班李赛
我们组在重点对竹山桥及沅水大桥进行调研后,发现常德市桥梁方面主要存在以下几个方面的问题:
一、桥梁的耐久性问题
在步行调查竹山桥及沅水大桥的过程中,我们发现,两座桥均是上世纪八十年代所建成不过短短二十几年的时间,这两座桥的损坏就非常之大两座桥梁的多处道路和围栏都有较大裂纹、损伤。尤其是两侧人行道和围栏部分,有多处钢筋半裸露或全裸露于空气中,甚至在人行道有一处地面可穿过其内部的钢筋看见桥下江水。可见,桥梁的耐久性问题确实值得我们深思。通过查询有关资料并进行讨论研究后,我们了解到桥梁耐久性差主要有两方面的影响:一是施工和管理水平低。我们在对竹山桥、沅水大桥这两座紧挨的桥的破损程度进行对比后发现,虽然沅水大桥的建成时间只比竹山桥晚两年,其桥梁各处道路及围栏的破损程度都比竹山桥要低得多。另外,在沅水大桥本身的不同路段也存在着类似的对比,在结合有关资料,我们不难认为,桥梁的耐久能力与施工时的质量有很大关联。施工期间,材料强度不足,施工艺不合格及钢筋保护层不足和构件开裂等这些偷工减料、以次充好的问题虽然短期内不会对桥梁的正常使用产生显著影响,但都会对结构的长期耐久性产生非常不利的危害;二是设计理论和结构构造体系不够完善。联想到距今已1400多年却仍然保存完整的赵州桥,我们不由感慨:当代桥梁设计师在设计方面过分执著于满足规范对结构强度的安全度需要,而忽视了结构的耐久性及其他因素对桥梁安全度的影响,导致许多桥梁虽已满足结构强度的要求,却因耐久性出现问题,影响了结构安全性。所以本小组成员认为,设计师自身的专业素养也是影响桥梁耐久性的一个重要因素。我们真诚地希望,为了提高桥梁的耐久性能,在设计桥梁时能够从构造、材料等角度采取措施加强结构耐久性;在桥梁施工期间,有关部门能够加强监督管理,保证施工质量,为人们建造出更多耐用且安全的桥梁。
二、桥梁的共振现象
我们小组在对沅水大桥进行走访调研时,在桥的不同路段当车经过桥身时感受到了多次桥梁的共振,其中几次尤为剧烈。在沅水大桥上,我们观察到,桥上的车流量大,同时桥身全长1407.86米,因而桥梁整体所受的车辆荷载比较大,当天气恶劣时,桥所受的风荷载、雨荷载等其他荷载也一并增大,并且沅水大桥本身也存在桥梁多处出现及围栏钢筋裸露的安全隐患。当这些车辆经过与桥梁发生共振,若其强度超过了桥梁结构强度的最大极限时,发生像四川洪雅县柳记镇因行人摇晃产生共振使铁索桥断裂的悲剧完全有可能。因此,我们小组在此提出诚恳的建议:
一、希望有关部门能够定期组织专业人员对市内各座桥梁进行安全隐患的排查;
二、希望设计师在在桥梁的结构设计方面,从多方面考虑,尽量避免共振对桥梁造成大的影响;
三、考虑到共振所产生的力如未加以控制的话,可对桥梁带来毁灭性的后果,我们建议有关部门能够定期进行关于桥梁震动的检测,并为减轻共振效应,可在桥梁上设立减震器,干扰共振波,达到减小共振对桥梁影响的作用。
三、桥梁的维护和管理
由于桥梁在建成使用期间会因气候变化、腐蚀、氧化、老化等影响,导致其强度和各方面的性能有所降低。因此桥梁的后期维护管理是非常重要的,其主要目的在于保证大桥的安全与交通问题畅通。然而在我们小组调研的过程中,却发现了不少维护管理不到位的情况。首先,关于桥梁的维护问题,我们注意到,对于桥梁的道路裂纹,只有个别路段有过粗糙的补救措施,大多数仍是处于“搁置”状态,围栏处钢筋裸露的部位也只在非常严重的部位用铁丝杂乱地缠绕了几下。同时车辆路过时的颠簸问题和排水孔被灰土堵塞的问题也不容忽视;其次,对于桥梁的管理方面,我们观察到,在桥中间的休息平台旁,存在摩托车拉客的现象,并且自行车、电动车驶上人行道的现象也是常事,甚至出现逆向行驶。可见,桥梁管理不当和维护力度不够的问题确实不容小觑,因此,我们极力呼吁有关部门能够定期对营运期间的桥梁进行检测、管理、养护工作,并加大维护力度,增加桥梁的使用年限,提高桥梁的使用率。
第五篇:对外贸易发展趋势调研报告
在世界性的潮流一波又一波横扫而过的欧亚大陆,有一个安静角落没有太大改变,那就是包括中国****地区的阿尔泰山区。阿尔泰,是一座山脉的名字,是一种语言系统的名字,是一个民族的名字,是一种区域文化的名字,是包含有数个国家的独有的社会、文化、自然生态圈的名字。
**地区有着特殊的地理位置和重要的战略位置,有着对外开放的有利条那一世小说网 穿越小说网 言情小说网 免费小说网件和悠久的历史,为**地区与周边国家的贸易联系提供了良好的条件。特别是改革开放以来,不仅扩大了对外贸易的规模,提高了对外贸易的水平,同时对繁荣地方经济,增加财政收入,使发展前景极为广阔。
一、**地区外贸发展的优势条件
(一)人文优势
**地区是一个多民族聚居的地方,有哈萨克,汉,回,维吾尔,蒙古等36个民族。多民族跨界而居,在民族族别、宗教信仰,风俗习惯、日常生活消费、语言交流等方面与周边国家有许多相似之处。自古以来,**地区就与周边国家保持着密切的经济文化往来民间交往频繁,双边各族人民保持着千丝万缕的亲缘关系。随着陆桥经济区的发展以及**地区加快实施对外开放战略,**地区与周边国家合作前景广阔。
(二)地域优势
**地区地处欧亚大陆腹地,**北部。西北与俄罗斯、哈萨克斯坦交界,东北与蒙古人民共和国接壤,边境线长达1205多公里。是全疆拥有邻国最多,边境线最长的地区,地区所辖县均为边境开放县,拥有4个对外口岸,此外,随着一个新增对俄口岸的兴建,**还成为未来**“中俄直达运输走廊”的唯一通道。再加上**地区位于哈-中-蒙世界级有色金属成矿带中段,矿产资源丰富。**地区地域辽阔,景观殊异,旅游资源丰 富多彩有奇特的自然景观,令人忘返的名胜古迹,多姿多彩的民俗风情和文化艺术,吸引着众多的中外游客前来**旅游、探险观光。
(三)政策优势
近几年**地区提出以下优惠政策,一是灵活运用多种税收优惠政策,积极支持国家“走出去”战略;大力推行海关业务改革成果,加大对境外能矿勘探开发企业的支持力度。二是密切关注自治区以及**地区重点工程、重大项目的进展情况,积极支持沿海内地企业参与**物流建设,及时提供政策咨询和通关便利。三是继续扩大关务公开,优化通关环境,增进海关与外界沟通互动,提高海关执法的公开性和透明度。四是发挥政策优势,继续引导进出口企业用好、用足海关的各项优惠政策,建立有效的信息传播渠道。
二、**地区对外贸易发展的现状
从贸易结构上看,2008年,****地区共完成进出口贸易总额比去年同期增长4.3倍,其回升态势十分强劲。在对外贸易迅速扩大的同时,进出口商品结构不断优化,由废旧金属,日用百货向矿产品,农畜产品,建材,机械装备等领域扩展;在此基础上,外向型农业加快发展,全年向周边国家出口各类地产蔬菜2000吨;吉木乃,塔克什肯,红山嘴口岸建设性详规编制工作进展顺利,喀纳斯口岸规划前期准备工作已经启动,吉木乃口岸边民互市贸易市场顺利迁至吉木乃县城,塔克什肯口岸物流园及相关配套设施建设加快推进。通过宣传、科学引导和上门招商等多种形式的努力,**地区外经贸发展基础得到进一步夯实。
三、**地区对外贸易存在的问题
**地区对外贸易的发展,是基于**经济可持续发展的宏伟目标,针对地区资源、地缘环境而展开的。虽然**地区对外贸易起步较晚,规模不大,结构也不尽合理,但对国民经济的促进作用还是明显的。为此,找出存在问题的症结,采取积极的应对措施,以促进其尽快的发展,应该说是明智的。
(一)双方合作不规范
在我方,同行间无序竞争,竞相压价,以次充好,违规操作的情况屡见不鲜;在对方,不公平竞争,不讲信誉,商品同质不同价等现象十分普遍。尤其突出的是双方合作过程中企业大多是自发行为,缺乏双方政府的宏观调控和指导。因此,规范双方贸易已刻不容缓。
(二)合作的门槛较高
一方面双方进出境限制较多,手续繁杂,且办理时间长。另一方面,贸易壁垒增加,市场准入门槛提高。从商检、外汇核销、海关检查到出入境办理等各个环节手续都十分繁杂,由此付出的时间和金钱使企业经营利润大打折扣,如果没有一定的实力和较高的利润空间,企业很难介入。
(三)高层人才极度缺乏
目前,**在开展国际贸易方面缺乏通晓国际商务、金融、法律、经贸和现代企业运作的复合型国际管理人才及与之交流的语言人才。这已成为**地区扩大对外经贸活动的一大重要障碍。
(四)出口产品单一,档次底
目前,**地区出口产品主要以中低档纺织品、鞋类和服装为主。一些优质产品因局限于边境小额贸易形式,与众多低技术含量、从而使优质产品无法占领市场。另外,产品的市场运作销售手段严重滞后。目前,**地区开拓周边国家市
大争之世 网游之复活 炼宝专家 混在三国当军阀重生之官道
场仍停留在产品生产及推销这一低层次阶段上,未能进入其销售市场的主渠道。
(五)周边国家经济发展水平普遍不高,发展速度相对缓慢
目前与**地区展开边境贸易的周边国家虽然纷纷加强市场化改革步伐,经济出现了稳定发展的势头,但也普遍存在经济市场化水平低以及通货膨胀,财政赤字,投资不足等经济因素。此外,一些非经济因素,那一世小说网 穿越小说网 言情小说网 免费小说网如体制转换摩擦问题,民主问题,社会持续和稳定问题等的影响也不可忽视。
(六)出口商品结构优化缓慢
**地区外贸出口缺乏自主商品,出口商品结构优化缓慢,贸易高速度与低效益并存,使得**地区的外贸对本地经济拉动作用较小,难以推进相关产业发展。另外,随着买方市场的形成,人们对商品的消费需求结构快速向高质量、多品种、精品化方向转变,由于**地区工业产品深加工能力相对不足,工业产品结构与市场商品需求结构之间存在错位,导致产品的市场应变能力和竞争能力较弱。
四、**地区对外贸发展的对策
(一)整合外贸企业队伍,提升整体竞争力
多年来的经验证明,过去那种多头、分散的外贸企业势力单薄,在对外贸易中无法形成合力,容易被大企业集团各个击破,而且国内企业之间的内耗也难以避免,造成不良后果。因此,一方面要建立有效的外贸管理体系,加强综合管理,发挥自治区对外贸易厅宏观管理的作用,对于出超过多的外贸企业实行有效控制,充分利用海关、银行、外汇管理等部门的职能作用,促进外贸企业进行协调发展。另一方面,力争组建大经贸企业集团,发挥联合群体出口优势,以资产为纽带,积极推动企业的战略重组,加快外贸企业队伍的整合,形成若干个经贸、工、农为一体的综合性外贸企业集团,提高外贸企业的整体竞争能力。
(二)加大对外招商引资力度
**地区是典型的资源型省区,目前经济总体水平落后,很多产业领域都没有得到有效开发,这也正是各国和内地企业努力寻觅的商机。要进一步扩大招商引资力度,大力发展外商投资企业,在具体投资项目上,**不缺粗放型产品,而是缺乏品位高,附加值高,科技含量高的产品。因此,利用国外先进技术设备加快对现有企业进行技术改造和嫁接,这对于提高出口商品质量,增加花色品种,改善商品结构具有十分重要的意义。在积极争取国家支持的同时,结合实际拟定更具操作性、更为优惠的政策措施,让投资者在发展口岸经济中抢得先机,从中收益,得到实惠。把优化外商投资的产业结构和地区结构结合起来,根据自治区产业政策引导外商投向国家鼓励类项目,扩大特色产业的引资力度,促进新兴产业和支柱产业的发展,促进出口商品结构和产业结构的优化和提升。
(三)发展多种形式的对外贸易
一是不断提高对周边国经贸合作的层次和规模,促进对周边国经贸关系向高层次、多渠道、宽领域纵深发展。二是进一步了解和掌握周边国相关政策,加大在哈国开展矿产勘探、筑路等中方企业的支持力度,给予更加宽松的通关环境,培育和吸引一批有实力的外贸企业落户吉木乃口岸,不断提高外贸企业的综合能力和竞争力。三是根据哈国国民经济结构单
一、日用商品匮乏的现状,有针对性地继续扩大向哈国的出口贸易规模,提高层次,特别是扩大建材、农产品等品种出口规模,并向相应品种延伸。四是大力发展口岸的一般贸易和旅游贸易。充分挖掘和利用我区的旅游资源,把边境旅游线路、跨国旅游线路同我区旅游线路连接起来,使旅游业的发展成为促进经贸发展的桥梁。
(四)严把出口商品质量关,树立中国商品的形象
从出口商品结构看,对蒙边贸出口的商品主要是面粉、建材、小百货等物资。这是因为蒙古国从其他地区供应,则运费高、成本大,这样我们就具有一定的优势。同时,我们在与蒙古国的边境贸易中,要消除投机取巧的心理,杜绝短期行为,树立质量观念,实行名牌战略,这是打开和站稳任何一个市场的前提条件。在与蒙古国边境开放初期,由于哈国国内消费品极度短缺,中国消费品如潮水般涌人哈国市场,其中不乏大量假冒伪劣商品。这些假冒伪劣商品在哈国居民中造成很坏的影响,严重影响了中国商品的形象和中国企业的国际信誉。所以,有关部门应加强产品质量监督检查,加大打击假冒伪劣商品的力度,从根本上杜绝低质伪劣产品的出境,用可靠的产品质量去开拓、占领哈国市场。
(五)加大外贸企业的引进培育扶持力度
加快口岸贸易加工园区综合开发和精深加工基地的建设。依托我区丰富的矿产资源优势,吸引承接2—3家疆内外企业落户口岸,进行矿产品的精深加工;根据我国消费需求,吸引承接有加工能力的企业落户口岸,争取口岸有2--3家组装加工企业落户,尽快发展家电、家具等组装加工业,拉动外贸出口快速增长,为加快口岸贸易加工园区综合开发和精深加工基地的建设奠定基础。
(六)进一步加强服务优化环境
面对企业在经营管理中遇到的具体问题。积极营造发展环境,促进双方经贸合作战略升级。一方面要共同研究双方长期合作的问题,加强在发展战略、规划和经济政策等方面的交流与合作,确定两国合作的新目标、发展方向和实施步骤。以双边合作为依托,进一步推动边境经济技术合作、境外贸易投资的发展。另一方面要完善双方各级政府间定期会谈和口岸会晤机制,及时沟通和交流情况,解决企业实际问题,促进相互理解,增进相互信任,达到共同发展。再一方面两国有关部门要继续强化服务职能,提高行政效率,创造公开、公平、公正的环境,为双方投资合作项目和企业提供优惠政策,在货物通关等方面给予便利。**地区外经贸局同有关部门走进企业现场办公,积极与海关、商检、外经贸厅加强沟通联系,为地区企业开展加工贸易、进口贸易畅通渠道,并举办一系列有针对性的培训,通过多种举措坚定企业发展外贸的信心,引导企业多种形式规避风险,促进**地区外经贸工作健康、快速发展。
(七)加强口岸基础设施建设,形成完善的综合服务体系,为进出口创造条件
一是进一步完善 货场设施建设,积极争取上级资金支持,加快口岸货场道路、地面硬化、简易货棚、封闭库房的建设。二是结合口岸旅游、购物、边民互市的发展,多方筹集资金,建成口岸出口商品展销厅,方便国内外客商就地订购,利用现代化信息,与内地生产厂家联合,形成通畅的营销网络体系,推进边民互市贸易区建设。在全力争取边民互市贸易区开放的同时,要积极推进互市贸易区建设,自治区、地区优惠政策的全方位开放的特殊经济区域。进入互市贸易区的双方居民无需办理签证手续,若实行上述优惠措施可确保区内的经营者费用大幅降低,风险也相应减少,可吸引大量的客商入市经营。在争取国家项目、资金及政策支持的同时,努力通过招商引资、民间融资和财政投入等各种措施,实现口岸建设投资的主体多元化,切实加快口岸建材市场、工业加工区、物流园区、农贸市场、蔬菜基地规划建设,加大投资力度建设保鲜库,实现蔬菜大规模对哈国出口的规划建设。全力争取常年开关和边民互市贸易区开放,不断增强口岸的综合服务功能,激活口岸发展活力。
(八)大力实施走出去战略,鼓励企业开拓出口市场,扩大出口规模
充分利用国家外经贸发展的优惠政策,支持、引导企业到哈萨克斯坦进行农业综合开发,带动师劳务、商品的出口,促进边境口岸团场经济的发展。发挥口岸的有利条件,鼓励有实力的外经贸企业积极与海关协商在吉木乃口岸成立报关行,规范吉木乃口岸报关业务,促进师进出口规模快速发展。利用哈国斋桑湖鱼类资源优势,争取在哈国建一座冷库,进行鱼类速冻,进口国内,利用保鲜运输,促进国际货运业务的发展。抓住我国中石油公司在哈萨克斯坦边境区开发石油的机遇,利用国际商品价格差异,积极探索,争取从哈国进口石油液化气。引导各出口企业在口岸搞“跨国生产”和建立进口资源加工基地。利用吉木乃县距离哈国路途短的优势,积极鼓励企业进行“跨国生产”和建立进口资源加工基地。哈国对国外产品的依赖程度强,其建筑材料主要依靠进口,同时我区资源丰富,境内已探明的地下矿产资源有80多种,这就为国内企业进行“跨国生产”和加快发展进口资源加工业提供了充足的原料供应条件。今后要鼓励矿产、建筑、建材企业跨出国门,对我国资源进行开发,使企业获取较好的经济效益。
综上所析,**地区对外贸易总的呈上升趋势,进出口及经济都在上升,大开放为**地区对外贸易创造了有利条件,奠定了基础,**地区正在稳步前进,但因为经济体制改革还未全面完善,难免会存在着许多问题,但不管是从天时,还是从地利来说,**还是占有很大优势,对外贸易对**地区的发展非常有利的,对外贸易终会使**地区腾飞发达。因此,我们应以改革开放为前提,坚持走可持续发展道路,继续发展**地区的对外贸易。
大争之世 网游之复活 炼宝专家 混在三国当军阀重生之官道