初中数学代数最值问题常用解决方法5篇

时间:2019-05-13 22:18:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学代数最值问题常用解决方法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学代数最值问题常用解决方法》。

第一篇:初中数学代数最值问题常用解决方法

初中数学代数最值问题常用解决方法

最值问题,也就是最大值和最小值问题。它是初中数学竞赛中的常见问题。这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度。一.配方法

例1.(2005年全国初中数学联赛武汉CASIO杯选拔赛)

可取得的最小值为_________。

解:原式由此可知,当二.设参数法

例2.(《中等数学》奥林匹克训练题)已知实数的最大值为________。解:设由,易知,得

满足

。则

时,有最小值。

从而,由此可知,是关于t的方程的两个实根。

于是,有解得。故的最大值为2。

例3.(2004年全国初中联赛武汉选拔赛)若可取得的最小值为(),则A.3 B.C.D.6 解:设,则

从而可知,当三.选主元法

时,取得最小值。故选(B)。

例4.(2004年全国初中数学竞赛)实数。则z的最大值是________。解:由代入得。

满足

消去y并整理成以为主元的二次方程,由x为实数,则判别式。

即整理得,解得。

所以,z的最大值是四.夹逼法。

例5.(2003年北京市初二数学竞赛复赛)最大值。则解:由

。设__________。

是非负实数,并且满足,记为m的最小值,y为m的 解得由

是非负实数,得

从而,解得又

。,故

于是,因此,五.构造方程法

例6.(2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。解:设矩形B的边长为x和y,由题设可得从而x和y可以看作是关于t的一元二次方程根,则因为所以。的两个实数解得

所以k的最小值是

四.由某字母所取的最值确定代数式的最值 例7.(2006年全国初中数学竞赛)已知

。若解:由而由所以,当得和时,可知,则,代入的整数。取得最大值,为

为整数,且的最大值为_________。得。

七.借助几何图形法

例8.(2004年四川省初中数学联赛)函数值是________。解:显然,若,则

。因而,当的最小

取最小值时,必然有。

如图1,作线段AB=4,令OA=x,则

。,且AC=1,BD=2。对于AB上的任一点O,那么,问题转化为在AB上求一点O,使OC+OD最小。

图1 设点C关于AB的对称点为E,则DE与AB的交点即为点O,此时。作EF//AB与DB的延长线交于F。在易知所以,因此,函数八.比较法。的最小值为5。中,例9.(2002年全国初中数学竞赛)某项工程,如果有甲、乙两队承包成,需付180000元;由乙、丙两队承包

天完

天完成,需付150000元;由甲、丙两队承包天完成,需付160000元。现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少? 解:设甲、乙、丙单独承包各需

天完成,则

解得

元,则 又设甲、乙、丙单独工作一天,各需付

解得

于是,由甲队单独承包,费用是(元);由乙队单独承包,费用是(元);而丙队不能在一周内完成,经过比较得知,乙队承包费用最少。

第二篇:初一数学 最值问题

专题19

最值问题

阅读与思考

在实际生活与生产中,人们总想节省时间或费用,而取得最好的效果或最高效益,反映在数学问题上,就是求某个量的和、差、积、商的最大值和最小值,这类问题被称之为最值问题,在现阶段,解这类问题的相关知识与基本方法有:

1、通过枚举选取.2、利用完全平方式性质.3、运用不等式(组)逼近求解.4、借用几何中的不等量性质、定理等.解答这类问题应当包括两个方面,一方面要说明不可能比某个值更大(或更小),另一方面要举例说明可以达到这个值,前者需要详细说明,后者需要构造一个合适的例子.例题与求解

【例1】

若c为正整数,且,,则()()()()的最小值是

.(北京市竞赛试题)

解题思路:条件中关于C的信息量最多,应突出C的作用,把a,b,d及待求式用c的代数式表示.【例2】

已知实数a,b满足,则的最小值是()

A.B.0

C.1

D.(全国初中数学竞赛试题)

解题思路:对进行变形,利用完全平方公式的性质进行解题.【例3】

如果正整数满足=,求的最大值.解题思路:不妨设,由题中条件可知=1.结合题意进行分析.【例4】

已知都为非负数,满足,记,求的最大值与最小值.(四川省竞赛试题)

解题思路:解题的关键是用含一个字母的代数式表示.【例5】

某工程车从仓库上水泥电线杆运送到离仓库恰为1000米的公路边栽立,要求沿公路的一边向前每隔100米栽立电线杆一根,已知工程车每次之多只能运送电线杆4根,要求完成运送18根的任务,并返回仓库,若工程车每行驶1千米耗油m升(在这里耗油量的多少只考虑与行驶的路程有关,其他因素不计).每升汽油n元,求完成此项任务最低的耗油费用.(湖北省竞赛试题)

解题思路:要使耗油费用最低,应当使运送次数尽可能少,最少需运送5次,而5次又有不同运送方法,求出每种运送方法的行驶路程,比较得出最低的耗油费用.【例6】

直角三角形的两条直角边长分别为5和12,斜边长为13,P是三角形内或边界上的一点,P到三边的距离分别为,,求++的最大值和最小值,并求当++取最大值和最小值时,P点的位置.(“创新杯”邀请赛试题)

解题思路:连接P点与三角形各顶点,利用三角形的面积公式来解.能力训练

A

1.社a,b,c满足,那么代数式的最大值是

.(全国初中数学联赛试题)

2.在满足的条件下,能达到的最大值是

.(“希望杯”邀请赛试题)

3.已知锐角三角形ABC的三个内角A,B,C满足A>B>C.用表示A-B,B-C,以及90-A中的最小值,则的最大值是

.(全国初中数学联赛试题)

4.已知有理数a,b,c满足a>b>c,且a+b+c=0,.那么的取值范围是

.(数学夏令营竞赛试题)

5.在式子中,代入不同的x值,得到对应的值,在这些对应的值中,最小的值是().A.1

B.2

C.3

D.4

6.若a,b,c,d是整数,b是正整数,且满足,,那么的最大值是().A.-1

B.-5

C.0

D.1

(全国初中数学联赛试题)

7.已知则代数式的最小值是().A.75

B.80

C.100

D.105

(江苏省竞赛试题)

8.已知,均为非负数,且满足=30,又设,则M的最小值与最大值分别为().A.110,120

B.120,130

C.130,140

D.140,150

9.已知非负实数,满足,记.求的最大值和最小值

(“希望杯”邀请赛试题)

10.某童装厂现有甲种布料38米,乙钟布料26米,现计划用这两种布料生产L,M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利30元,试问该厂生产的这批童装,当L型号的童装为多少套是,能使该厂获得利润最大?最大利润为多少?

(江西省无锡市中考试题)

第三篇:初中数学代数知识点总结

初中数学代数知识点总结

一、基本知识

(一)、数与代数A、数与式:

1、实数

有理数:①整数→正整数/0/负整数

②分数→正分数/负分数

数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

②任何一个有理数都可以用数轴上的一个点来表示。

③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数的运算:

加法:①同号相加,取相同的符号,把绝对值相加。

②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。

②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

2、实数

无理数:无限不循环小数叫无理数

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

3、代数式

代数式:单独一个数或者一个字母也是代数式。

合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

②把同类项合并成一项就叫做合并同类项。

③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。4、整式与分式

A、整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。

②一个单项式中,所有字母的指数和叫做这个单项式的次数。

③一个多项式中,次数最高的项的次数叫做这个多项式的次数。

整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。

幂的运算:AM+AN=A(M+N)

(AM)N=ANMN

(A/B)N=AN/BN

除法一样。

整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。

②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。

公式两条:平方差公式

/

完全平方公式

整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。

②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。

分式的运算:

乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。

除法:除以一个分式等于乘以这个分式的倒数。

加减法:

①同分母分式相加减,分母不变,把分子相加减。

②异分母的分式先通分,化为同分母的分式,再加减。

分式方程:①分母中含有未知数的方程叫分式方程。

②使方程的分母为0的解称为原方程的增根。

B、方程与不等式

1、方程与方程组

一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

1)一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

2)一元二次方程的解法

大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元二次方程的解

(1)配方法

利用配方,使方程变为完全平方公式,在用直接开平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解

(3)公式法

这方法也可以是在解一元二次方程的万能方法了,方程的根X1={-b+

√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a

3)解一元二次方程的步骤:

(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式

(2)分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法:

就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c

4)韦达定理

利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a

也可以表示为x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用

5)一元二次方程根的情况

利用根的判别式去了解,根的判别式可在书面上可以写为“△”,△=b2-4ac,这里可以分为3种情况:

I当

△>0时,一元二次方程有2个不相等的实数根;

II当△=0时,一元二次方程有2个相同的实数根;

III当△<0时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有2个虚数根)

2、不等式与不等式组

不等式:①用符号〉,=,〈号连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:

①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:

在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:A>B,A+C>B+C

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:A>B,A-C>B-C

在不等式中,如果乘以同一个正数,不等号不改向;例如:A>B,A*C>B*C(C>0)

在不等式中,如果乘以同一个负数,不等号改向;例如:A>B,A*C

如果不等式乘以0,那么不等号改为等号

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不能为0,否则不等式不成立;

3、函数

变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

一次函数:

①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数。

②当B=0时,称Y是X的正比例函数。

一次函数的图象:①把一个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数Y=KX的图象是经过原点的一条直线。

③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0,B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。

④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。

第四篇:复杂最值问题剖析

复杂最值问题剖析

华图教育 王小欢

行测中有题目是一类常见的题目是最值问题,这类题目一般情况下包括三种:第一种为最不利构造,题目特征是至少„„保证„„,做题方法是找出最不利的情形然后再加1;第二种为多集合反向构造,题目特征是至少„„都„„,做题方法三步走:反向,求和,做差;第三种题目是构造数列,题目特征是最„„最„„,做题方法是构造出一个满足题目的数列。如果在平时练习或考试的过程中,遇到了这三种题目,可直接按照相应的方法进行求解。但是,还有一些最值问题并不像上面三种问题叙述的那么简单,往往涉及的项目还比较多,需要先进行分析讨论。遇到这样的题目怎么分析,举两个例子剖析一下。

【例1】一个20人的班级举行百分制测验,平均分为79分,所有人得分都是整数且任意两人得分不同。班级前5名的平均分正好是16到20名平均分的2倍。则班级第6名和第15名之间的分差最大为多少分?

A.34 C.40

B.37 D.43 【解析】求班级第6名和第15名之间的分差最大,则第6名的成绩要尽可能的接近第5名的成绩,且前5名的成绩差距要尽可能的小,即前6名成绩是连续的自然数,第15名的成绩要尽可能的接近第16名的成绩,且后5名的成绩差距要尽可能的小,即后6名的成绩是连续的自然数。又由于班级前5名的平均分正好是16到20名平均分的2倍,则前5名的成绩决定了后5名的成绩。而同时满足这些条件的数列有多组,则可以使前5名的成绩为100、99、98、97、96,则第6名的成绩为95,由此,后5名得成绩为51、50、49、48、47,则第15名得成绩为52,此时与平均分为79分不矛盾,所以第6名和第15名之间的分差最大为95-52=43。因此,本题答案选择D选项。

【例2】有20人测验及格率是95%,平均分88,得分都是整数并且每人得分都不相同,问排名第十的人得分最低是多少?

A.88 B.89 C.90 D.91 【解析】为了使得排名第十的人的分数尽可能的低,应当使得其余排名的人的分数尽可能高。根据及格率为95%可知,有一人未及格,而未及格的人的分数最高为59分。因此19名及格的考生总成绩为88×20-59=1701分。

前九人的分数最高分别为100分,99分,98分,97分,96分,95分,94分,93分,92分,因此第十至第十九人的分数总和为1701-(100+99+98+97+96+95+94+93+92)=837分。假设这十个人的分数分别为91分至82分,那么这十个分数的和为865分,比实际分数多了865-837=28分。如果第十个人的分数减去1分,那么其余九个人的分数依次减去1分,这样他们的总分就要减去10分。由此可见第十个人的分数只能减去2分达到89分,这样才使得十个人的分数总和可能为837分。如果第十个人的分数为88分,那么这十个人的分数总和最多为835分。因此第十个人的分数最低只能是89分。

通过这两个例子,大家会发现,这样的最值问题也不过是“纸老虎”,看起来题目比较长,跟问题直接相关的信息又比较少,一般思路是考虑问题的反面作为出发点,如“求班级第6名和第15名之间的分差最大,则第6名的成绩要尽可能的接近第5名的成绩”,再如“为了使得排名第十的人的分数尽可能的低,应当使得其余排名的人的分数尽可能高”,一步步,抽丝剥茧般形成习惯性的套路,这样的问题自然就迎刃而解了。

第五篇:二次函数最值问题

《二次函数最值问题》的教学反思

大河镇 件,设所获利润为y元,则y=(x-2.5)[500+200(13.5-x)],这样,一个二元二次方程就列出,这也为后面学习二次函数与一元二次方程的关系奠定了基础,针对上述分析,把所列方程整理后,并得到y=-200x2+3700x-8000,这里再利用二次函数y=ax2+bx+c(a≠0)的解析式中a、b、c的大小来确定问题的最值。把问题转化怎样求这个函数的最值问题。

b4acbb4acb根据a>0时,当x=-,y最小=;a<0时,当x=-,y最大=

2a4a2a4a的公式求出最大利润。

例2是面积的最值问题(下节课讲解)

教学反馈:讲得丝丝入扣,大部分学生能听懂,但课后的练习却“不会做”。反思一:本节课在讲解的过程中,不敢花过多的时间让学生争辩交流,生怕时间不够,完成了不教学内容,只能按照自己首先设计好的意图引领学生去完成就行了。实际上,这节课以牺牲学生学习的主动性为代价,让学生被动地接受,去听讲,体现不了学生是学习的主人这一关键环节。

反思二:数学教学的目标不仅是让学生学到一些知识,更重要的是让学生学会运用知识去解决现实问题,让学生“从问题的背景出发,建立数学模型”的基本流程,如例题中,可让学生从“列方程→转化为二次函数解析式→

b4acb当x=-时,y最大(小)=→解决问题”,让学生在实践中发现数2a4a学,掌握数学。

反思三:教学应当促进学生成为学习的主人,离开了学生积极主动学习,老师讲得再好,学生也难以接受,或者是听懂了,但不会做题的现象。传统的教学“五环节”模式已成为过去,新的课程标准需要我们用新的理念对传统的教学模式、教学方法等进行改革,让学生成为课堂的主角。

下载初中数学代数最值问题常用解决方法5篇word格式文档
下载初中数学代数最值问题常用解决方法5篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    初中数学数与代数心得

    学习《初中数学数与代数》的心得 通过学习《初中数学数与代数》的课程,我对这部分内容有了更深入的体会。 1、初中代数的三大部分内容“数与式”、“方程与不等式”、“函数......

    北师大版初中数学代数难题归纳

    求证:相邻两个自然数的平方差等于这两个数的和。 已知:x2)(x3)已知:a、b、c为三角形的三边,满足a+b+c=20a+16b+12c-200,试判断三角形的形状。 解方程:已知:实数X满足x2小明的妈妈......

    2015二次函数与最值问题

    2015年中招专题---二次函数与最值问题 1.(2014•四川绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,且与x轴交于A、B两点,与y轴交于C点. (1)求抛物线的解析式; (2)点P为抛物线对称轴上的......

    不等式证明与最值问题

    不等式证明与最值问题(一)均值不等式的运用(1)均值不等式的运用:a² + b²≥ 2ab;当a>0,b>0时,a+b ≥2√ab 附: 完全的均值不等式:√[(a²+ b²)/2] ≥(a+b)/2 ≥√ab ≥2/(1/a+1/b) (......

    二次函数的最值问题修改版

    利用数形结合法解决二次函数在闭区间 上的最值问题 数学组:王勇 一、教学目标: 1. 理解二次函数的最值概念,掌握二次函数的最值求法; 2. 培养学生数形结合的能力和将数学问题转化......

    二次函数最值问题参考答案范文合集

    精英辅导学校 贾天宇 2013.7.17. 二次函数最值问题 二、例题分析归类: (一)、正向型 是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为......

    含参二次函数最值问题探讨

    含参二次函数最值问题探讨 甘肃畜牧工程职业技术学院 张发荣733006 二次函数模型是重要的函数模型,在北师大版高中《数学》新教材中占了大量的篇幅,详尽介绍了二次函数的性质......

    二次函数的最值问题

    二次函数的最值问题 雷州市第一中学 徐晓冬 一、 知识要点 对于函数fxax2bxca0, 当a0时,fx在区间R上有最 值,值域为 。 当a0时,fx在区间R上有最 值,值域为 。 二、 典例讲解 例1......