第一篇:比亚迪(BYD)储能技术调研报告(内部资料
比亚迪(BYD)储能技术调研报告(内部资料,注意保密)ZT
Post By:2009-11-20 12:44:00
第一章 比亚迪(BYD)公司概况
比亚迪股份有限公司成立于1995 年2 月,是一家具有民营企业背景的香港上市公司,现拥有IT、汽车以及新能源三大产业,是一家集研究、开发、生产、销售为一体的深圳市重点高新技术企业。
深圳比亚迪(BYD)公司多年来一直致力于动力电池的研发和应用,并取得重大成果。BYD 的铁电池技术已经在电动汽车上得到充分应用,2008 年12 月,BYD 生产的F3DM 双模车成功上市;2008年下半年,BYD 利用成熟的动力电池技术进军新能源领域。
比亚迪基于铁电池核心技术实现能源储存,达到对电网移峰填谷、平滑负荷曲线的目的,形成对电网的有力支撑。2009 年9 月已经建成了2 个电池储能示范/试验电站,为探索电能存储的新途径打下了坚实的基础。
第二章 BYD储能技术
一、铁电池技术
1.铁电池特点及生产工艺
锂离子电池以工作电压高、体积小、储能密度高、响应速度快、循环寿命长、内阻小等特点而得到快速发 展。比亚迪生产的铁电池属于锂离子电池的一种,其正极材料为磷酸铁钴锂LiFeCoPO4,与传统的钴酸锂电池相比,铁电池的能量密度为钴酸锂电池的75%,但在制造成本、安全性能、循环寿命、功率输出范围等方面都具有明显优势。
比亚迪的铁电池生产工艺包括配料、涂布、辊压、表面检测、分切、卷绕、装配、烘烤、注液、陈化、化成、存放、分容、存放、分选、组装、模组分容等多道工序,采用自动化生产线,生产车间设计为无尘车间,较好的保证了电池的品质和电池之间的一致性。
2.铁电池技术参数
目前比亚迪能量型FV200A铁电池的技术参数如下:
额定电压:3.25V 容量:200Ah 重量:6.7kg 体积:389.7mm×57.7mm×145.7mm
充电电压:3.600±0.049V 充电电流:标准:100A,快充:200A,最大充电电流:600A 放电电流:常规:200A,快放:600A,最大放电电流:1000A 放电终止电压:2.00V 运行温度:充电:-10~+50℃,放电:-20~+60℃
运行相对湿度:10%~90% 内阻:≤1mΩ 自放电:25℃保存条件下,28天后,自放电不超过30mV 充放电效率:97% 根据上述数据推算,FV200A铁电池的储能容量约为0.65kWh,能量密度(体积)为198.4kWh/m3,能量密度(重量)为97kWh/吨。
3.铁电池试验测试项目
3.1循环寿命
铁电池常温条件下(25℃),1C充电电流,4C放电电流,循环6600次后,电池剩余容量保持在设计容量的80%。
测试表明铁电池的循环寿命受温度影响较大。如果长期工作于45℃,循环寿命可能缩短50%,如果长期工作于60℃,循环寿命将更短。
另一方面,铁电池的循环寿命受充放电速率的影响也较大。对于200Ah电池,如果采用0.125C(25A)充电,0.25C(50A)放电,循环寿命将达到7000-10000次,按1天1次循环计算可使用19年-27年,浅充浅放时寿命将更长。
3.2充电特性
铁电池的充电特性参见图1,在充电初期为恒流充电,当电池电压达到稳定值时,进行恒压充电。充电电流越小,达到恒压状态以及满充电状态所需的充电时间就越长。
3.3放电特性
铁电池的放电特性参见图2,其放电曲线较平稳,在大部分放电时间内能保持稳定的电压。当以小电流放电时,其放电电压能保持在较高水平,放电电流越大,电压稳定期越短,且放电电压越低。
4.铁电池生产能力
比亚迪现有铁电池FV200A生产能力为500节/天,折合年产量0.12GWh,预计2010年铁电池年产量将达到0.8GWh。
5.铁电池的回收处理
制造铁电池的材料均为无毒材料,其正极材料为磷酸铁钴锂,负极材料为碳类材料,正极板为铝箔,负极板为铜箔,介质是溶剂和锂离子电解质,隔膜为高分子聚合物,这些材料本身不对环境构成污染影响,与常规电池相比具有良好的环保性能。同时比亚迪公司拥有铁电池回收利用技术,可提取废弃电池中的有效成份进行重复利用,降低资源消耗,减少环境污染。
6.安全性分析
比亚迪铁电池新型安全阀设计,密封在电池内,炉温测试表明当电池内部压力超过0.2Mpa时,安全阀动作,防止电池爆炸产生。另外铁电池还通过了针刺、挤压、撞击、短路、过充、反充、过放、火烧等安全性测试,验证了铁电池具有较高的安全性。
二、换流技术 换流技术是蓄电池储能系统并网运行的核心技术之一。BYD采用了自行研制开发的双向换流器。
1.双向换流器的基本结构和技术参数
BYD双向换流器采用三桥臂整流/逆变电路,开关采用IGBT模块,控制单元为DSP芯片,除可进行整流和逆变外,还可以提供四象限无功输出。
BYD生产的双向换流器已应用于F3DM双模车。使用于电力领域的大功率双向换流器主要规格有100kW、200kW、800kW、1MW。目前BYD储能电站已使用的是100kW换流器(型号:**N100KA),200kW换流器在调试阶段,800kW、1MW换流器尚在研发阶段。**N100KA的结构图参见图3,主要技术参数如下:
1)尺寸:1000mm×600mm×2200mm 2)总重量:500kg 3)逆变数据: 最大逆变效率:98%
直流侧: 额定输入功率:102kW 最大输入电流:204A 直流输入电压范围:500V-880V
交流侧: 额定交流输出功率:100kW 工作电压范围:300V±10% 额定输出电流:192A 工作频率范围:50Hz±1% 电流总谐波畸变率:<3%
4)充电数据: 最大充电效率:98% 电网侧: 额定输入功率:102kW 输入交流电压:300V±10% 额定输入电流:196A 工作频率范围:50Hz±1% 电流总谐波畸变率:<3% 直流侧: 额定直流输出功率:100kW 输出电压范围:500V-800V 最大输出电流:200A 2.双向换流器的功能分析
双向换流器主要集成了换流、并网控制、功率调节、保护四大功能。
1)换流 双向换流器的主要功能是进行整流和逆变。在逆变过程中,由于电池放电将造成电池端电压下降,通过控制换流器IGBT的导通时间,补偿电压,以保证交流输出端的电压稳定。
2)并网控制 在放电状态下,双向换流器的DSP进行蓄电池的并网控制过程如下:首先,DSP控制投入直流侧开关,由DSP采样交流电压的相位和幅值,把逆变器的输出电压调至与电网侧电压同幅、同相、同频,完成后控制交流侧开关投入,实现并网。
3)功率调节 DSP采样直流侧电压、电流和交流侧电压、电流,形成反馈信号,确定交流输出的电流或充电电流大小,可按给定功率进行调节。
DSP还可控制交流输出电流、电压间的相角,实现功率因数在[-1,1]区间连续可调。
4)保护 换流器具有以下保护功能:①交、直流过压、欠压保护,②过频、欠频保护,③相序检测与保护,④防孤岛保护(检测电网断电时,停止换流器运行),⑤过热保护,⑥过载、短路保护。其中通过DSP软件和硬件共同实现过热保护,通过DSP软件、断路器和熔断器共同实现过流保护。
3.需进一步完善的方面 1)换流器的功率有待提高.目前BYD使用的换流器功率为100kW,对于10MW储能站,需要100个换流器柜,而300MW储能站,需要3000个换流器柜,占地面积大,线路连接繁琐,加大了电能损耗和运行维护难度; 2)换流器端电压有待提高。
目前直流端电压为500V-880V,交流端电压为300V,如需接入380V或更高电压等级的电网,还要增加专门的升压电路; 3)BYD的大功率换流器为近期开发产品,目前在试运行阶段,受测试工具、测试人员的限制,尚缺乏完整规范的测试报告,难以准确评判其运行性能;另一方面,由于试运行仅3个月,还缺乏可靠性数据及长期运行经验。
三、电池管理技术
电池管理系统用于控制电池模块,保证电池的安全可控运行。由于电池数目庞大,电池管理系统采用分层结构(参见图4),最底层的sBMS控制器用于控制一个电池模块,可以监视电池模块中每个电池单体的电压、温度,以及模块的电流和漏电流。最上层的电池堆管理器用于与中央控制系统交换信息,并向中间层的电池组管理器发布命令。中间层的电池组管理器的层数和各层数目可根据电池数目及分组需要配置。
电池管理系统除监视电池运行状态外,还具有过压、欠压、温度、漏电报警及保护功能,以及过流报警功能。
四、中央控制系统
中央控制系统(参见图5)负责监控整个系统的运行,其设有人机交互界面,内部集成算法控制部分、通讯控制部分以及驱动控制部分,用以根据人机交互界面输入的命令控制电池管理系统和双向换流系统的运行。
第三章 BYD储能技术的应用
一、比亚迪储能技术应用情况简介
基于BYD对储能技术的研究和其在电动汽车领域取得的应用成果,BYD于2008年下半年决定进军电力系统,截至2009年9月建成2个储能示范/试验电站,出力(容量)分别为200kW(800kWh)和1MW(4MWh)。电池储能电站/系统(BESS)的总体设计相似,由铁电池堆、电池管理系统(PBMS)、双向换流系统(TWI)、中央控制系统、变压器和并网开关柜等6个子系统组成。200kW 移动式储能示范/试验电站(参见图6)外型尺寸(单位:m): 12.02(L)× 2.35(W)× 2.38(H),重量约 20 吨,系统效率大于91%,特点是:便捷、可移动、通用、反应迅速、应急效果好、空间布局合理;理论使用寿命在20 年以上;建设周期短,维护成本低。本章将重点介绍1MW(4MWh)储能示范电站。
二、1MW(4MWh)储能示范/试验电站
1.1MW(4MWh)储能电站设计 1.1基本情况:
1)电站容量:额定功率 1,000kW,总容量4,000kWh(目前未达到设计要求)。
2)电压等级:10kV/0.3kV(AC50Hz)
3)地点:深圳市龙岗区坪山镇横坪公路 3001 号
4)占地面积:700㎡
5)设计服务年限:20年以上
6)运行环境:室温,5~85%RH 7)运行模式:少人值班/无人值守
8)系统效率:>90%
9)电池型号:比亚迪 FV200A铁电池
10)单体电池总数量:6000节。
1.2基本结构
1.2.1储能电站总体设计结构:
如图7所示,3个电池组并联后构成1个储能单元(功率100kW),再接入双向换流器直流侧,双向换流器交流侧接入低压母线。10个储能单元并联接在低压母线上,实现储能电站总容量为4,000kWh。储能电站通过10kV变压器与电网连接。
图7 1MW储能电站连接图
1.2.2 100kW储能单元结构
1)100kW储能单元框图(参见图8)
图8 100kW储能单元框图
2)100kW储能单元由3个电池组并联而成。每个电池组由20个标准电池模组串联组成,而每个标准电池模组又由10节FV200A单体铁电池串联构成。一个电池组共有200节FV200A单体铁电池,故100kW储能单元共有600节单体电池。
3)标准电池模组基本参数(参见图9)
图9 标准电池模组 根据BYD工程技术人员介绍,由于目前铁电池工厂的产能不足,该1MW储能电站实际额定功率只有333kW,容量仅1,333KWh。
1.3双向换流器与储能单元的设计
1)电压
相同功率的换流器可以对应不同连接结构的储能单元,储能单元的连接结构应与双向换流器的耐受电压相匹配。如:1MW换流器对应的储能单元可以由30个200节电池串联回路并联组成,电池组端电压为600V,则换流器直流侧额定电压应不低于600V;或者该储能单元由15个400节电池串联回路并联组成,电池组端电压为1200V,则换流器直流侧额定电压应不低于1200V。
2)单体电池数量
单体电池数量取决于电站储存总容量,而储存总容量又取决于所需放电功率和放电时间。对应100kW额定功率,如果要持续放电4小时,则储存总容量为400kWh,除以单体电池容量就可得出所需单体电池数量。
3)双向换流器数量
目前比亚迪已生产出100kW、200kW双向换流器,800kW、1MW双向换流器正在研发中。大容量双向换流器的使用可以减少换流柜的数量,在电压允许的范围内1个1MW换流柜可替代10个100kW换流柜,则可大大节省占地空间。
1.4 储能电站的电池管理系统和中央控制系统结构详见第二章,在此不再赘述。由于比亚迪对电力系统安全及可靠性需求不熟悉,其设计的继电保护系统在与外部电网的保护配合方面还有待完善。
2.运行方式
储能电站目前运行方式为晚上11点至早上7点,以0.125C倍率充电8小时,白天以 0.25C倍率放电4小时。用户可以根据实际情况进行设置,也可实时进行调整。
3.安全可靠性分析
3.1安全性分析
1)电池及电池管理系统
BYD 储能系统中的电池阵列采用了高安全性的Fe 电池,该电池在挤压、针刺、过充、高温试验条件下能做到不起火,不冒烟,不爆炸。电池管理系统对电池阵列进行温度、电压和电流等实时采样,具有过温、过压、欠压和过流等监测和保护功能。
2)充电系统
充电系统采用高频充电模块并联冗余方案,即使有某一个模块故障也不会影响整个充电系统的正常运行。充电系统具有过压保护、过流保护、欠流保护等功能,同时在充电过程中与电池管理系统(BMS)进行实时通信,监测充电状态,充电装置和电池组任一方面出现故障时,充电装置都会停止充电。
3)逆变并网系统
逆变并网系统采用高可靠性功率开关器件,DSP 数字控制,输出经工频变压器隔离,保证逆变器自身出现故障时不会影响电网。逆变器具有输入接反保护、输入欠压保护、输入过压保护、输出过载保护、输出短路保护、过热保护等功能,保证了逆变器自身工作的安全性。同时具有电网电压异常保护、电网频率异常保护、接地保护,孤岛效应保护,保证了系统并网运行的安全性和可靠性。
4)监控系统
监控系统实时监控电池及电池储能管理系统、充电系统、逆变并网系统和各个开关柜的状态,并通过联锁控制方式防止充电模式和放电模式同时进行,保证系统正常运行。
5)电气及继电保护系统
BYD 储能系统的高压、低压交流和直流等一次部分均采用具有过负荷和短路保护的开关器件,并通过配套的继电保护系统监测系统的运行状态,保证系统能够正常运行。
3.2可靠性分析
1)BYD1MW储能电站由相对独立的10个储能单元并联组成,当单个储能单元故障时,隔离故障的储能单元即可,不会造成储能电站整体退备,仅仅降低储能电站额定功率和总容量大小。
2)储能电站对每个电池均进行监控,可以对故障的电池进行准确定位,确保了储能电站可靠运行。
4.储能电站现场测试
为了验证储能电站性能,考察组在BYD工程技术人员的配合下进行了部分性能的现场测试。试验选择在#3储能单元进行。
4.1储能单元充放电转换时间测试
±30kW转换时间为2.07秒,±50kW转换时间为2.49秒,表明放电充电转换时间快。
4.2效率
#3储能单元充放电效率>90%,效率高。
4.3无功调整试验
现场测试表明,可通过双向换流器在全范围内调整相角,以实现无功调节。这在电网实际应用中意义重大。
4.4谐波测量结果偏大,通过滤波措施可改进。
4.5冲击电压、电流,噪声、电磁辐射等项目及甩负荷试验等本次调研时间内无法完成,需更深入测试获取相关数据。
5.1MW铁电池储能电站实际运行情况
该电站因铁电池产能原因实际只有333kW,容量1333kWh,投运期间基本能实现全部设计功能,系统设备运行正常,发生1起因开关容量选择不当而引起的故障,除触头烧损外未发生其它异常。已运行105天,共发电55209 kWh,运行期间有其他调试试验,按实际正常运行天数计算,平均每天发电量为1300kWh。
三、8MW(32MWh)、300MW(1800MWh)储能电站初步设计方案
为了能对大、中型铁电池储能电站形成一个初步的轮廓概念,调研小组要求BYD电力科学院分别按8MW(32MWh)和300MW(1800MWh)两种规模制定电站方案(详见附件七 8MW、300MW储能示范电站设计图)。
1.8MW(32MWh)储能电站初步设计方案
1.1设计结构
250节电池串联成1个电池组,5个电池组并联成1个储能单元,每个储能单元与200kW双向换流器直流侧连接,200kW双向换流器交流侧通过1个隔离变后与AC380V母线连接。40个储能单元和换流柜共同构成8MW(32MWh)储能电站。
1.2基本参数
1)8MW能量型储能电站,电池总数量为50000节,型号为FV200铁电池。
2)放电时间4小时,放电功率8MW;充电时间8小时,充电功率4MW。
3)200kW换流柜共40个,柜内主要有换流器、滤波器、隔离变压器。
4)电池架占地面积(包括过道)约1404平方米。
2.300MW(1800MWh)储能电站初步设计方案
2.1设计结构
250节电池串联成1个电池组,38个电池组并联成1个储能单元,每个储能单元与1个1MW双向换流器直流侧连接,1MW双向换流器交流侧通过1个隔离变后与AC380V母线连接。300个储能单元和换流柜共同构成300MW(1800MWh)储能电站。
2.2基本参数
1)300MW能量型储能电站,电池总数量为2,850,000节,型号为FV200铁电池。
2)放电时间6小时,放电功率300MW;充电时间8小时,充电功率225MW。3)1MW换流柜300个。
4)电池架占地面积(包括过道)约52182(附图标明25847是错的)平方米。
第四章 BYD储能技术在电网中的应用前景分析
一、铁电池储能电站在电网中的应用前景分析
1.在电网中的作用
铁电池储能电站具有储能、停止、发电、调相四个工况。工况之间转换灵活快速,从静止到发电只需2秒左右时间;现场试验证明负荷调整速度快,从-50kW到+50kW额定负荷只需2.49秒时间;出力调整范围广,可以从-100%到+100%额定出力范围内任意调整;效率高,现场效率试验表明,其综合循环效率达到90%以上。
随着电网峰谷差越来越大,用户对电能质量要求也越来越高,系统调峰填谷、调频调相任务繁重,蓄电池储能电站在这方面可发挥重要作用。在紧急情况下能快速响应,只要从系统取频率信号,与设定值比较,立即可以按策略调整运行状态,满足系统需要,也可以当黑起动电源。由此可见在系统中建设铁电池储能电站意义重大。
2.对环境的影响
1)制造铁电池的材料均为无毒材料,其正极材料为磷酸铁钴锂,负极材料为碳类材料,正极板为铝箔,负极板为铜箔,介质是溶剂和锂离子电解质,隔膜为高分子聚合物,这些材料本身不对环境构成污染影响,与常规电池相比具有良好的环保性能。同时比亚迪公司拥有铁电池回收利用技术,可提取废弃电池中的有效成份进行重复利用,降低资源消耗,减少环境污染。
2)蓄电池储能电站没有高速旋转设备等,仅双向换流器开关切换有较小噪声,不会造成过大的噪音污染。
3.技术可行性分析
1)从BYD的技术研究成果和现有的两个储能示范/试验电站的设计和运行情况看,技术上是可行的。
2)通过现场的工况转换、有功和无功调整、并网等实际操作试验,证明了电站基本能实现设计功能。投运至今,除因开关容量选择不当而造成触头烧损外未发生其它异常。
3)储能电站的核心技术是电池组、双向换流装置和电池管理及控制系统。铁电池在动力汽车使用效果良好;电池管理系统逻辑清晰,监控模拟量数量多但类型少、简单,可靠性也高;双向换流器目前用的是单屏100kW,运行至今未发生故障,但800 kW以上还没有得到考验。
4)电站储存容量理论上可以扩大到无穷大,只要增加电池组和双向换流装置数量即能加大储能站容量,扩展性好。
5)储能电站用 200Ah铁电池,如果采用0.125C(25A)充电,0.25C(50A)放电,循环寿命将达到7000-10000次,1天1次循环的话可使用19年-27年,浅充浅放其寿命将更长。电池寿命长短与运行的环境、工况有关,在环境温度25℃左右、浅充浅放条件下,寿命最长。
6)电池运行性能和电池的一致性有关,电池一致性好其运行性能也较好。电池的一致性主要靠自动化生产线、生产过程的先进技术、严格的质量控制、“分容”分组、无尘车间来保证。
4.安全性分析
1)铁电池与常规蓄电池相比其最大的优点就是安全性能好,该电池在挤压、针刺、过充、高温、震动等极端条件下试验能做到不起火,不冒烟,不爆炸。
2)与水力和火力等常规发电厂比,铁电池储能发电站设备不需承受高温、高压、高转速,其安全性将更高。事故时在与系统快速解列对电站的损害小。
5.可靠性分析
发电设备可靠性,是指设备在规定条件下、规定时间内,完成规定功能的能力。设备可靠性指标是设备可用性的量化描述,通过一系列的指标反映可靠性水平,也是行业内评比的重要指标。类似于抽水蓄能电站,铁电池储能电站可靠性指标可分为:等效可用系数、发电启动成功率、储能启动成功率、等效强迫停运率、非计划停运系数(次数)、电站跳闸次数等。铁电池储能电站因系统组成和控制逻辑简单,不需油、气、水等配套的辅助系统,大大降低了电站的故障率。万一发生某储能模块故障跳闸后,其它储能模块可继续运行而不影响储能电站整体运作,所以铁电池储能电站可靠性将明显提高。
6.经济性分析
从投资经济性角度分析,比较了同等规模的铁电池储能电站和抽水蓄能电站后发现,虽然铁电池的效率高、运行成本低,但由于单位千瓦投资大(铁电池约7000元/kW,抽水蓄能3500元/kW),年折旧率高(电池寿命按15年算是6.6%),其经济性略差于抽水蓄能电站。然而,从定性上讲铁电池的静态效益和动态效益总和应好于抽水蓄能电站。更准确的经济性分析,需进一步调研分析。
二、国外蓄电池储能电站建设和应用
据有关资料的不完全统计,国外从1980年至今建设了17个蓄电池储能系统,容量范围从200kW(400kWh)到20MW(14MWh)。蓄电池储能技术不断成熟,所用电池大部分是富液式铅酸蓄电池,仅4种使用阀控式铅酸蓄电池。容量较大的蓄电池储能系统为波多黎各电力局20MW(14MWh)蓄电池储能系统,1994年投运,1999年因很多电池失效而停止运行,5年运行过程对运营商具有很高价值。美国加利福尼亚州弗农蓄电池储能系统3MW(4.5MWh)和阿拉斯加Metiakatia岛屿蓄电池储能系统1MW(1.2MWh)采用阀控式铅酸电池,分别于1996年和1997年投运,至2006年这两个系统运行良好。波多黎各电力局蓄电池储能系统单位千瓦投资为1102美元,弗农蓄电池储能系统单位千瓦投资为1416美元,按1995年美元汇率8.3507,则单位千瓦投资分别为9202元和11824.6元。
三、结论
铁电池储能电站具有工况转换快、运行方式灵活、效率高、安全、可靠、环保、运行维护费低、建设工期短、可扩展性强等特点,铁电池储能电站在未来有着较好的发展前景。随着铁电池技术的发展、突破,铁电池储能电站在电网中的调峰、填谷、调相、事故备用及黑起动等作用将得到更好的发挥。但是铁电池储能电站单位千瓦的投资较大,大功率大容量电站在国、内外实际应用经验缺乏是影响其发展的重要因素。为推进铁电池储能电站的建设和应用,铁电池特性改进和制造成本的降低、电池连接组合及堆放方式的优化、大功率双向换流装置开发和可靠性的提高等问题需要继续研究和进一步提高。
四、建议
1、建设铁电池储能电站技术上是可行的,电站的调峰、填谷、调频、调相性能较好、可以考虑兴建。
2、现有电网容量大,铁电池储能电站容量目前暂不能做得太大,为充分发挥储能电站的调节作用,可针对储能电站的运行特点选择局部电网或负荷较小的电网试行,例如接入峰谷差较大的变电站以发挥移峰填谷的作用,或接入负荷特性变化快、差异大的系统以发挥调功调相作用。
3、铁电池储能电站的扩展性好,规划时可以预留空间,由小到大逐步建设发展。
4、铁电池储能电站与风能和光伏发电等不稳定的可再生能源的配合是将来发展的热点方向,是绿色能源接入电网的最佳选择,可积极关注该技术的进展。
第二篇:超导储能调研报告
目录
一、前沿...................................................................................................................................2
二、超导储能系统的构成及其工作原理...............................................................................3 2、1超导磁体......................................................................................................................4 2、2低温系统......................................................................................................................5 2、3功率调节系统..............................................................................................................6 2、4监控系统......................................................................................................................6
三、SMES在电力系统中的应用途径.....................................................................................7 3、1提高电力系统的稳定性。..........................................................................................7 3、2改善电能质量。..........................................................................................................7 3、3提供系统备用容量。..................................................................................................7 3、4用于可再生能源发电及微电网。..............................................................................8
四、超导磁储能(SMES)的发展历史及现状............................................................................8
一、前沿
超导磁储能系统(super conducting magnetic energy storage,SMES)利用超导体制成的线圈储存磁场能量,功率输送时无需能源形式的转换,具有响应速度快(ms级),转换效率高(≥96%)、比容量(1-10Wh/kg)/比功率(104-105kW/kg)大等优点,可以实现与电力系统的实时大容量能量交换和功率补偿。SMES在技术方面相对简单,没有旋转机械部件和动密封问题。目前,世界上1-5MJ/MW低温SMES装置已形成产品,100MJSMES已投入高压输电网中实际运行,5GWhSMES已通过可行性分析和技术论证。SMES可以充分满足输配电网电压支撑、功率补偿、频率调节、提高系统稳定性和功率输送能力的要求。
我国经济高速发展使得我国的电力系统已经成为世界上最庞大最复杂的系统之一。电力安全已经成为国家安全的一个重要方面。同时,信息化、精密制造以及生产生活对电力的依赖程度已经对电力供给的可靠性和供电品质提出了更高的要求。石油、煤炭等能源资源将无法满足未来电力的供给需要,开发新能源、可再生能源已成为一项保证国家可持续发展的战略性国策。21世纪电力工业所面临的主要问题有:应用分散电力系统,提高设备利用率,远距离大容量输电,各大电网间联网,高质量供电,改善负荷特性等。针对这些问题,与现有的采用常规导体技术的解决方案相对应,都有一种甚至多钟超导电力装置能为问题的解决提供新的技术手段。由于超导体的电阻为零,因此其载流密度很高,因此可以使超导电力装置普遍具有体积小、重量轻等特点,制成常规技术难以达到的大容量电力装置,还可以制成运行于强磁场的装置,实现高密度高效率储能。作为一种具备快速功率响应能力的电能存储技术,超导磁储能系统(Super conducting magnetic energy storage,SMES)可以在提高电力安全、改善供电品质、增强新能源发电的可控性中发挥重要作用。
二、超导储能系统的构成及其工作原理
SMES是利用超导磁体将电磁能直接储存起来,需要是再将电磁能返回电网或者其他负载。超导磁体中储存的能量E可由下式表示:
E=0.5LI²
超导磁体是SMES系统的核心,它在通过直流电流时没有焦耳损耗。超导导线可传输的平均电流密度比一般常规导体要高1-2个数量级,因此,超导磁体可以达到很高的储能密度,约为10J/m。与其他的储能方式,如蓄电池储能、压缩空气储能、抽水蓄能及飞轮储能相比,SMES具有转换效率可达95%、毫秒级的影响速度、大功率和大能量系统、寿命长及维护简单、污染小等优点。超导磁体储能装置原理示意图如下:
1、超导线圈
2、制冷剂
3、低温容器
4、直流电源
5、持续电流回路
SMES一般有超导磁体、低温系统、磁体保护系统、功率调节系统和监控系统等几个主要部分组成。图1—1是SMES装置的结构原理图,该结构是由美国洛斯阿拉莫斯实验室首先提出来的,以后SMES装置的研究设计一般都是一次结构作为参考原型。图中的变压器只是为了选择适当的电压水平以方便地连接SMES与电力系统,不属于SMES的必要部件。
图1—1 SMES装置的结构原理 2、1超导磁体
储能用超导磁体可分为螺管形和环形两种。螺管线圈结构简单,但周围杂散磁场较大;环形线圈周围杂散磁场小,但结构较为复杂。由于超导体的通流能力与所承受的磁场有关,在超导磁体设计中第一个必须考虑的问题是应该满足超导材料对磁场的要求,包括磁场在空间的分布和随时间的变化。除此意外,在磁体设计中还需要从超导线性能、运行可靠行、磁体的保护、足够的机械强度、低温技术与冷却方式等几个方面考虑。
螺管形
环形 2、2低温系统
低温系统维持超导磁体处于超导态所必须的低温环境。超导磁体的冷却方式一般为浸泡式,即将超导磁体直接至于低温液体中。对于低温超导磁体,低温多采用液氦(4.2K)。对于大型超导磁体,为提高冷却能力和效率,可采用超流氦冷却,低温系统也需要采用闭合循环,设置制冷剂回收所蒸发的低温液体。基于Bi系的高温超导磁体冷却只20-30K一下可以实现3-5T的磁场强度,基于Y系的高温超导磁体即使在77K也能实现一定的磁场强度。随着技术的进步,采用大功率制冷机直接冷却超导磁体可成为一种现实的方案,但目前的技术水平,还难以实现大型超导磁体的冷却。
低温杜瓦
制冷系统 2、3功率调节系统
功率调节系统控制超导磁体和电网之间的能量转换,是储能元件与系统之间进行功率交换的桥梁。目前,功率调节系统一般采用基于全控型开关器件的PWM变流器,他能够在四象限快速、独立的控制有功和无功功率,具有谐波含量低、动态响应速度快等特点。根据电路拓扑结构,功率调节系统用变流器可分为电流源型(Current Source Converter,CSC)和电压源型(Voltage Source Converter,VSC)两种基本结构。由于超导磁体固有的电流源特性,CSC的直流侧可以与超导磁体(Superconducting Coil,SC)直接连接,而VSC用于SMES时在其直流侧必须通过斩波器(Chopper)与超导磁体相连。2、4监控系统
监控系统由信号采集、控制器两部分构成,其主要任务是从系统提取信息,根据系统需要控制SMES的功率输出。信号采集部分检测电力系及SMES的各种技术参量,并提供基本电气数据给控制器进行电力系统状态分析。控制器根据电力系统的状态计算功率需求,然后
SMES电流源型和电压源型变流器
通过变流器调节磁体两端的电压,对磁体进行充、放电。控制器的性能必须和系统的动态过程匹配才能有效的达到控制目的。SMES的控制分为内环控制和外环控制。外环控制器做为主控制器用于提供内环控制器所需要的有功和无功功率参考值,是由SMES本身特性和系统要求决定的;内环控制器则是根据外环控制器童工的参考值产生变流器开关的触发信号。
三、SMES在电力系统中的应用途径 3、1提高电力系统的稳定性。
SMES作为一个可灵活调控的有功功率源,可以主动参与系统的动态行为,既能调节系统阻尼力矩又能调节同步力矩,因而对解决系统滑行失步和振荡失步均有作用,并能在扰动消除后缩短暂态过渡过程,使系统迅速恢复稳态。3、2改善电能质量。
由于SMES可发出或吸收一定的功率,可用来减小负荷波动或发电机出力变化对电网的冲击,SMES可作为敏感负载和重要设备的不间断电源,同时解决配电网中发生异常或因主网受干扰而引起的配电网向用户宫殿中产生异常的问题,改善供电品质。3、3提供系统备用容量。
系统备用容量的存在及其大小,既是一个经济问题,又是涉及电网安全的技术问题,对于保障电网的安全裕度。事故后快速恢复供电具有重要作用。以目前的水平,SMES高效储能特性可用来储存应急备用电力,但是不足以作为大型电网的备用容量。3、4用于可再生能源发电及微电网。
SMES的高效储能与快速功率调节能力可在风能、太阳能等可再生能源发电系统中平滑输出功率波动,有效抑制这类电源引起的电压波动和闪变等电能质量问题,提高并网运行的可控性与稳定性。微网是有效利用分散的新能源提高电力系统供电可靠性的一项新兴技术,SMES可以改善微网的并网特性、提高微网的孤岛运行性能。
四、超导磁储能(SMES)的发展历史及现状
近30年来,SMES的研究一直是超导电力技术研究的热点之一,20世纪70年代提出SMES的概念时,着重的是其储能能力,期望可以作为一种平衡电力系统日负荷曲线的储能装置。随着技术的发展,SMES已不仅仅是一个储能装置,而是一个可以参与电力系统运行和控制的有功、无功功率源,它可以主动参与电力系统的功率补偿,从而提高电力系统的稳定性和功率传输能力,改善电能质量。几十年的发展已经是SMES开始进入电力系统试运行,也有了部分商业化产品。
1969年Ferrier提出了利用超导电感储存电能的概念。20世纪70年代初,威斯康辛(Wisconsin)大学应用超导中心利用一个由超导电感线圈和三相AC/DC格里茨(Graetz)桥路组成的电能储存系统,对格里茨桥在能量储存单元与电力系统相互影响中的作用进行了详细分析和研究,发现装置的快速响应特性对于抑制电力系统振荡非常有效,开创了超导储能在电力系统应用的先。70年代中期,为了解决BPA(Bonneville Power Administration)电网中从太平洋西北地区到南加州1500km的双回路交流500kv输电线上的低频振荡问题,提高输电线路的传输容量,LASL和BPA合作研制了一台30MJ/10MW的SMES并将其安装于华盛顿塔科马(Tacoma)变电站进行系统试验。30MJSMES系统是超导技术在美国第一次大规模的电力应用,现场试验结果表明SMES可以有效解决BPA电网中从太平洋西北地区到南加州双回路交流输电线上的低频振荡问。
1987年起,美国核防御办公室(Defense Nuclear Agency,DNA)启动了SMES-ETM(Engineering Test Model)计划,开展了大容量(1~5GWh)SMES的方案论证,工程设计和研。到1993年底,R.Bechtel团队建成了1MWh/500MW的示范样机,并将其安装于加利福尼亚州布莱斯,可将南加里福尼亚输电线路的负荷传输极限提高8%。
此外,美国在小容量SMES研究和应用方面也开展了大量和卓有成效的工作。1988年,SI公司开始进行中小容量(约1~3MW/1~10MJ)和可移动SMES的开发和商业化,以解决供电网和特殊工业用户的电能质量问题。此后,ASC公司在SI的基础上,又提出了分布式SMES(Distributed SMES,D-SMES)等概念,并对诸如改善配电网的电能质量、为对电能质量敏感的工业生产基地提供高质量不间断电源以及提高供电网电压稳定性问题进行了研究。1990~2004年间,SI/ASC公司先后有约20多台SMES投入运行。美国、德国和日本等都提出研制100kwh等级的微型SMES,这种SMES可为大型计算中心、高层建筑及重要负荷提供高质量、不间断的电源,同时也可用于补偿大型电动机、电焊机、电弧炉、轧机等波动负载引起的电压波动,它还可用作太阳能和风力发电的储能等。美国AMSC公司还提出研制一种新的D-SMES,用于配电网的功率调节。目前,美国已有多台微型超导储能装置在配电网中实际应用,美国还将研制100MJ/50MW的SMES安装在CAPS(the Center for Advanced Power System)基地,SMES不仅可以为脉冲功率试验提供能量支撑,而且它的现场师范运行对军用和民用SMES技术的发展都很有意义。
1999年,德国的ACCEL、AEG和DEW联合研制了2MJ/800kWSMES,解决DEW实验室敏感负荷的供电质量问题。日本九州电力公司先后研制了30kJ以及3.6MJ/1MW的SMES,日本的中部电力公司(1MJ)、关西电力公司(1.2MJ)、国际超导研究中心(48MJ/20MW)也分别进行了EMSE的研究工作。
在国内,中国科学院电工研究所、中国科学院合肥分院等离子体物理研究所等单位很早就开始了超导磁体的研究工作,在超导磁体分离、磁流体推进、核磁共振乃至磁约束核聚变托卡马克磁体等方面做了大量工作。进入21世纪后,随着高温超导技术的进步,清华大学研制了3.45kJBi-2223SMES磁体,研制了150kVA的低温超导磁体储能系统并将其用于改善电能质量的实验室研究。2005年华中科技大学研制成功了35Kj/7.5kW直接冷却高温超导SMES实验样机。中科院电工所提出了基于超导储能的限流器方案并研制了实验样机,2006年又启动了1MJ/0.5MVA高温超导SMES的研究项目。
第三篇:燃料电池材料及其储能技术
燃料电池材料及其储能技术
姓名:李浩杰
学号:2014050101018
摘要:出于对环境友好、高转换效率、高功率、高能量密度的能源技术的需求,世界各国纷纷开展对于性能优良的燃料电池的研究。其研究重点主要集中在四个方面:电解质膜、电极、燃料、系统结构。其中又以前三个为热点。目前,由于在燃料大规模制备上的困难以及其在工作时需要的一些昂贵的贵金属,燃料电池大规模商业应用受到一定限制。关键字:燃料电池、电解质膜、储能
一、燃料电池原理
燃料电池是一种使用燃料进行化学反应产生电能的装臵。所用的燃料主要包括氢气、甲醇、乙醇、天然气、汽油以及一些含氢有机物。氢气可以直接作为燃料电池的燃料,其他气体一般需要处理为含氢气的重整气。由于其燃料来源广泛,发电后产生纯水和热,能量转换效率高达80%~90%,对环境无污染,所以广泛受到各国科学家的关注,被认为是继火电、水电、核电之后的第四代发电方式。
燃料电池的工作原理图如上所示。在阳极,氢气与碱中氢氧根的在电催化剂的作用下,发生氧化反应生成水和电子:
电子通过外电路到达阴极,在阴极电催化剂的作用下,参与氧的还原反应:
生成的氢氧根通过多孔石棉膜迁移到氢电极。
为保持电池连续工作,除需与电池消耗氢气、氧气等速地供应氢气和氧气外,还需连续、等速地从阳极(氢电极)排出电池反应生成的水,以维持电解液浓度的恒定;排除电池反应的废热以维持电池工作温度的恒定。
容易看出,与其他电池相比,燃料电池内部并不储能,它只是高效地将从外部源源不断通入的燃料转换成电能,所以,它更像是一个微型的发电站。
二、燃料电池发展历程
1、国外
1839年,格罗夫发表世界上第一篇关于燃料电池的报告。初期的燃料电池使用气体为氧化剂和燃料,但因为气体在电解质溶液中溶解度很小,导致电池的工作电流密度极低。后来,多孔气体扩散电极和电化学反应三相界面概念的提出以及实际材料的突破,使燃料电池具备了走向实用化的必备条件。
60年代,由于载人航天器对于大功率、高比功率与高比能量电池的迫切需求,燃料电池开始引起一些国家与军工部门的高度重视。其典型成果为阿波罗登月飞船上的主电源—培根型中温氢氧燃料电池。
70~80 年代,由于出现世界性的能源危机和燃料电池在航天上成功应用及其高的能量转化效率,促使世界上以美国为首的发达国家大力支持民用燃料电池的开发,进而使磷酸型及熔融碳酸盐型燃料电池发展到兆瓦级试验电站的阶段。
20世纪90年代以来,出于可持续发展、保护地球、造福子孙后代等目的,基于质子交换膜的燃料电池开始高度发展。特别是在电动车行业,世界上所有的大汽车公司与石油公司均已介入燃料电池汽车的开发。
总的来说,燃料电池主要经历了经历了第1代碱性燃料电池(AFC),第2代磷酸燃料电池(PAFC),第3代熔融碳酸盐燃料电池(MCFC)后,在20世纪80年代迅速发展起了新型固体氧化物燃料电池(SOFC)。
2、国内
中国燃料电池的研究始于1958年。
1970年前后,开始了燃料电池产品开发工作并在70年代形成了燃料电池产品的研制高潮。主要开发项目是由国家投资的航天用碱性氢氧燃料电池,该产品的研制目标是为了配合中国航天技术发展计划的一个项目。
到70年代末,由于总体计划的变更而中止。但与该项计划实施的同时,一些由地方政府投资与使用部门合作的应用碱性燃料电池项目也进行了开发,只是尚未形成应用。
80年代初、中期,中国燃料电池的研究及开发工作处于低潮。
进入90年代以来,在国外先进国家燃料电池技术取得巨大进展,一些产品已进入准商品化阶段的形势影响下,中国又一次掀起了燃料电池研究开发热潮。
三、几种燃料电池简介
1、分类
(1)按燃料电池的运行机理可分为酸性燃料电池和碱性燃料电池。
(2)按电解质的种类不同,燃料电池可分为碱性燃料电池、磷酸燃料电池、熔融碳酸盐燃料电池、固体氧化物燃料电池、质子交换膜燃料电池等。在燃料电池中,磷酸燃料电池、质子交换膜燃料电池可以冷起动和快起动,可以作为移动电源,满足特殊情况的使用要求,更加具有竞争力。
(3)按燃料类型分,有氢气、甲烷、乙烷、丁烯、丁烷和天然气等气体燃料;甲醇、甲苯、汽油、柴油等有机液体燃料。有机液体燃料和气体燃料必须经过重整器“重整”为氢气后,才能成为燃料电池的燃料。(4)按燃料电池工作温度分,有低温型,工作温度低于200℃;中温型,工作温度为200~750℃;高温型,工作温度高于750℃。
上图为几种常见燃料电池各种性能,应用环境的简单对比,现主要以电解质分类形式介绍几种常见的燃料电池。
2、质子交换膜燃料电池
质子交换膜燃料电池是最接近商业化的一种燃料电池,最有希望作为未来电动汽车的发动机。在各种燃料电池中,它的工作温度是最低的,也是目前发展规模最大的一种。
上图为典型的单结质子交换膜燃料电池结构。由质子交换膜、催化层、气体扩散层、密封圈、双极板等关键部件组成。通常以全氟磺酸型质子交换膜为电解质膜,用Pt/C或者PtRu/C作为催化剂。以阴阳极催化剂层和电解质膜所组成的三合一组件统称为膜电极,是 它的核心部件。
实际应用的燃料电池电站是一个很复杂的系统,它包括燃料供应、氧化剂供应、电池反应、水热管理等多个子系统。
它的工作原理是是氢气和氧化剂分别由燃料电池的阳极和阴极流道进入电池内部,经过气体扩散层后到达电极催化层。阳极侧的氢气在催化剂的作用下,解离成氢离子和电子,氢离子穿过质子交换膜到达阴极侧,电子则经过外电路形成电流后到达阴极;在阴极催化剂的作用下,氧气接受质子和电子生成水分子,在整个过程中,外电路的电子流动形成电流。
目前限制质子交换膜燃料电池进入商业化的最主要原因是成本和寿命两大问题,寻找和开发新型材料成为解决这两大问题、推进商业化进程的必然选择,也是质子交换膜燃料电池近些年来的研究重点和热点。
3、熔融碳酸盐燃料电池
熔融碳酸盐燃料电池(MCFC)在高温下工作(约 650℃),可以利用排气余热和燃气轮机混合发电,发电效率通常高达50%以上,,可用多种燃料(如天然气和煤),不需要用铂等贵重金属作为催化剂,有望应用到中心电站,工业化或商业化联合发电,是目前燃料电池研究的主流之一,上图为平板式熔融碳酸盐燃料电池单体结构示意。它由电极-电解质、燃料流通道、氧化剂流通道和上下隔板组成。目前,MCFC的主要技术问题已经基本解决。美国、日本等正在进行十万瓦和兆瓦级的实用演示试验,预计距商业化为期不远。
4、固体氧化物燃料电池
固体氧化物燃料电池是20世纪八九十年代燃料电池研究的成果,该燃料电池具有诸多优点。比如避免了使用液态电解质所带来的腐蚀和电解质流失等问题,反应迅速,无须贵金属催化剂,能量利用率高达80%以上,燃料广泛,可以承受较高浓度的硫化物和CO的毒害,因此对电极的要求大大降低。基于此,目前世界各国都在积极投入SOFC技术的研发。
上图为固体氧化物燃料电池的工作原理图。它主要由阴极、阳极、电解质和连接材料组 成。在阳极和阴极分别送入还原、氧化气体后,氧气在多孔的阴极上发生还原反应,生成氧负离子。氧负离子在电解质中通过氧离子空位和氧离子之间的换位跃迁达到阳极,然后与燃料反应,生成水和二氧化碳,因而形成了带电离子的定向流动。
四、燃料电池的应用
1、航天领域
早在上个世纪60年代,燃料电池就成功地应用于航天技术,这种轻质、高效的动力源一直是美国航天技术的首选。比如,以燃料电池为动力的 Gemini宇宙飞船1965年研制成功,采用的是聚苯乙烯磺酸膜,完成了8天的飞行。后来在Apollo宇宙飞船采用了碱性电解质燃料电池,从此开启了燃料电池航天应用的新纪元。
中国科学院大连化学物理研究所早在70年代就成功研制了以航天应用为背景的碱性燃料电池系统。A型额定功率为 500 W,B型额定功率为 300 W,燃料分别采用氢气和肼在线分解氢,整个系统均经过环境模拟实验,接近实际应用。这一航天用燃料电池研制成果为我国此后燃料电池在航天领域应用奠定了一定的技术基础。
2、潜艇
燃料电池作为潜艇AIP动力源,从2002年第一艘燃料电池AIP潜艇下水至今已经有6艘在役。FC-AIP 潜艇具有续航时间长、安静、隐蔽性好等优点,通常柴油机驱动的潜艇水下一次潜航时间仅为 2天,而FC-AIP潜艇一次潜航时间可达3周。
3、电动汽车
随着汽车保有量的增加,传统燃油内燃机汽车造成的环境污染日益加剧,同时,也面临着对石油的依存度日益增加的严重问题.燃料电池作为汽车动力源是解决因汽车而产生的环境、能源问题的可行方案之一。燃料电池汽车示范在国内外不断兴起,较著名的是欧洲城市清洁交通示范项目。
4、固定式分散电站
污染重、能效低一直是困扰火力发电的核心问题,燃料电池作为低碳、减排的清洁发电技术,受到国内外的普遍重视。比如PAFC电站的代表性开发商UTC Power 公司已经开发出了400 k W 磷酸燃料电池发电系统;PEMFC电站的代表性开发商Ballard 公司开发出了 250 k W ~ 1 MW的示范电站。
第四篇:2016年储能技术成本分析报告
2016年储能技术成本分析报告
目录
摘要……………………………………………………………………………………1
一、概述………………………………………………………………………………1
二、储能技术…………………………………………………………………………6
(一)物理储能………………………………………………………………………7
(二)电化学储能……………………………………………………………………10
图表目录
图表1:全球电化学储能项目累计装机规模………………………………………4 图表2:中国电化学储能项目累计装机规模………………………………………4 图表3:全球储能装机预测……………………………………………………5 图表4:全球各类储能规模预测……………………………………………………5 图表5:电化学储能将呈现星星之火可以燎原之势………………………………6 图表6:储能在整个电力价值链中的作用…………………………………………6 图表7:抽水储能的特点……………………………………………………9 图表8:压缩空气储能的特点……………………………………………………9 图表9:飞轮储能的特点……………………………………………………10 图表10:热储的特点………………………………………………………………10 图表11:氢储的特点………………………………………………………………10
2016年储能技术成本深度分析报告
摘要:
我们预判分布式电站将在十三五期间有大发展,作为基础性资产的电站上一定规模(有研究表明占比超过10%),其随机性、间歇性和地域性等特征越发突出,导致用电和发电不对称,对电网还会造成一定的冲击,为了促进光伏电站规模持续性增长以及占一次能源消费结构的比重逐步提高,势必会对储能技术和相关设备有所诉求,储能领域将会成为下一片蓝海。
近期,国家能源局先后下发了《国家能源局关于推动电储能参与“三北”地区调峰辅助服务工作的通知(征求意见稿)》、《关于促进电储能参与“三北”地区电力辅助服务补偿(市场)机制试点工作的通知》(国能监管[2016]164号)和《中国制造2025--能源装备实施方案的通知》,进一步对储能领域进行了战略布局。我们认为,蓄势待发,2016年将是储能领域最突出的表现。
与市场不同的是,基于国外实际的储能落地项目,通过查阅大量资料,我们总结了最近几年储能技术的研究进展和各储能技术的特点、相关成本和应用范围。从各成本要素的角度来看,压缩空气储能的功率转换成本最高(846欧元/kW),相应地,Ni-Cd电池的成本最低,仅只有240欧元/kW。但是,在储能成本方面,电化学储能相对与物理储能的成本要高。氢储和压缩空气储能(地下)相关储能成本仅仅只有4和40欧元/kW。从全生命周期成本的角度来看,物理储能明显低于电化学储能。飞轮储能在电力质量和调频服务方面具有成本优势。但是,物理储能的应用领域受到地理条件的限制明显,因此,随着技术进步的不断加快,未来电化学储能的成本有望持续降低,应用前景更加广泛。
一、概述:储能—2016年是储能元年
2015年11月公布的《中共中央关于制定国民经济和社会发展第十三个五年规划的建议》(简称《建议》)中,“坚持绿色发展,着力改善生态环境”部分提出了推进能源革命,加快能源技术创新,提高非化石能源比例,加快发展风能、太阳能,加强储能和智能电网建设,发展分布式能源,推行节能低碳电力调度,实施新能源汽车推广计划等重点工作。可以说,《建议》明确指出了储能建设的必要性和战略方向。同时,截至2015年底,我国光伏电站的装机规模已经达到43 GW,作为基础资产的电站达到一定规模后,储能的建设势必提上议事日程。根
2016年储能技术成本深度分析报告
据规划,十三五期间,光伏电站累计将达到150 GW,其中分布式电站将达到70 GW,具备10倍的成长空间。同时,近期,国家能源局新能源与可再生能源司副司长梁志鹏出席第九届亚洲太阳能论坛并指出,到2020年全球光伏规模在450至600 GW,到2030年的时候要达到1000至1500 GW。根据GTM Research发布报告称,预计未来5年内,储能系统的成本有望下降41%。因此,作为基础资产的光伏电站而言,光伏电站规模化为储能的建设提供了旷阔的增长空间。
从全球储能领域发展态势来看,目前,国际上储能累计装机有了一定的规模,以抽水储能为主,电化学储能将呈现星星之火可以燎原之势(见图“蓝点分布区域”),到2015年底全球累计电化学储能装机规模达到890.9 MW。国际上,欧美日等发达国家一直比较重视储能技术的研究和应用。以美国储能产业发展来看,美国2015年第4季度新装储能规模为112 MW,整个2015年达成221 MW,相当于增长率为243%。其中,电网级应用占比为85%,主要位于PJM市场(2015年新增储能规模为160 MW)。behind-the-meter部署较少,但是这一领域的增长率最快,2015年增长率高达405%。据GTM的预测,美国储能市场到2019年会超过1 GW,到2020年规模达1.7 GW,市场规模在25亿美元,相当于人民币157亿元左右。
从中国储能领域发展态势来看,我国储能领域应该说只是起步阶段,据CNESA不完全统计,我国电化学储能仅105.5 MW。分布式发电及微网领域的储能项目在我国全部储能项目中的占比从2013年的24%,提高到2015年的46%。对于新的领域,从国际经验来看,储能领域初期技术研发和成本等因素都比较高,会相应地有政府政策扶持,储能领域才能有所发展。据不完全统计,美国联邦和州层面针对储能的法案和政策就达到了21项。欧盟和日本也均有针对储能的扶持政策。储能的政策扶持主要包括:投资方面给予一定的布贴或税收减免;技术研究方面给予一定的补贴;建立相应的储能领域的体制机制。因此,我们认为,初期通过政府政策的配套和资金的扶持是必要的,2016年储能领域的相关配套政策会陆续出台,储能产业将会大发展。
2016年3月10日,能源局印发《国家能源局关于推动电储能参与“三北”地区调峰辅助服务工作的通知(征求意见稿)》,鼓励发电、售电企业、电力用户和地理辅助服务提供商等投资建设电储能设施,并可参加发电侧调峰服务市场;鼓
2016年储能技术成本深度分析报告
励各地规划集中式新能源发电基地时,配置适当规模的电储能设施,实现电储能设施与新能源、电网的协调优化运行;鼓励在小区、楼宇、工商企业等用户侧建设分布式电储能设施并作为需求侧资源参与辅助服务市场交易。
2016年6月7日,国家能源局正式发布《关于促进电储能参与“三北”地区电力辅助服务补偿(市场)机制试点工作的通知》(国能监管[2016]164号),决定开展电储能参与“三北”地区电力辅助补偿(市场)机制试点,挖掘“三北”地区电力系统接纳可再生能源的潜力,同时满足民生供热需求。其目标为“三北”地区各省(区、市)原则上可选取不超过5个电储能设施参与电力调峰调频辅助服务补偿(市场)机制试点,已有工作经验的地区可以适当提高试点数量,探索商业化应用,推动建立促进可再生能源消纳的长效机制。
2016年6月20日,国家发改委、工信部、能源局联合印发了关于《中国制造2025—能源装备实施方案的通知》。《通知》中,确定了储能装备等15个领域的发展任务,并明确资金支持、税收优惠、鼓励国际合作等五大保障措施。其中储能装备方面,涉及了抽水蓄能、压缩空气储能、飞轮储能、液流电池、锂电池、超级电容器等方面。同时,《通知》中“在储能装备方面,高性能铅炭电池储能装备就是要进行技术攻关的重点项目之一。其目标为研究高导电率、耐腐蚀的新型电极材料设计、合成和改性技术,以及长寿命铅炭复合电极和新型耐腐蚀正极板栅制备技术,掌握铅炭电池本体制备技术,开发长寿命、低成本铅炭电池储能装置。”对铅碳电池在储能领域内的未来发展方向给予了明确的表述。我们认为,蓄势待发,2016年将是储能领域最突出的表现。
储能在整个电力价值链上起到至关重要的作用。它的作用涉及发电、传输、分配乃至终端用户--包括居民用电以及工业和商业用电。在发电端,储能系统可以用于快速响应的调频服务及可再生能源如风能、太阳能对于终端用户的持续供电,这样扬长避短地利用了可再生能源清洁发电的特点,并且有效地规避了其间断性、不确定性等缺点;在传输端,储能系统可以有效地提高传输系统的可靠性;在分配端,储能系统可以提高电能的质量;在终端用户端,储能系统可以优化使用电价,并且保持电能的高质量。随着分布式电源的发展和智能电网的提出,储能系统的作用将会更加重要。
2016年储能技术成本深度分析报告
图1:全球电化学储能项目累计装机规模
图2:中国电化学储能项目累计装机规模
2016年储能技术成本深度分析报告
图3:全球储能装机预测
图4:全球各类储能规模预测
2016年储能技术成本深度分析报告
图5:电化学储能将呈现星星之火可以燎原之势
图6:储能在整个电力价值链中的作用
二、储能技术:百家争鸣、百花齐放
储能技术一般分为热储能和电储能,未来应用于全球能源互联网的主要是电储能。电储能技术主要分为物理储能(如抽水蓄能、压缩空气储能)、电化学储能(如铅酸电池、钠硫电池、液流电池)和电磁储能(如超导电磁储能、超级电容器储能)三大类。
与市场不同的是,基于国外实际的储能落地项目,通过查阅大量资料,我们
2016年储能技术成本深度分析报告
总结了最近几年储能技术的研究进展和各储能技术的特点、相关成本和应用范围。
对比各种储能技术,成熟度和优越性最高的要属抽水蓄能、压缩空气储能、氢储、合成天然气储能,其中抽水蓄能占比最高,达到99%,占全球发电量的3%。
(一)物理储能
抽水蓄能是当前最主要的电力储能技术。抽水储能电站配备上、下游两个水库,负荷低谷时段抽水储能设备工作在电动机状态,将下游水库的水抽到上游水库保存,负荷高峰时抽水储能设备处于发电机的状态,利用储存在上游水库中的水发电。目前,世界范围内抽水蓄能电站主要集中分布在美国、日本和西欧等国家和地区,并网总装机容量超过7000万kW。而美国、日本和西欧等经济发达国家抽水蓄能机组容量占到了世界抽水蓄能电站总装机容量的70%以上。近年来,世界大型抽水蓄能电站的应用案例主要有日本神流川电站(装机282万kW),美国落基山电站(装机76万kW),德国金谷电站(装机106万kW)。目前,日本有41座抽水蓄能电站,装机容量24.65 GW,占日本发电总装机容量10%以上。在日本抽水蓄能电站主要功能在于调峰、调频、填谷、瞬时运行的事故备用能力以及经济性蓄水。美国抽水蓄能电站年发电利用小时数差别很大,部分电站年发电利用小时数较高,最高达1953h,在系统中主要承担调峰填谷、促进电力系统合理经济运行的任务。有一半抽水蓄能电站年发电利用小时数少于1000h,最少的全年仅34h,它们在系统中除参加调峰,主要担负调频、调相、提高电压稳定性和供电质量并承担事故备用。
压缩空气储能也是一种物理储能形式。储能时,压缩机将空气压缩并存于储气室中,储存室一般由钢瓶、岩洞、废弃矿洞充当。释能时,高压空气从储气室释放,做功发电。目前全球压缩空气储能装机约40万kW。压缩空气储能技术研究始于20世纪40年代,70年代后,德、美等国相继投运压缩空气储能系统,将几十至一百多个大气压的空气储存于矿洞或地下洞穴,释能时采用天然气补燃的方式通过燃气轮机发电。压缩空气储能技术术比较成熟,但大规模的应用需要洞穴储气,选址有一定困难,2000年后全球无新增商业化运营的案例。
飞轮储能主要应用于为蓄电池系统作补充,如用于不间断电源/应急电源、电网调峰和频率控制。飞轮储能利用电动机带动飞轮高速旋转,将电能转化成机
2016年储能技术成本深度分析报告
械能储存起来,在需要时飞轮带动发电机发电。近年来,一些新技术和新材料的应用,使飞轮储能技术取得了突破性进展,例如:磁悬浮技术、真空技术、高性能永磁技术和高温超导技术的发展,极大地降低了机械轴承摩擦与风阻损耗;高强度纤维复合材料的应用,飞轮允许线速度大幅提高,大大增加了单位质量的动能储量;电力电子技术的飞速发展,使飞轮储存的能量交换更为灵活高效。
氢储能是近两年受德国等欧洲国家氢能综合利用后提出的新概念。氢储已被证明是最有前途的储能技术之一,因为它适用范围较为广泛,如交通和电力。同时,结合可再生能源或低碳能源技术,氢储可以减少温室气体排放。此外,氢储能够有效地整合了大量的间歇性风能。氢储能可看作是一种化学储能的延伸,其基本原理就是将水电解得到氢气和氧气。以风电制氢储能技术为例,其核心思想是当风电充足但无法上网、需要弃风时,利用风电将水电解制成氢气(和氧气),将氢气储存起来;当需要电能时,将储存的氢气通过不同方式(内燃机、燃料电池或其他方式)转换为电能输送上网。通常所指的氢储能系统是电-氢-电的循环,且不同于常规的锂电池、铅酸电池。其前端的电解水环节,多以功率(kW)计算容量,代表着氢储能系统的“充电”功率;后端的燃料电池环节,也以功率(kW)计算容量,代表着氢储能系统的“放电”功率;中间的储氢环节,多以氢气的体积(标准立方米Nm3)计算容量,如换算成电能容量,1Nm3氢气大约可产生1.25kWh电能,储氢环节的容量大小决定了氢储能系统可持续“充电”或“放电”的时长。
目前欧、美、日等都制定了氢能发展战略和详细的计划,并在迅速而有步骤地推进。
欧盟实现不依赖化石能源的可持续发展目标的其中重要一环就是实现Power-to-Gas(P2G)技术路线,即把可再生能源以氢气或甲烷等方式大规模储存起来并加以应用。根据德国制定的《氢能与燃料电池计划》中的“氢的生产和配送”部分分析,德国目前的发展进度已经大大提前。德国一些大型能源电力公司,如EON和ENERTRAG等都在政府的宏观指导和具体支持下积极实施P2G项目,以期最终实现利用风能等可再生能源的大规模制氢,这将是今后大规模利用风能最有前景的技术路线之一。下一步德国计划开展更大规模的20-50MW风力发电制氢的P2G示范项目,为未来的氢能源经济培育基础。
日本可能是世界上最接近氢社会的国家。这并不单单是因为燃料电池汽车
2016年储能技术成本深度分析报告
(FCV)的产业化,而是因为全世界燃料电池进入千家万户的国家只有日本。2009年,家用燃料电池“ENE-FARM”的上市在全球开了先河。这种电池利用煤气和煤油提取氢气,注入燃料电池中发电。发电时产生的废热用来烧水、泡澡和地暖使用,能源效率超过9成。ENE-FARM的主机由松下和东芝制造,通过东京瓦斯、大阪燃气、吉坤日矿日石能源等公司销售。截至2015年1月底,松下在日本全国已累计出货约5.2万台ENE-FARM。
公开的相关研究资料也分析了氢储的技术领域的适用性问题。氢储技术在选择、设计、建造和运营等方面具有一系列标准,具体包括:安全标准、终端使用标准、运营标准以及经济性标准。
从目前储能技术研究的角度看,大量的热储研究领域集中在熔盐存储、矿层存储、低温储能,室温离子液体储能,并利用相变材料储能。典型的热储能是熔盐储能。熔盐储能技术早于1995年在美国的Solar Two塔式示范电站上进行了示范应用,并在2009年西班牙装机50 MW的Andasol1槽式电站上进行了首次成功的商业化应用,自此开启了熔盐储热的商业化之门。虽然其技术仍在发展之中,但熔盐技术固有的缺陷看起来比较难以克服,如有成熟应用的二元太阳盐的凝固点过高,导致其寄生性能源消耗过高;熔盐的腐蚀性对熔盐系统的设备材料要求较高,导致系统投资成本较高等。目前,熔盐技术正从两个方面发力来寻求更大的突破,一方面即革新熔盐的成分配比,采用低熔点熔盐等,另一方面即推进熔盐工质直接吸热传热技术的研发。
表7:抽水储能的特点
表8:压缩空气储能的特点
2016年储能技术成本深度分析报告
表9:飞轮储能的特点
表10:热储的特点
表11:氢储的特点
2016年储能技术成本深度分析报告
第五篇:比亚迪股票基本面及技术分析报告
比亚迪股票基本面及技术分析报告
一、基础面分析
1.公司基本情况介绍
法定中文名称:比亚迪股份有限公司
股票代码:002594 法定代表人:王传福
上市时间:2011年6月30日在深交所上市
经营范围:锂离子电池以及其他电池、充电器、电子产品、仪器仪表、柔性线路板、五金制品、液晶显示器、手机零配件、模具、塑胶制品及其相关附件的生产、销售;货物及技术进出口(不含进口分销);道路普通货运;3D眼镜、GPS导航产品的研发、生产及销售;作为比亚迪汽车有限公司比亚迪品牌乘用车、电动车的总经销商,从事上述品牌的乘用车、电动车及其零部件的营销、批发和出口,提供售后服务;电池管理系统、换流柜、逆变柜/器、汇流箱、开关柜、储能机组的销售。2.行业分析
2014年随着中国加大新能源发展的力度,电动汽车行业的发展显现加速态势。原因在于随着国家政策推动,充电桩等装备不断完善以及消费者体验增加了对电动车的接受程度。以前对电动汽车充满热情大量投入的,也只是长城、比亚迪等民营车企,甚至有人怀疑中国政府充当了冤大头角色,用巨额的费用来补贴一个并不成熟的行业,但随着宝马、奔驰、通用、特斯拉等外资车型不断进入市场,国有大型车企不得不加大投入。当全行业的资源用于电动汽车的研发和推广时,可以预见到未来电动汽车行业发展速度之快。2014 年上半年国内新能源汽车产销均超2万辆,同比增长超过两倍,已现端倪。3.公司基本素质分析
3.1公司在行业中的竞争地位分析
比亚迪公司强势领跑新能源汽车行业。2014年上半年国内新能源汽车产销均超2万辆,同比增长超过两倍。受益于K9、秦、E6等车型热销,公司上半年销售新能源汽车7567辆,整体市场份额达到37%,其中插电式混动汽车表现突出,市场份额超过60%。作为国内新能源汽车第一品牌,公司已实现电池、电机、电控、整车的垂直一体化整合,研发技术领先,产品优势明显,充分受益于新能源汽车销量增长。
1、超一流的模仿能力。比亚迪能够把这个强项组东奥突破并发挥到淋漓尽致,尤其是能够把几种不同风格的车型整合在一起,改出一款迎合大众消费的国民车。
2、车型选择准确,发展思路清晰,车系少而精,先从地段车系入手,F3成功之后,再往上走,推F6,这样的效果能够把所有的资源集合在一两个点上,能够把这些资源的运用发挥到最大,确保成功的可能性。
3、市场定位非常成功。充分抓住低端客户的消费心态和购买需求,满族普通老百姓买车的几个要素;大气的外观,买的起的价格,用的起的保养,开的出去的面子。
4、垂直整合战略。在汽车领域,更多国产厂商选择的是国外成熟模式:买入自动化生产线,买入零部件,然后进行组装,赚取组装费。而比亚迪采取全球独有的垂直整合战略,自己设计自己造。深圳坪山工厂除了压力机是外购的,其余的都是自己造的,所有的设备,包括涂装线、总装线、焊接线、所有的汽车模具,甚至所有的汽车开发人员也是比亚迪自己“造”自己培养的。比亚迪汽车的垂直整合战略最大限度利用资源,有效减少供应商中间环节,节省成本,造就了产品性价比优势。比亚迪至少70%的零部件由公司内部事业部生产。以比亚迪F3为例,其零部件除轮胎、挡风玻璃和少数通用件外,包括转向、减震、座椅、车门甚至CD和DVD等全部自己生产。
5、创新战略。依托电池业,横向联合,紧抓时代契机,发展新能源汽车。新能源汽车战略部署在几个方面:一是双模式(F3DM),针对个人,需要政府补助才能获取利润。二是E6(纯电动车),专门给城市出租车用,三是E-bus(电动大巴),给城市公共交通用。E6和E-bus是政府买单,对价格不敏感,可以给带来一些利润。3.2.企业文化
比亚迪坚持以人为本的人力资源方针,尊重人、培养人、善待人,为员工建立一个公平、公正、公开的工作和发展环境。公司在持续发展的同时,始终致力于企业文化建设,矢志与员工一起分享公司成长带来的快乐。比亚迪坚持不懈,逐步打造“平等、务实、激情、创新”的企业核心价值观,并始终坚持“技术为王,创新为本”的发展理念,努力做到“事业留人,待遇留人,感情留人” 3.3公司财务分析 3.3.1运营能力分析
报告日期
2012
2013
2014
应收账款周转率(%)
7.98
7.58
3.95
应收账款周转天数(天)
45.13
47.49
91.18
存货周转率(%)
5.76
5.75
3.78
存货周转天数(天)
62.49
62.62
95.3
固定资产周转率(%)
1.96
1.94
1.82
股东权益周转率(%)
1.95
2.16
1.51
流动资产周转率(%)
2.16
2.11
1.21
流动资产周转天数(天)
166.57
170.84
296.88
总资产周转率(%)
0.7
0.73
0.49
总资产周转天数(天)
516.06
494.1
738.16
存货资产构成率(%)
33.48
29.1
25.74
从上表中,我们可以看出,比亚迪的四个周转率——应收帐款周转率、存货周转率、流动资产周转率、总资产周转率——均处于一个相对较差的水平,这四个周转率指标均有逐年下降的趋势,说明公司的现实经营中还蕴含着一定的风险,有需要改进和完善的地方。
3.3.2盈利能力分析
报告日期
2012
2013
2014
扣除非经常性损益后的净利润(元)
-483,703,000.00
-56,930,000.00
-389,969,000.00
息税前利润率(%)
1.19
2.39
2.45
营业利润率(%)
-0.65
0.20
-0.10
销售毛利率(%)
14.30
15.36
15.36
销售净利率(%)
0.45
1.47
1.53
成本费用利润率(%)
0.62
1.59
1.69
三项费用率(%)
11.87
12.27
13.84
净资产收益率(加权)(%)
0.38
2.58
1.65
总资产利润率(%)
0.31
1.02
0.69
息税前利润(元)
55,925.20
126,691.20
99,368.60
非经常性损益比率(%)
694.39
110.29
200.27
从表中可以看出销售毛利率、息税前利润率近年来逐渐增长,同时同行业平均的毛利率为13.73%,息税前利润率为6.71%。盈利能力较高且具有较为平稳的趋势 3.3.3成长能力分析
我们在此主要关注四个指标:主营业务收入增长率、主营业务利润的增长率、净利润的增长率和资本增长率。
报告日期
2012
2013
2014
每股收益增长率(%)
-46.96
-94.11
578.9
每股现金流增长率(%)
-98.36
-114.26
60.8
主营收入增长率(%)
0.78
-4.04
12.83
营业利润增长率(%)
-49.03
-121.58
78.4
利润总额增长率(%)
-45.02
-83.17
186.21
净利润增长率(%)
-45.13
-94.12
579.63
息税前利润增长率(%)
-30.46
-74.36
126.53
总资产增长率(%)
23.91
4.7
11.18
由数据分析可得出同行业的毛利率变化为-0.05%,主营收入同比为11.51%。而比亚迪为-0.30%和4.40%,公司不具有成长性,亦或具有较强的周期性。3.3.4偿债及资本结构
报告日期
2012
2013
2014
流动比率(%)
0.61
0.68
0.79
速动比率(%)
0.41
0.48
0.59
现金比率(%)
10.47
13.16
12.78
资产负债率(%)
64.86
67.46
67.87
产权比率(%)
162.79
178.66
197.32
长期债务与营运资金比率(%)
-0.24
-0.2
-0.81
资本化比率(%)
12.26
9.75
22.13
固定资产净值率(%)
69.41
66.49
67.29
资本固定化比率(%)
193.74
193.71
177.39
清算价值比率(%)
158.8
155.24
143.9
固定资产比率(%)
37.86
37.16
38.32
总资产(元)
68710488000
76392911000
89305913000
根据上表,我们可以看出,公司的偿债能力处于较差的水平。公司的流动比率和速动比率都小于1,但较前两年都在逐步上升,说明公司的偿债能力在不断改善,公司的生存能力在不断增强。财务结构稳健,但现金流比较紧张。资金较为充裕但资金质量不佳。3.3.5公司综合财务指标分析——杜邦分析法
2012杜邦分析数据:
2013杜邦分析数据:
2014杜邦分析数据:
(1)权益净利率即净资产收益率是整个分析系统的起点和核心。该指标的高低反映了投资者的净资产获利能力的大小。由表中的数据我们看到,权益净利率近三年来变化很大,与2013年相比今年有所下降但比2012年的要高,投资者的净资产获利能力处于不稳定之中。
(2)权益乘数表明了企业的负债程度。公司近三年来权益乘数均较小,说明公司的负债处于低水平。
(3)总资产收益率是销售利润率和总资产周转率的乘积,是企业销售成果和资产运营的综合反映,由数据我们看出,公司的销售净利率、资产周转率虽然上下波动,但与2012年相比,2013年和2014年的总资产收益率均有所提高,但需注意的是,公司的发展有上升的趋势,但形态不太明朗,仍需考察。
(4)总资产周转率反映企业资产实现销售收入的综合能力。公司的总资产周转率有不断下降的趋势,说明公司的资产利用率即资产实现销售收入的能力在下降。
从上面的分析中,我们看出公司的净资产收益率处于上下波动之中,总体向好的方向发展,销售净利率的下降是公司目前面临的最大的风险,需要及时进行调整,以提高总资产收益率,进而提高公司的净资产收益率。
本文来自: 人大经济论坛 投行专版 版,详细出处参考: http://bbs.pinggu.org/forum.php?mod=viewthread&tid=3540771&page=1