第一篇:乙二醇工艺流程总结
煤化工知识点之:乙二醇工艺方案的选择
1石油路线工艺
1.1环氧乙烷直接水合法
1859年Wurtz首次将乙二醇二乙酸酯与氢氧化钾作用制得乙二醇。1860年,又由环氧乙烷直接水合制得,其后经过不断技术改进,环氧乙烷直接水合法不断衍生出氯乙醇法、直接氧化法(空气氧化法、氧气氧化法)等工艺,最新技术为氧气氧化法,其工艺原理为环氧乙烷氧化反应原料乙烯和纯氧与循环气混合后,进入固定床环氧乙烷反应器,在入口温度约200℃,压力约2.OMPa的条件下,在高选择性银催化剂的作用下发生乙烯氧化反应,主反应生成环氧乙烷,氧化反应包括选择氧化和深度氧化,其反应过程:
主反应(选择氧化):
C2H4+1/202→
C2H40+105.5kJ/mol
并列副反应(深度氧化):
C2H4+302→2C02+2H20+1422.6kJ/mol
并列副反应(深度氧化):
CHO+5/2O→2CO+2HO+1316.4kJ/mol 24222 目前此工艺技术全部掌握在外资手中,Shell、DOW(陶式化学公司)和SD二家技术的生产能力合计占总生产能力的91%,其中Shell占38%,SD占31%,DOW占22%,余下的9%主要为德国的BASF、日本的触媒公司、意大利的SNAM等公司占有。
由于反应中环氧乙烷与水以l:20-22(摩尔比)混合,需要大量的水,并且水大量过剩,产物中乙二醇的浓度较低,因此为了提纯出产品需蒸发除去大量的水分,生产工艺流程长、设备多、能耗高、成本较高。
1.2环氧乙烷催化水合法
针对环氧乙烷直接水合法生产乙二醇工艺中存在的不足,为了提高选择性,降低用水量,降低反应温度和能耗,世界上许多公司进行了环氧乙烷催化水合生产乙二醇技术的研究和开发工作。其技术的关键是催化剂的生产,生产方法可分为均相催化水合法和非均相催化水合法两种,其中最有代表性的生产方法是Shell公司的非均相催化水合法和UCC公司的均相催化水合法。
尽管许多公司在环氧乙烷催化水合生产乙二醇技术方面做了大量的工作,大大降低了水比,提高了环氧乙烷的转化率和乙二醇的选择性,但在催化剂制备、再生和寿命方面还存在一定的问题.因而采用该方法进行大规模工业化生产还待时日。
1.3通过中间体合成乙二醇
通过中间体合成乙二醇主要有日本三菱化学开发的经碳酸乙烯酯路线和由Texac。开发的联产乙二.醇和碳酸二甲酯路线,以及Shell开发的经二氧戊环的路线。此外,以乙烯与醋酸为原料,经二醋酸乙烯酯的直接法工艺研究也十分活跃。
●乙二醇和碳酸二甲酯联产技术
该技术的主要过程为两步:首先C02和环氧乙烷在催化剂作用下合成碳酸乙烯酯,然后碳酸乙烯酯和甲醇反应生成碳酸二甲酯和乙二醇。这两步反应属于原子利用率100%的反应。
乙二醇和碳酸二甲酯联产技术进行工业化生产时原料易得,不存在环氧乙烷水合法选择性差的问题,在现有环氧乙烷生产装置内,只需增加生产碳酸乙烯酯的反应步骤就可以生产两个非常有价值的产品,故非常具有吸引力。但目前此工艺尚处于实验室阶段。
●碳酸乙烯酯水解合成乙二醇技术
此工艺国外有多个公司在研发,其中以日本三菱化学开发的工艺比较完善。
三菱化学开发的工艺以环氧乙烷装置制的含水40%的环氧乙烷与二氧化碳为原料,催化剂为基于四价磷的均相催化剂,结构式为(Ri)4P+X-,其中Ri为烷基和芳基基团,X为卤素。采用这种催化剂时,环氧乙烷转化成EG的速率比不采用催化剂时快百倍,因此反应体系中的乙二醇浓度高,乙二醇的选择性可达到99.3%~99.4%。三菱化学打算与掌握先进乙二醇生产技术的Shell公司合作。2002年4月,三菱与Shell签订了独家转让权,以共同推进“Shell/MCC”联合工艺,并计划在中东、亚洲新增的装置中推广该工艺。
2非石油路线工艺
在全球石油资源日益匮乏及石油价格日益上涨的今天,再使用石油路线生产工艺不仅成本非常高,而且原料的来源问题日益严重,因此非石油路线制乙二醇成为未来的发展方向。2.1合成气直接合成法
合成气直接合成法是一种最为简单和有效的乙二醇合成方法合原子经济性,是理论价值最高的一条工艺路线。其方程式如下:
2C0+3H2=HOCH2CH20H
此反应属于Gibbs自由能增加的反应,在热力学上很难进行,需要催化剂和高温高压条件。此方法最早是由美国杜邦公司于1947年提出来的。该工艺技术的关键是催化剂的选择。早期采用的钴催化剂,要求的反应条件苛刻,高温高压下乙二醇的产率也很低。1971年,美国UCC首先公布用铑催化剂从合成气制乙二醇,其催化活性明显优于钴,但所需压力仍太高(340MPa)。上世纪80年代以来,确定为合成气直接合成乙二醇的优良催化剂主要分为铑和钌两大类。UCC采用铑催化活性组分,以烷基膦、胺为配体,配置在四甘醇二甲醚溶剂中,反应压力可降至50MPa,反应温度为230℃,不过合成气的转化率和选择性仍偏低。日本研究的铑和韦了均相系催化剂,乙二醇选择性达57%,产率达259g/(1.h)。
目前,由合成气直接合成乙二醇仍处于研究阶段,所得结果与实现工业化仍有相当距离,主要问题是合成压力太高,所用催化剂在高温下才显示出活性,但在高温下稳定性变差。
2.2草酸酯加氢两步合成法
C0催化偶联合成草酸酯再加氢生成乙二醇是当前Cl化工研究的重要课题,也是C1化工中最有前途的研究方向之一。该工艺具有原料来源丰富、成本低、无污染、反应条件温和、产品纯度高、生产连续化等优点,是洁净生产、环境良好的先进绿色化学工艺。此方法是利用醇类与N0及氧气反应生成亚硝酸酯,然后在Pd系催化剂上氧化偶联制得草酸二酯,再经在铜系催化剂上加氢制得乙二醇。
此工艺最早是由美国联合石油公司D.M.Fenton于1966年提出,1978年日本宇部兴产公司进行了改进,选用2%Pd/C催化剂,并通过反应条件下引亚硝酸酯,解决了原方法的腐蚀等问题,并提高了草酸酯的收率。该公司建成了一套6kt/a的草酸二丁酯的工业装置,初步实现了工业化,之后,宇部和美国UCC公司联合开发了常压气相合成草酸酯研究,并完成了模试。
国内从20世纪80年代也开始研究C0催化合成草酸酯及其衍生物产品如草酸、乙二醇的研究,其中中国科学院福建物质结构所走在技术的前沿。
C0气相催化合成草酸酯及相应衍生物的工艺开发,是我国Cl化学工业的一项重大科技开发项目,合成草酸酯工艺反应条件温和(近常压,160℃以下),能耗低,设备投资小,C0资源丰富易得,并可同时生产草酸、乙二酯、草酰胺等多种重要化工产品。
该技术不但能实现用煤或天然气(油田气)代替石油乙烯,二步间接合成乙二醇的战略目标,而且能使合成气资源全部得到充分利用。首先,把煤或天然气(油田气)制成合成气(C0+H2);然后通过变压吸附或膜分离技术,将氢气与C0汽提分离开来。氢气用作将草酸酯加氢生成乙二醇的氢源,C0气体经脱氢净化用做羰基化合成草酸酯的原料,从而实现合成气的两个组分C0和H2都全部充分利用。
2.3原料路线确定的原则和依据
石油、天然气和煤是目前世界能源的三大支柱。按世界储量油可开采约50年,而天然气和煤则分别为130年和230年。
中国是——个“富煤少油缺气”的国家,在世界已探明的化工能源储量中,中国的煤炭资源约占世界总量的15%、石油占2.7%、天然气占0.9%。
其中煤炭资源的储量在5万亿吨以上,探明储量达到1145亿吨,能源资源的特点决定了我国是世界上少有的以煤为主要能源的国家,在未来二十年,煤炭资源是我国最可靠的一次能源。
我国一方面缺油少气,而另一方面国内燃油消耗逐年增加。从1993年我国开始净进口石油以来,其净进口数量每年不断递增。到2020年,我国的石油进口量将超过3亿吨。随着经济持续增长和生活水平的捉高,我国能源供应的紧张状况将日益凸显,形成了严重的潜在能源安全和经济安全问题。我国对石油进口的依赖率将会远远超过国际公认的国家能源安全警戒线。如何利用我国丰富的煤炭资源已成为人们关注的焦点和热点。
国家“十五”和“十一五”发展规划将洁净煤技术作为今后能源建设的战略重点和国家重点推进的产业。发展新型煤化工正在成为我国能源建设的重要任务,建设煤化工产业,生产煤基清洁燃料和化工产品,是当前和未来几十年我国能源建设的重要需求。同时,国家特别要求在发展煤化工过程中,开发具有自主知识产权的大型化、高效率、低成本和对煤种适应性强的煤化工技术,形成工业示范,推进工业的整体系统发展。
由于全球石油资源的日益匮乏,在21世纪以石油为基础的燃料和有机原料工业逐步转向以煤或天然气为原料的合成燃料和有机原料工业已成必然发展趋势。从长远观点看,考虑到开发时间、供给量、价格等因素,开辟以合成气为原料的非石油路线制乙二醇,以代替、补充石油路线生产乙二醇的短缺,具有重要的战略意义和经济意义。以天然气或煤制得的合成气出发生产乙二醇工艺分为直接工艺和间接工艺。直接工艺即由合成气直接合成乙二醇;间接工艺是合成气经某种中间化合物,如甲醇、甲醛等后再转化为乙二醇。与直接法相比,间接法具有反应条件温和、选择性高等优点,但反应步骤多,能量消耗大。从目前的研究情况看,由合成气出发生产乙二醇的许多过程均可与传统的乙烯路线相竞争。
世界上乙二醇生产大多采用环氧乙烷直接水合法,和国外一样,我国的乙二醇生产均采用环氧乙烷直接水合法,其能耗和物耗等技术指标与国际先进水平相比还存在较大差距。其工艺水用量超过理论值的20倍,单乙二醇的选择性只有90%,其它的9%是二甘醇,1%是三甘醇和聚乙二醇,因此降低水气比催化工艺成为焦点,但基于乙烯路线经环氧乙烷的乙二醇生产已经没有多少工艺改进的空间。由于石油资源的短缺和天然气、煤资源的相对丰富,开发以合成气为原料的乙二醇工艺路线十分引人关注。1983年,中科院福建物构所开始承担国家“八五”科技攻关项目,研究“C0气相催化合成草酸、草酸酯及乙二醇”,是国内研究最早的单位,己成功开发出2个催化剂和5部分配套艺技术,获4项国家发明专利,通过由科学院和国家计委组织专家组的验收鉴定,各项技术指标达到世界先进水平。
C0气相催化合成草酸、草酸酯及乙二醇”,即以煤制合成气为原料,由C0采用两步法工艺生成乙二醇;第一步由C0进行气相反应生成草酸酯,第二步草酸酯加氢生成乙二醇。
2005年开始,中科院福建物构所与金煤公司合作,建成300t/a乙二醇中试装置和10000t/a乙二醇工业化试验装置各一套。两套试验装置运行平稳,安全可靠。中国科学院主持的技术成果鉴定会全面考核考察了万吨工业试验装置,确认了工艺、设备和催化剂等方面技术经济指标的先进性、合理性,完全具备工业化放大的条件。该工业试验装置的平稳运行标志着羰化、加氢两步间接法制取乙二醇工艺已经成熟。这些完全是自主开发、技术创新的成果,它将引发乙二醇生产工艺历史性的革命。即将投产的金煤公司通辽一期20万吨/年乙二醇项目的实施正是基于上述试验装置所提供技术数据的基础上加以完善所形成的成套工艺技术。
综上所述,选择以煤制合成气为原料,采用羰化、加氢两步法合成乙二醇的原料路线,既适应国家以煤替代石油的长远目标,又有可靠的技术依托。
3乙二醇的生产工艺
目工艺过程分为羰化合成和酯加氢两部分。
3.1生成草酸酯
●生产原理
方程式如下:
2C0 + 2RONO →(COOR)
2+ 2NO ①
一氧化碳 亚硝酸酯 草酸酯 一氧化氮
2NO+ 1/202
+ 2ROH→2RONO + 2H20 ②
一氧化氮 氧气 醇类 亚硝酸酯 水
2C0 + 1/202
+ 2ROH→(COOR)2+ H20 ③
一氧化碳 氧气 醇类 草酸酯 水
第一步是把C0和亚硝酸酯气相催化合成草酸酯(式①),反应尾气中的N0气体和氧气及醇类反应再生成亚硝酸酯回收循环使用(式②):由式①+式②得式③,即由C0加空气中的氧和醇类,就可以合成出草酸酯。
●生产方法的先进性比较
即由草酸与醇类在甲苯中高温酯化的化学反应方法相比[见反应式④],原料路线和工艺过程都有极大的优越性。每生产一吨草酸酯,可省去一吨草酸和大量的甲苯及浓硫酸,成本可降低40%以上,并可连续大量生产,能耗低、安全、不污染环境。特别是产品质量好,草酸甲酯产品纯度达到99.8%,不含微量重金属及酸,这在国内外尚未见报导。
(COOH)2.2H20 + 2ROH→(COOR)2+4H20 ④
乙二酸 醇类
草酸酯 水
Ube公司1978年建成6000吨/年草酸二丁酯水解生产草酸工厂,在10.0MPa和100℃条件下,液相催化合成草酸二丁酯并水解生产草酸,成本比用甲酸钠法生产草酸的成本降低36%。该方法的缺点是反应压力高,能耗大,液相催化剂需要分离回收和再生,工艺较复杂等,因此至今没有推广。
目前世界上尚未有气相催化合成草酸酯新工艺的工业化装置,金煤公司的工业试验在原、辅材料消耗、催化剂产率和寿命等方面均达到了设计要求。
3.2草酸酯加氢制乙二醇
本生产工艺采用中国科学院福建物质结构研究所的草酸酯气相催化合成加氢制乙二醇技术。
●生产原理
反应方程式如下:
(COOH)2 + 4H2→(CH2OH)2 + 2ROH ⑤ 草酸酯 氢气 乙二醇 醇类 2CO + 1/2O2 + 4H2→(CH2OH)2 + H2O ⑥ 一氧化碳氧气 乙二醇 水
第二步是把草酸酯催化加氢生成乙二醇。③+⑤得⑥,即只要用煤或天然气制成的合成气(C0和H 2)以及空气中的氧气,就能合成出乙二醇。
第二篇:工艺流程知识总结
一、【工业流程题中常用的关键词】
原材料:矿样(明矾石、孔雀石、蛇纹石、大理石、锂辉石、黄铜矿、锰矿、高岭土,烧渣),合金(含铁废铜),药片(补血剂),海水(污水)灼烧(煅烧): 原料的预处理:不易转化的物质转化为容易提取的物质;
通常用酸溶。如用硫酸、盐酸、浓硫酸等 ;灼烧:如从海带中提取碘
煅烧:如煅烧高岭土 改变结构,使一些物质能溶解,并使一些杂质高温下氧化、分解;
研磨:适用于有机物的提取 如苹果中维生素C的测定等。
如海带中提取碘 酸:溶解、去氧化物(膜)、调节pH促进水解(沉淀)
碱:去油污,去铝片氧化膜,溶解铝、二氧化硅,调节pH促进水解(沉淀)氧化剂: 氧化某物质,转化为易于被除去(沉淀)的离子 氧化物:调节pH促进水解(沉淀)控制pH值:促进某离子水解,使其沉淀,利于过滤分离
煮沸:促进水解,聚沉后利于过滤分离;除去溶解在溶液中的气体,如氧气
趁热过滤:减少结晶损失;提高纯度
(二)控制反应条件的方法
①控制溶液的酸碱性使其某些金属离子形成氢氧化物沉淀——pH值的控制。例如:已知下列物质开始沉淀和沉淀完全时的pH 如下表所示
调节pH所需的物质一般应满足两点:能与H+反应,使溶液pH值增大不引入新杂质。若要除去Cu2+溶液中混有的Fe3+,可加入CuO、Cu(OH)
2、Cu2(OH)2CO3等物质来调节溶液的pH值
②蒸发、反应时的气体氛围
③加热的目的:加快反应速率或促进平衡向某个方向移动
④降温反应的目的:防止某物质在高温时会溶解或为使化学平衡向着题目要求的方向移动 ⑤趁热过滤:防止某物质降温时会析出
⑥冰水或乙醇洗涤:洗去晶体表面的杂质离子,并减少晶体在洗涤过程中的溶解损耗
(三)物质的分离和提纯的方法
① 晶——固体物质从溶液中析出的过程(蒸发溶剂、冷却热饱和溶液、浓缩蒸发)重结晶是利用固体物质均能溶于水,且在水中溶解度差异较大的一种除杂质方法。② 过滤——固、液分离 ③ 蒸馏——液、液分离
④分液——互不相溶的液体间的分离 ⑤萃取——用一种溶剂将溶质从另一种溶剂中提取出来。
⑥升华——将可直接气化的固体分离出来。
⑦盐析——加无机盐使溶质的溶解度降低而析出 浸出:固体加水(酸)溶解得到离子
浸出率:固体溶解后,离子在溶液中的含量的多少
酸浸:在酸溶液中反应使可溶性金属离子进入溶液,不溶物通过过滤除去的溶解过程 水洗:通常为除去水溶性杂质 水浸:与水接触反应或溶解
四、【常见文字叙述套路】
1.洗涤沉淀:往漏斗中加入蒸馏水至浸没沉淀,待水自然流下后,重复以上操作2-3次。2.从溶液中得到晶体:蒸发浓缩-冷却结晶-过滤-(洗涤)。注意:①在写某一步骤是为了除杂是,应该注明“是为了除去XX杂质”,只写“除杂”等一类万金油式的回答是不给分的。②看清楚是写化学反应方程式还是离子方程式,注意配平。
五、【难点解析】认真审题,找到该实验的目的。一般来说,流程题只有两个目的:一是从混合物中分离、提纯某一物质;另一目的就是利用某些物质制备另一物质。
一、对于实验目的为一的题目,其实就是对混合物的除杂、分离、提纯。
二、对于目的为制备某一物质的流程题,要求学生注意以下几个方面:
1、明确题目目的是制什么物质,从题干或问题中获取有用信息,了解产品的性质。只有知道了实验目的,才能非常清楚的知道整个流程的意义所在,题目中的信息往往是制备该物质的关键所在。
(1)如果在制备过程中出现一些受热易分解的物质或产物,则要注意对温度的控制。如:侯德榜制碱中的NaHCO3;还有如H2O2、Ca(HCO3)
2、KMnO4、AgNO3、HNO3(浓)等物质。
(2)如果产物是一种会水解的盐,且水解产物中有挥发性的酸产生时,则要加相对应的酸来防止水解。如:制备FeCl3、AlCl3、MgCl2、Cu(NO3)2等物质时,要蒸干其溶液得到固体溶质时,都要加相应的酸或在酸性气流中干燥来防止它水解,否则得到的产物分别是Fe2O3、Al2O3、MgO、CuO;而像Al2(SO4)3、NaAlO2、Na2CO3等盐溶液,虽然也发生水解,但产物中Al(OH)3、H2SO4、NaHCO3、NaOH 都不是挥发性物质,在蒸发时,抑制了盐的水解,最后得到的还是溶质本身。
(3)如果产物是一种强的氧化剂或强的还原剂,则要防止它们发生氧化还原的物质,如:含Fe2+、SO32- 等离子的物质,则要防止与氧化性强的物质接触。
(4)如果产物是一种易吸收空气中的CO2或水(潮解或发生反应)而变质的物质(如NaOH固体等物质),则要注意防止在制备过程中对CO2或水的除去,也要防止空气中的CO2或水进入装置中。
(5)如果题目中出现了包括产物在内的各种物质的溶解度信息,则要注意对比它们的溶解度随温度升高而改变的情况,根据它们的不同变化,找出合适的分离方法。
3、注意外界条件对工艺流程的影响 在很多流程图的题目中,我们经常会看到压强、温度等外界条件的出现,不同的工艺对物质反应的温度或压强有不同的要求,它所起的作用也不一样,但却都是能否达到实验目的的关键所在,也是命题专家们经常要考察学生的地方。对外界条件的分析主要可从以下两个方面着手:(1)对反应速率有何影响?
(2)对平衡转化率有何影响?这里主要说一说温度的影响,归纳总结之后,主要有以下几个方面的形式来考察学生:
①趁热过滤目的:防止某物质降温时会析出(或升温时会溶解)而带入新的杂质;
②冰水中反应或降温反应的目的:防止某物质在高温时会溶解或为使化学平衡向着题目要求的方向移动;
③反应中采取加热措施的作用:一般是为了加快反应速率或加速某固体的溶解;
④如果题目中要求温度控制在具体的一个温度范围内(可用水浴或油浴来控制):一般有以下几个目的:a、防止某种物质温度过高时会分解或挥发,也可能是为了使某物质达到沸点挥发出来,具体问题要具体分析。如侯德榜制碱中,将CO2通入NaCl的氨溶液中,保持溶液的温度为(30+2)℃,可得NaHCO3晶体,温度控制在这个范围,目的就是防止NaHCO3分解。而在Br2的制取过程中,出溴口的温度控制在80-90℃,目的就是要使Br2挥发出来而又减少水蒸气混入Br2中。b、使催化剂的活性达到最好:如工业合成氨或工业SO2氧化为SO3时,选择的温度是500℃左右,原因之一就是使催化剂的活性达到最高。c、防止副反应的发生:如乙醇的消去反应温度要控制在170℃,原因是就是在140℃时会有乙醚产生。d、对于一些工艺来说,降温或减压可以减少能源成本,降低对设备的要求,达到绿色化学的要求。以上有关温度的总结只能说是有这种可能来考,具体问题要具体分析。
第三篇:工艺流程
试样加工工艺流程
图号LY-01-01
1.用锯床切取试样宽度为C+10 mm。
2.将试样长度切至300+/-5mm(锯切)。
3.试样宽度方向铣切5mm。
4.铣切试样宽度方向另一面至宽度尺寸C。
5.画线,铣切试样一面凹槽部分,6.铣切试样另一面凹槽至宽度D。
深度(C-D)/2约为6mm。
7.打磨毛刺。
备注:按照图纸要求进行加工,试样对称。
图号LY-01-01
试样加工工艺流程
图号LY-03
1.用锯床切取试样宽度为60 mm。
2.将试样长度切至300+/-5mm(锯切)。
3.试样宽度方向铣切5mm。
4.铣切试样宽度方向另一面至宽度尺寸50。
5.画线,铣切试样一面凹槽部分,6.铣切试样另一面凹槽至宽度38。
深度约为6mm。
7.打磨毛刺。
备注:按照图纸要求进行加工,试样对称。
图号LY-03
试样加工工艺流程
图号:ZXCJ-01
1.用锯床切取试样宽度为20 mm(两条)。
2.将试样长度切至55mm(锯切3条)。
3.试样宽度方向铣切去5mm。
4.铣切试样宽度方向另一面至宽度10.2mm。
5.铣切接箍内圆面,铣切为平面。
6.铣切接箍外圆面至厚度尺寸5.2mm。
7.磨削试样四面至图纸尺寸。备注:按照图纸要求进行加工。
图号:ZXCJ-01
试样加工工艺流程
图号:ZXCJ-02
1.用锯床切取试样宽度为20 mm(两条)。
2.将试样长度切至55mm(锯切3条)。
3.试样宽度方向铣切去5mm。
4.铣切试样宽度方向另一面至宽度10.2mm。
5.铣切接箍内圆面,铣切为平面。
6.铣切接箍外圆面至厚度尺寸7.7mm。
7.磨削试样四面至图纸尺寸。备注:按照图纸要求进行加工。
图号:ZXCJ-02
试样加工工艺流程
图号:HXCJ-01
1.用锯床切取试样宽度为65 mm。
2.试样宽度方向铣切5mm。
3.铣切试样宽度方向另一面至宽度尺寸55mm。
4.锯切试样20mm三条。
5.试样宽度方向铣切去5mm。
6.铣切试样宽度方向另一面至宽度10.2mm。
7.铣切接箍内圆面,铣切为平面。
8.铣切接箍外圆面至厚度尺寸5.2mm。
9.磨削试样四面至图纸尺寸。
备注:按照图纸要求进行加工。
图号:HXCJ-01
试样加工工艺流程
图号:HXCJ-02
1.用锯床切取试样宽度为65 mm。
2.试样宽度方向铣切5mm。
3.铣切试样宽度方向另一面至宽度尺寸55mm。
4.锯切试样20mm三条。
5.试样宽度方向铣切去5mm。
6.铣切试样宽度方向另一面至宽度10.2mm。
7.铣切接箍内圆面,铣切为平面。
8.铣切接箍外圆面至厚度尺寸7.7mm。
9.磨削试样四面至图纸尺寸。
备注:按照图纸要求进行加工。
图号:HXCJ-02
试样加工工艺流程
图号:HXCJ-03
1.用锯床切取试样宽度为65 mm。
2.试样宽度方向铣切5mm。
3.铣切试样宽度方向另一面至宽度尺寸55mm。
4.锯切试样20mm三条。
5.试样宽度方向铣切去5mm。
6.铣切试样宽度方向另一面至宽度10.2mm。
7.铣切接箍内圆面,铣切为平面。
8.铣切接箍外圆面厚度尺寸至 10.2mm。
9.磨削试样四面至图纸尺寸。
备注:按照图纸要求进行加工。
图号:HXCJ-03
试样加工工艺流程
图号:HFW-JB-CJ-01
1.用锯床切取试样宽度65 mm长200mm。
2.试样宽度方向铣切5mm。
3.铣切试样宽度方向另一面至宽度尺寸55mm。
4.锯切试样20mm三条。
5.试样宽度方向铣切去5mm。
6.铣切试样宽度方向另一面至宽度10.2mm。
7.铣板材表面,铣切出平面。
8.铣板材另一表面至厚度尺寸10.2/7.7/5.2mm。
9.磨削试样四面至图纸尺寸。
备注:按照图纸要求进行加工。
图号:HFW-JB-CJ-01
试样加工工艺流程
图号:LY-01-02
1.用锯床切取试样宽度等同于壁厚。
2.将试样切至所需的长度≥140mm。
3.打中心工艺孔,将试样车为直径18mm的圆棒
并倒角。
4.将试样中部直径粗车至13.5mm。
5.将试样中部直径精车至12.7mm。
备注:按照图纸要求进行加工。
图号:LY-01-02
试样加工工艺流程
图号:LY-02-01
1.用锯床切取试样宽度等同于壁厚。
2.将试样切至所需的长度≥84mm。
3.打中心工艺孔,将试样车为直径12mm的圆棒
并倒角。
4.将试样中部直径粗车至9.5mm。
5.将试样中部直径精车至8.9mm。
6.试样两端车螺纹。
备注:按照图纸要求进行加工。
图号:LY-02-01
试样加工工艺流程
图号:LY-02-02
1.用锯床切取试样宽度等同于壁厚。
2.将试样切至所需的长度≥70mm。
3.打中心工艺孔,将试样车为直径8mm的圆棒并
倒角。
4.将试样中部直径粗车至7mm。
5.将试样中部直径精车至6.25mm。
6.试样两端车螺纹。
备注:按照图纸要求进行加工。
图号:LY-02-02
试样加工工艺流程
图号:LY-02-03
1.用锯床切取试样宽度等同于壁厚。
2.将试样切至所需的长度≥60mm。
3.打中心工艺孔,将试样车为直径5mm的圆棒并
倒角。
4.将试样中部直径粗车至4.6mm。
5.将试样中部直径精车至4mm。
6.试样两端车螺纹。
备注:按照图纸要求进行加工。
图号:LY-02-03
试样加工工艺流程
图号:LY-02-04
1.用锯床切取试样宽度等同于壁厚。
2.将试样切至所需的长度≥56mm。
3.打中心工艺孔,将试样车为直径4mm的圆棒
并倒角。
4.将试样中部直径粗车至3mm。
5.将试样中部直径精车至2.5mm。
6.试样两端车螺纹。
备注:按照图纸要求进行加工。
图号:LY-02-04
第四篇:工艺流程
离子交换膜法电解制碱的主要生产流程
精制的饱和食盐水进入阳极室;纯水(加入一定量的NaOH溶液)加入阴极室,通电后H2O在阴极表面放电生成H2,Na+则穿过离子膜由阳极室进入阴极室,此时阴极室导入的阴极液中含有NaOH;Cl-则在阳极表面放电生成Cl2。电解后的淡盐水则从阳极室导出,经添加食盐增加浓度后可循环利用。
阴极室注入纯水而非NaCl溶液的原因是阴极室发生反应为2H++2e-=H2↑;而Na+则可透过离子膜到达阴极室生成NaOH溶液,但在电解开始时,为增强溶液导电性,同时又不引入新杂质,阴极室水中往往加入一定量NaOH溶液。
氯碱工业的主要原料:饱和食盐水,但由于粗盐水中含有泥沙、Ca2+、Mg2+、Fe3+、SO等杂质,远不能达到电解要求,因此必须经过提纯精制。
乙炔工段利用外购的电石和水在乙炔发生器中发生反应生成乙炔气体,乙炔气体经过压缩、清静、干燥后得到纯净的乙炔气体。
合成工段利用电解分厂生产的副产品氯气和氢气反应合成HCL,或者是由废盐酸和蒸汽通过脱析、脱水工序生成干燥HCL,进一步净化后供给VCM转化,部分HCL由氯乙烯分厂提供。
纯净的乙炔气体和HCL经过混合预热后发生反应转化为VCM单体,VCM再经过水洗碱洗、压缩、精馏后就送进VCM储罐等待参加聚合反应。
聚合工段使VCM和其他的各种辅剂发生聚合反应,反应产物经过汽提、干燥后成为产品包装出厂。
第五篇:工艺流程
掘进工艺流程:交接班→注水→延伸刮板输送机→手镐(风镐)落煤/风钻打眼,装药,爆破→洒水降尘→敲帮问顶→临时支护→装运煤→永久支护→巷道补强加固→验收工程。
Π型钢+单体柱采煤工作面工艺流程:打眼注水——掏梁窝——移主梁——装运煤——移副梁——落煤——装煤——运煤——移刮板输送机。
悬移支架采煤工作面工艺流程:交接班----打眼注水----人工(爆破)落煤----升前支护板----采煤----降下支护板(移架)----移刮板输送机