第一篇:电能优化器在自来水厂的节能应用
电能优化器在自来水厂的节能应用
摘要:在自来水的生产运营成本中,泵站耗电费用占有较大的比重,而泵站电耗主要反映在电机的用电量上。如果在不改变水泵机组扬程、流量的基础上,能降低电机的电流和功率,则可以起到节能降耗的效果。桂洲水厂使用的POWERCSG电能优化器通过优化电力质量的方法,减少电机15%的用电量,达到节能的目的。
关键词:供水泵站;电动机节能;PPO电能优化器
引言:自来水厂是城市企业用电的大户,也是耗能大户。供水企业中,自来水的制水成本中电费用所占的比重约50%左右,电力消耗占整个供水能源消耗的95%以上。因此,如何降低电耗成了供水企业的重中之重,也是提高企业经济效益的有效措施,同时对建设资源节约型社会具有重要的推动作用。
自来水生产过程中,泵站电耗是主要部分,是节能降耗关注的重点对象,而常用的节能手段主要通过加大机泵改造和维护、以及对泵房配电系统进行改造。顺德供水公司下属桂洲水厂在二级泵站使用了一种称为PPO电能优化器的设备,它通过改善电动机供电线路整体的电流输送质量来达到节能降耗的目的,下面我就这个PPO电能优化器的工作原理和使用情况向大家做个介绍。
一、PPO电能优化器的工作原理
电能在传输过程中,是以不稳定的态势进入导体的,所有形态的电子负载在电路中都是以一种不规则的运动轨迹在运动,这些不规则电子运动会导致所有负荷和导体产生腐蚀效应,同时电子的不规则运动会使它们相互间产生碰撞、摩擦和过度震动,从而造成能量损耗,损失的能量会以热、噪音、振动和电磁形式表现出来,最终导致电力传输上的损失。PPO电能优化器节电原理就是结合光电效应、光化学效应和康普顿效应的三个理论,通过发射红外波扰动电子的运行状态,改变电子的轨道特性,大量减少电子的相互碰撞,进而减少电能在传输过程中的损耗。PPO电能优化器与普通节电产品不同,它是一种专门针对各种电能质量问题而研发的系统,它带来了一种崭新的节电理念,其核心是一个获得专利权的波动发生器,里面的芯片产生的特定波长红外线可以改变电子的轨道特性,起到扰动电子、改变不规则电子的运动方向,从而大量减少电子碰撞、摩擦和减轻电子的过度振动。
二、PPO电能优化器在水厂节能降耗工作中的应用实例
桂洲水厂是顺德供水有限公司属下一个日供水量6万吨的水厂,其供水泵房有3台 280KW 与 2 台 200KW 水泵机组,是水厂电力消耗主要生产单元。桂洲水厂出厂水压力控制范围是0.38~0.46Mpa,供水流量约3500m3/h,2014年PPO设备安装前桂洲水厂泵站电耗为178kwh/dam3,配水电耗4.45kwh/
(dam3*m),而全厂的综合电耗为231 kwh/dam3。
PPO电能优化器对泵房开展节能降耗工作可选择单机配置和泵站整体配置两种方案,单机方案即是在每台机组旁边配置与电机功率相近容量的PPO设备;泵站整体方案则是将泵站的所有机组作为一个整体而无需考虑单台机组的功率,然后根据泵站日常负荷配置PPO设备的总容量,并将其作为一个整体模块组旁接在供水泵站的电力供应端的主电柜旁。供水负荷是每日周期性波动,单机方案虽然投资大但效果好,而泵站整体方案相对投资少,并且调度灵活,节能效果则略逊于单机方案。
本次桂洲水厂作为PPO节能项目的试点最终采用了单机配置方案以保证最佳的节能效果,除去280KW的2号备用机组外,其余4台均根据电机功率配置了PPO设备,同时在二级泵站的主电力供应端及4个水泵的各个电力供应端上安装功率纪录仪并连通电脑设备。二级泵房的PLC工作站也24小时连续不断地对各台水泵机组的电流、功率和泵站流量、压力、清水池液位等相关参数进行实时监测,以量度二级泵站的实际总体与各个水泵设备的电力数据。
图-1 单台机组PPO接线示意
PPO设备安装好并接通电源后系统将会立即运作,对电子运动轨迹进行规范,开始节能工作。一般而言,针对24小时运作的马达设备其磨合期约为六周左右。由于水厂泵站机组会根据压力和流量的调节进行转换开停,因此优化期会相应延长以确保足够的磨合时间,在这期间并不影响供水泵房正常的生产调度,PPO电能优化器会自行做出智能调整,达到最佳效益。
图-2: 3号电机在PPO投入前后的运行电流对比
3号、4号电机于2015年5月18号投入使用,图-2和图
-3分别是从电脑上截图的PPO投入前后的电流数据对比与历史曲线变化。
节能量的计算方面,我们根据自来水厂的生产与工作特性,按该泵站每泵出一千立方米自来水的电机耗电量(简称电机单耗)来评估使用PPO设备前后对整个二级泵站水泵设备的整体节能效果,以配水电耗作为一个参考指标进行衡量,从而将供水流量、压力和机组搭配的影响降到最低。
每千立方米自来水生产耗能平均值计算公式:
(该泵站水泵马达每日总耗能千瓦时/每日供出自来水的总立方数)X 1000
4台机组PPO设备5月18日全部投入使用,6月10日二级泵站自动电容补偿柜退出运行。在PPO设备全部投入运行一个月后,水厂各能耗指标有明显的变化,虽然目前设备还处在磨合优化期,但其节能效果已经达到9%,后继的运行将会使节能量进一步增大,并最终有望达到15%节能效果。以下所示是各项数据比对表:
PPO设备投入后各机组电流变化
PPO设备投入后功率因数的变化
集中电容补偿柜没投入前,二级泵房功率因数:cosΦ=
0.76;集中电容自动补偿柜投入后,二级泵房功率因数:
cosΦ=0.96。两个电容补偿柜的电流分别为I1=162A,I2=55A。集中电容补偿柜没投入,PPO优化器投入,二级泵房功率因数:
cosΦ=0.93,三、PPO电能优化器的工作特点
(1)PPO电能优化器直接和用电设备进线端子并联,或者并联在离用电设备最近的配电箱。并联的设计的好处是最大限度的保证了目标设备的安全运营,即便PPO电能优化器出现故障,通过加装的断路保护器立刻隔离优化器,从而不影响正常生产。(2)PPO 设备到用电设备主电路的连接点的距离不能超过7 米。如果超出这一距离,PPO 设备对电路中电子的感应有效性将大幅降低,从而影响节能效益的发挥。(3)为了获得最佳的优化效果,用于连接PPO与用电设备的电缆必须是高品质的细芯线型,如果使用低质量电缆,将影响电子的运动效率与排列,从而影响优化效率。
(如下图中,左面为最好,中间为次之,右边为最差。)
(4)PPO节能优化器在提供更顺畅的电力传递同时能延长用电设备的寿命。下图是红外成像仪观察优化前后电动机温度变化:
(5)PPO设备逐渐影响电路里的电子行为,提高整个系统的能量转移效率,其节能效果需要在系统内构造达到一个临界点后,其节能效益可以实现出来,依赖于不同的运行环境,这个磨合时间通常需要6~8周,而它所表现出来的第一个变化迹象就是无功功率的突然下降,这就表明PPO设备开始对电路产生影响了。(6)PPO设备在水泵长时间停止运作后的几天里重新启动,需要重新优化操作,以降低到其之前的最佳状态。
四、PPO电能优化器厂在水厂的应用前景
水厂传统节能工作均是从提高水泵效率、采用变频技术等几方面考虑,提高系统整体运行效率的方式进行节能改造,即通过限制和降低电动机原有的输出功率实现电动机省电的目的,这对于一些工作不稳定,不是满负荷运转的电动机,采用变频调速装置可以使电动机合理运行,避免了不必要的电能消耗。顺德供水公司10个镇街的水厂在陆续整合,近期不断有水厂关停或扩容、供水管网也在不断合并改造,致使各水厂供水压力范围还处于一个变化的过程中,采取上述传统的节能方法均有可能导致与今后的生产工况不匹配,造成重复投资或投资浪费的情况。而PPO电能优化技术无疑是一种持久有效、不受水厂水压、流量等工况影响的节能办法,在保证或提高电动机原有输出功率的条件下,通过提高电动机和所属回路的导电性,从而降低电动机和所属回路的阻性损失(热量损失)的节电方式,是可用能量守恒定律来衡量的节能技术,是真正意义上的节能。
根据电能优化器的工作原理和工作特性,我们可以看出,PPO电能优化器对于水厂的许多设备都有较好的节能效果,例如:以电动机带动的空压机、水泵、风机等常用设备。PPO电能优化器采用安全可靠的并联连接方式,最大限度的保证了目标设备的安全运行,这一点相比较目前普遍采用的变频器更加安全可靠,同时,电能优化器可以有效降低目标设备的热量、噪声和线路的腐蚀,延长了电机等目标设备的使用寿命,从而缩短了目标设备的更换周期,节约了大量的资金。综合评价PPO电能优化器,应该是一款高科技新型绿色的节能产品,可以帮助水司以崭新的方式继续挖掘节能的潜力。
第二篇:阀门在自来水厂的应用
阀门在自来水厂的应用
2018-02-13阀门之声
自来水厂的常规制水工艺从原水取水,沉淀池絮凝沉淀,滤池过滤,直至最后的出水泵房输出供水,都离不开阀门的使用。但是在不同的部位对于阀门的选用要求是大不相同的。主要区别在于阀门的口径,阀门的类型和阀门的控制方法上。
水厂常规制水系统的阀门 原水取水的工艺阀门
头部原水的阀门其特点是阀门口径较大,无须经常操作,大部分属于一年甚至几年才需要操作一次,阀门长期处于常开或常闭状态。因此从控制方法上,95%以上选用的是手动阀门,从阀门类型上均为闸阀或者蝶阀,由于闸阀的水头损失要优于蝶阀,头部阀门闸阀略多于蝶阀。口径集中在1200~1600mm,在头部进水管道上也存在口径3000mm的阀门。沉淀池阀门
沉淀池的阀门主要是进水阀,出水阀和隔离阀。出水阀基本处于常开状态,隔离阀基本处于常闭状态,一年操作一次,故而这两种阀门都选用手动闸阀,规格分布在2200×1800~1200×840之间。而沉淀池的进水阀承担着水量分配的重要职责,要求调节频繁,性能可靠,且分布在各个沉淀池前,分布比较散,均采用带有智能控制系统的电动调节阀。它是决定着沉淀池的水量和系统平衡的关键一环,对于制水线是根据出水量动态调节的系统,尤为重要,并且还需要进行PID动态跟踪调节,这时对于阀门的全行程时间,允许的起停频率都会有相应的要求。滤池阀门
最常见的滤池为四阀滤池,这也是滤池的最基本配置。即无论哪种滤池都至少有进水阀、排水阀、冲洗阀和清水阀这四类阀门。当然现在也有不少五阀、六阀甚至七阀滤池,还配备了气冲阀,初滤水阀或者多配备一个进水阀等等情况。从阀门的结构上来分清水阀和冲洗阀通常选用蝶阀,这主要原因是清水阀和冲洗阀都安装在管廊内的管道上,且清水阀需要频繁调节,而冲洗阀也会有调节冲洗强度的需求。而进水和排水通常通过渠道进行,故而进水阀与排水阀基本上都选用通闸板阀。滤池的冲洗阀口径要略大于清水阀口径,冲洗阀基本上在DN600~DN800,而清水阀则在DN400一DN600。进水阀和排水阀的尺寸与渠道尺寸相关。从控制方法上来看,这四类阀门都采用电动控制或者气动控制。但是这其中清水阀必须是可调节的智能控制模式,和沉淀池进水阀的要求一致。此外考虑到综合布线和模块化的设计方法,滤池阀门可以选用总线型的控制模式或者PLC站点化的控制模式。前者的好处是省布线空间,后者的有点在于,分离单格滤池,便于维护管理和移植。泵房阀门
泵房内的阀门主要是水泵机组上的进水阀、出水阀、检修阀和止回阀。前三种阀门基本都选用蝶阀,差异在于控制方式上。进水阀和检修阀只需要手动阀门即可,因为他们一个处于常开状态,一个处于常闭状态,而出水阀则在每次开停水泵时都需要启闭,如果考虑到用出水阀调节水量,使水泵拥有不同的工况来满足需求的因素,出水阀也需要是调节型智能装置控制。止回阀要防止水流到转的发生,又要避免水锤现象的发生,通常选用静音止回阀,带有微阻的缓闭止回阀。有时也会选用多功能阀,集出水止回功能于一体。
水厂加药系统的阀门
水厂加药系统的特性决定了用在上面的阀门口径小,流量小,但是对流量调节要求高,精度要求高,调节速度快,故而通常选用流量调节阀,这种阀门使得介质流通能力仅仅取决于阀本身的结构,这样就做到了流量调节一次完成。此外加药系统管道内的介质是硫酸铵、次氯酸钠等溶液,这就要求阀门还具有抗腐蚀的能力。另外加药系统还会用到球阀作为开关阀、背压阀等。
第三篇:电梯电能回馈节能改造解决方案
电梯电能回馈节能改造解决方案
电梯为何能发电
电梯作为高层建筑物中的固定式升降运输设备,由曳引机系统拖动一个装载乘客的轿厢,沿着垂直或倾斜角小于15°的轨道在各楼层间运行的一种势能负载,因此若电梯的载重量即轿厢重量与配重块不平衡时,会使电梯产生多余的机械能带动电梯轿厢运行。如本页图所示,当电梯轻载上行、重载下行或停层制动时,曳引机工作在发电状态。
目前的电梯大部分均采用变频调速技术,电梯运行过程中发出的电能会通过变频器逆变模块的续流二级管源源不断的向变频器的直流电容充电,使变频器的直流母线电压泵升,导致变频器产生过压故障,影响电梯的正常运行。目前国内大部分变频调速电梯吸收此部分能量的方法是采用外加大功率制动电阻的方法,这样不仅浪费了大量电能,降低电梯的运行效率,还会产生大量的热量,导致机房温度大大升高(4℃-8℃),需要用空调或排风扇来降温,从而更进一步增加了电梯能耗,同时大量的热量降低了电梯控制柜运行的稳定性。
采用电梯电能回馈装置的能源再生技术和电梯的完美结合将打破传统电梯(变频调速+永磁电梯)从节能到“造”能的飞跃。这也会是解决电梯能耗的历史性突破和分水岭。电梯能耗现状
一部普通的变频调速电梯,日耗电量在30kWh-80kWh,采用能源再生技术,节电率在15-50%,若按照每部电梯的日均耗电量40kWh,平均节电率30%计算,每部电梯的日均节电量在13.5kWh左右,再加上因采用能源再生技术、机房温度的降低而节省的空调电费,每部电梯的日均节电量可达到18kWh。据中国电梯协会统计,截止到2010年底,我国的在用电梯已达到150万台,且每年还在以20%的速度在增长,如果中国每部电梯都加装电能回馈装置的话,每年可节省电量达到65.7多亿kWh,在2011年-2015年十二五规划的五年时间里,节能量可达到586.68亿kWh,相当于三峡发电站半年的发电量。中国是世界上最大的电梯制造国和使用国,2010年电梯的年耗电量达到了237亿kWh,占整个建筑能耗的7%,且每年还在以20%的速度在增长.另一方面,市场上在用的90年代的电梯也逐渐进入了更换阶段。因此节能电梯的市场需求量主要包括三个方面,一是新增需求量,二是旧电梯的更换量,三是节能改造量。
节能技术原理
电梯运行中:①电梯在运行中有时耗电、有时发电;②耗电和发电的机会大约各占50%;③通常的电梯对于发电的电量都是通过制动电阻进行消耗而没有加以利用;④制动电阻的温度会明显升高。
电梯造成很多的能源浪费,发的电不仅没有利用,反而造成机房温度过高,需要借助空调进行散热,因此我们要想办法进行解决。我们采取的策略是对发电的电量进行回收利用,那么不仅可以将势能转变为电能再次使用,而且避免了产生多余的热量,同时还减少了空调的耗电量。
电量回收利用的方式是:将发出的电量转换成交流电,再同步输送到局部电网中,转换成一定的电流,与电网中其它用电器并联,为其它用电器提供一部分电能,这个叫做逆变并网,这个原理和广泛使用的太阳能发电并网原理是一样的。这种技术实现了从节能到“造能”的飞跃,是一种非常先进的技术。
实现这一节能技术的设备是电能回馈装置,它是实现能量回收和并网的关键设备。产品名称
益非KYF电能回馈装置
应用范围
环保节能产品,节省电能21%--60%,楼层越高,功率越大,使用越频繁,节能效果越好,非常适合高层,高速电梯使用。
适用范围宽,可与220V,380V,480V电压等级的变频器配合使用,曳引机功率从15KW—40KW均可适用。
自动扶梯变频节能改造方案
自动扶梯变频节能装置:
该产品具有工变频切换开关,可随时切换到改造之前的运行模式,安装后可达如下效果: 1)当扶梯置于节能模式运行时,启动扶梯后正常速度运行一分钟;
2)若一分钟内无乘客触发红外线,则扶梯变为设定频率节能慢速运行状态;
3)若有客流时,红外传感开关被触发,扶梯立即平稳加速到正常速度,控制器PLC内置计时器开始计时。(每触发一次都会重新计时,以保证最后一位乘客以正常速度达到); 4)若在设定的时间段内再无乘客通过电梯,扶梯自动切换到设定频率低速节能运行; 5)如此循环以达到显著的节能效果。
美丽东方自动扶梯节能装置
系列自动扶手电梯专用变频一体柜,是我公司引进德国尖端成熟的变频控制技术,结合国际上最高端变频器特性,及国内的应用特点,采用全新理念自主开发的一系列高性能,电流矢量型、低噪音的变频器。在提高稳定性的前提下增加了简易PLC、实用的PID调节(具有恒压供水功能),灵活的输入输出端子、参数在线修改、自识别信号传输故障、停电和停机参数存储、注塑机节能控制、摆频控制、RS485控制、现场总线控制等一系列实用先进的运行、控制功能。为设备制造和终端客户提供了集成度高的一体化解决方案,对降低系统采购和运营成本,提高系统可靠性具有极大的帮助。
ML系列扶手电梯专用变频一体柜,它优良的无级软启动性能,强大而可调整的控制功能,保证了产品极高的工作安全性,确保为用户提供更安全可靠和更优性能的产品服务。
Ml系列自动扶梯节能控制器是当今最先进的自动扶梯一体化控制系统,集成了变频驱动和扶梯逻辑控制,辅以简单的外设就可构成完整的扶梯控制系统,该一体化控制系统申请了两项国家发明专利。
ML系列的出现解决了困挠变频扶梯多年的三大难题:成本居高不下、重载下行的安全隐患、变频工频切换的振动。因采用的是旁路变频改造而不是全变频改造,所以很好地解决了传统的变频改造因空间不足而散热不良,导致整个系统经常故障,严重影响扶梯寿命的缺点。
第四篇:自来水厂废水处理工艺的优化
自来水厂废水处理工艺流程
自来水厂的生产废水主要来自沉淀池或澄清池排泥水和滤池反冲洗废水,其中包含了原水中的杂质以及水厂投加的药剂残留物,其水量一般约占水厂总制水量的3%~7%,对环境的冲击作用是显而易见的。据估计,上海市全部水厂每年排入江河的悬浮物约达30万吨以上,有机物3万吨以上。
近年来,随着人们环境意识的增强,特别是强调走可持续发展道路以后,自来水厂排泥水处理以及污泥处置问题越来越受到重视,环保部门对自来水厂生产废弃物的排放和处置要求也逐渐提高。我国许多规模较大的新建水厂和水厂扩改建工程也开始考虑排泥水处理和污泥处置问题,所采用的工艺流程也各不相同。本文的主要目的是就自来水厂排泥处理采用的有关流程以及自控要求提出一些个人看法,供有关人士参考。
1.排泥处理常采用的工艺流程布置方式
在工程设计中选择排泥水处理工艺流程时需考虑排泥水的沉降性能,上清液是否能达标排放,集泥池中的泥水浓度是否能满足浓缩脱水的需要,以及排泥水调节池和滤池反冲洗废水调节池是否能满足排泥水与废水预浓缩的体积要求等。通常有下列几种布置方式可供选用参考:
方式(1):沉淀池排泥水浓缩处理,滤池反冲洗废水直接回用或排放。适用于滤池反冲洗废水可满足回用要求的情况,考虑到长时间回用可能引起的金属离子富集等问题,亦考虑排放措施。
方式(2):沉淀池排泥水浓缩处理,滤池反冲洗废水经废水调节池预沉,上清液回用或排放,底部污泥水浓缩处理。适用于滤池反冲洗废水不能满足回用要求,但预沉后上清液可以满足回用要求的情况。
方式(3): 沉淀池排泥水和滤池反冲洗水经调节池混合后,上清液回用或排放,底部污泥水浓缩处理。适用于滤池反冲洗废水不能满足回用要求,但单独浓缩无法脱水机械要求,只能与沉淀池排泥水混合浓缩的情况。
国内外有些资料上还介绍了一些工艺流程,基本上都是在以上三种基础上略做修改,此处不再介绍。
2.排泥水处理工艺优化
自来水厂沉淀池排泥水和滤池反冲洗废水的浓度和沉降性能之间存在着较大的差别。沉淀池排泥水的浓度一般较高,如果对沉淀池排泥加以有效控制,可将排泥水平均含固率控制在0.6%以上,进行一定时间的浓缩后,一般情况下可将浓缩池底部排泥浓度控制在3%以上,有利于污泥脱水机械的高效运行。滤池反冲洗废水的平均浓度较低,一般平均含固率在0.1%以下,进行浓缩后浓缩池底部排泥浓度一般低于1%,经过长时间的浓缩压密也很难超过2%,不宜直接进行污泥脱水。
针对上述情况,笔者建议将滤池反冲洗废水的浓缩污泥与沉淀池排泥水混合,进行二次浓缩,具体的工艺布置如下: 这种运行方式可以明显改善反冲洗废水的浓缩效果,且由于反冲洗废水的浓缩污泥总量少,对沉淀池排泥水浓缩的影响小,可满足脱水机械的运行要求。
3.污泥脱水工艺的运行控制要求
污泥脱水的运行控制包括沉淀池吸泥机的运行、平衡池和调节池的设置以及加药和提升系统等多方面的要求,以下从设计角度提出一些看法:(1)吸泥机的运行
建议采用泵虹吸式吸泥机,并在吸泥机上安装泥位浓度梯度检测仪。通过对泥位梯度变化的检测,控制吸泥机的泵吸、虹吸运行选择,提高排泥浓度。在沉淀池的起端和末端易受水流影响的地方,一般排泥浓度较高,可通过程序控制结合泥位梯度检测结果在局部区域多次往复,直至达到排泥要求。
(2)调节池
沉淀池排泥水和滤池反冲洗废水是间歇产生的,且流量较大,而浓缩池设计时考虑处理负荷,基本上是连续运行的,因此需设置调节池以解决废水收集和浓缩之间能力差值。排泥水调节池用以收集沉淀池排泥水,其容积必须满足排泥期间吸泥机排泥能力和排泥水浓缩能力的差值;反冲洗废水调节池则收集滤池反冲洗废水,不仅需在容积上考虑滤池反冲洗废水排放能力与浓缩能力的差值,还需考虑反冲洗废水的回用问题。
调节池运行控制方面,建议采用可调节的提升泵,根据调节池的运行液位及污泥浓缩池上清液固体悬浮物含量调节运行速度,以确保回用的上清液中的悬浮物含量小于设定的标准限制。(3)污泥浓缩池
污泥浓缩池的设计需考虑生产废水的沉降性能和所需达到的处理负荷。为节约浓缩池面积,往往在浓缩池固液分离部分加斜板,以提高浓缩效率。如果同时考虑沉淀池排泥水和滤池反冲洗废水的浓缩,则建议在设计时考虑两组浓缩池之间可切换使用,反冲洗废水浓缩池排泥管路考虑二次浓缩的可能。
浓缩池进水管路考虑流量信号的输出以及进水阀门的状态控制;浓缩池内则包括液位信号、泥水分离区浊度信号和污泥压密区的浓度信号的输出;排泥管路建议采用调流阀,根据排泥管路的污泥浓度调节进入平衡池的污泥量,保证平衡池内的污泥浓度满足脱水机械的要求。
(4)污泥平衡池
污泥平衡池的作用是收集浓缩污泥,保证脱水机械的连续运行。平衡池的容积决定了污泥脱水系统的抗冲击能力,如果原水浊度短期大量提高,产生的浓缩污泥超过了脱水机械的处理能力,则超出部分的污泥可储存在平衡池内,待以后处理。
污泥平衡池主要考虑液位、浓度信号的输出以及搅拌设备和出水阀门的状态控制。
(5)脱水机械、PAM溶投系统及提升系统
自来水厂的污泥脱水机械主要有带式压滤机、板框压滤机和离心脱水机三种。带式压滤机由于出泥含固率较低,很难达到泥饼处置要求,较少使用,但有时也被用于污泥浓缩;脱水机械最常采用的是板框压滤机和离心脱水机,两者产生的脱水污泥基本都能满足处置要求,前者脱水效果最优,但设备、土建投资大且系统复杂,后者投资相对较低,系统较简单,但噪音较大,脱水效果较前者略差。
PAM溶投系统包括PAM溶液的配置系统和投加系统,其投加点主要在脱水机械以前,必要时也可在浓缩池内少量投加PAM,以改善泥水分离和污泥沉降效果。提升系统包括浓缩池、平衡池和脱水机械之间泥水输送系统,根据浓缩和脱水系统的运行情况,有一定的调流要求。
脱水机械、PAM溶投系统及提升系统的控制系统,往往由厂家根据具体设备要求配套提供,包括状态、浊度和压力等信号的输出、控制和开关等要求。
(6)上清液回用 上清液回用,主要指滤池反冲洗水调节池中的水和浓缩池上清液是否可作为原水重新接入常规处理工艺。前者主要需考虑其对铁、锰等金属离子的富集问题以及对出厂水浊度等常规指标和隐孢子虫等微生物指标的影响;后者除考虑前者的这些问题外,还需考率投加PAM后对出厂水质的影响,这对自控检测系统的要求很高。同时可以查看中国污水处理工程网更多技术文档。
4.结束语
目前,国内自来水厂排泥水处理尚属于起步阶段,不仅有关的理论和生产实践研究尚未深入,设计方面也缺乏经验,还有大量的工作要做。因此在设计时,必须根据原水的水质和水厂的工艺流程,进行必要的试验探讨,以选定污泥处理的合理工艺流程,并结合所选定的设备情况确定运行控制要求。
第五篇:电梯电能回馈装置的应用
电梯能量回馈装置的应用实践
————李维善
一、我国电梯发展的简要回顾
统计数据显示,1979年以前,我国的在用电梯不到1万台。八十年代以来,随着经济建设的持续高速发展,国内电梯需求量越来越大,新增数量整体呈快速上升趋势,并持续至今。
根据历年的统计数据:1986年,我国大陆地区电梯年产量突破1万台;1997年达到了近3万台;2002年首次突破6万台;2006达到16.8万台,成为全球之首。2007年达到21.6万台,这个产量超过了全球当年电梯产量的40%。中国电梯协会提供的信息显示,截止到2007年底,中国大陆在用电梯总数达917 313台,成为世界电梯保有量最大的几个国家之一。各省份电梯数量如下:
单位:台 北 京 78945 重 庆 22949 天 津 17771 贵 州 5273 河 北 15379 云 南 13203 山 东 30089 河 南 18684 内 蒙 5843 江 西 9429 山 西 9149 湖 南 上 海 94637 湖 北 浙 江 86104 陕 西 福 建 31040 新 疆 广 西 13279 甘 肃 广 东 204057 宁 夏 海 南 7057 青 海 安 徽 13980 西 藏 江 苏 79566 黑龙江 四 川 23400 吉 林 辽 宁 35047 总计 917313
22035 23351 16597 8092 6838 2210 1845 766 11964 8734 根据有关方面提供的对酒店,写字楼等的用电情况调查材料显示,当出租率或者入住率比较高的时候(超过85%),建筑物内电梯的用电量可以达到建筑物总用电量的15%—25%仅次于建筑物内制冷、空调的用电量,高于楼内公共区域照明,供水等的用电量。随着电价的不断上涨,电梯节能已经成为广大电梯使用单位十分关注的问题。近年,新建的楼宇中带有电能回馈装置的电梯已经逐渐开始被建设单位选用。
二、交流异步电动机的发电原理
交流异步电动机也被称为“感应式电动机”,在电动机处在电动状态的时候,转子导体不断地切割旋转磁场的磁力线而产生电磁转矩,使转子发生转动并且输出扭矩。但是当交流异步电动机的实际转速高于同步转速的时候,电动机转子切割磁力线的方向与电动状态的方向相反,于是转子的感应电动势和转子的电流方向都和电动状态时的方向相反,继而导致转矩与转速的方向相反,电动机处在回馈制动的状态下。此时电动机输出的机械功率<0,从定子到转子的的电磁功率也<0。
P = 3U1I1cosφ<0 说明电动机不是从电网吸收有功功率,而是向电网输送有功功率,换句话说此时的一台交流异步电动机已经变成了一台交流异步发电机与电网并联运行。但是电动机仍然需要从电网吸收无功功率以便建立旋转磁场的磁通势。正因为如此,这台发电机不用考虑同步问题。
三、泵升电压
当我们把一个重物从低处提到高处时,必须要付出能量,当把这个重物从高处放回低处时,这个能量将会释放出来,这是“能量守恒”原理。电梯也是同样的道理,当把电梯向上提时,我们要使用电能,当把电梯从高处放下时,电梯要放出能量,为了均匀拖动负载,电梯由曳引机拖动的负载是由载客轿厢和对重平衡块组成,只有当轿厢载重量加上轿箱额定负载的50%(1吨载客电梯乘客为7人左右)时,两者才相互平衡。此举虽然改变了用能的峰值点,但不能改变平均能耗。而在实际使用的过程中不太可能出现这么巧的事情,即轿箱重量加上乘客的体重正好等于对重平衡块的重量。所以电梯基本上都是处在一种非平衡状态下运行的。在电梯的实际运行中经常会出现以下两种现象:
1、乘客较多的时候轿箱下降。
2、乘客比较少或者没有乘客的时候轿箱上升。
出现第1种情况的时候乘客的重力势能做功,也就是释放能量。出现第2种情况的时候,对重平衡块的重力势能做功。这两种状况下电动机就会处在发电的状态。原因是两种重力势能释放的时候就会拉着电动机向前转,从而使电动机的实际旋转速度高于电动机的额定同步转速。但由于电梯用变频器的交-直-交主电力AC/DC整流电路是不可逆的,因此发出来的电无法回馈到电网上去,结果造成主电路电容器二端电压升高,这种现象称为“泵升电压”。
另外采用变频调速的电梯启动运行达到最高运行速度后具有最大的机械功能,电梯达到目标层前要逐步减速直到电梯停止运动为止。从高速到停止(速度为零),这时电气的频率变化很快就完成了,但电动机的转子带着负载有较大的机械惯性,不可能很快的停止,此刻电动机在这个过程中电动机也处于发电状态,同样会产生泵升电压。
四、泵升电压的处理方式
电梯运行中多余的这些能量通过电动机和变频器转换成直流电能储存在变
频器直流回路中的电容中,回送到电容中的电能越多,电容电压就越高,如不及时释放电容器储存的电能,就会出现过电压。电梯控制系统的保护装置会迫动作,使变频器停止工作,电梯就无法运行了。为了避免这种现象的发生,目前泄放变频器内大电容中电量的方法是采用制动单元和外加大功率电阻,将大电容中电量消耗到外加大功率电阻上,实际上就是白白地变成热能浪费掉了。这种通过内置或外加制动电阻的方法将电能消耗在大功率电阻器中方式,被人们称之为电梯的“能耗制动方式”。目前国内的变频电梯几乎全都采用这种办法。电梯运行中,这些电阻都会散发出很大的热量(其表面温度可达100摄氏度以上),浪费的这部分能量占电梯用电总量的 25-40%。同时电阻产生的热量还恶化了电梯控制柜周边的环境,为了保证电梯控制系统中其他组件能够正常工作,管理方基本上要装空调、风机来降低电梯间温度,使得电梯系统的电能消耗进一步加大。在一些条价较差的电梯机房内,空调的用电量几乎和电梯的用电量大致相同。
五、电梯电能回馈器的工作原理
所谓回馈就是将上述多余的电能经过逆变变成与低压电网(局域电网)相同相位,相同频率,相同电压,相同相序交流电送回低压电网。这与风力发电和太阳能发电向低压电网并网送电的过程非常相像。
电能回馈器的主电路采用 IGBT 功率模块,控制电路中产生的控制脉冲列,经性能可靠的驱动电路控制IGBT 功率单元的开通、关断。电流指令发生器产生和回馈能量成正比的正弦波电流信号,使回馈电网的电流接近正弦波。主电路由IGBT、智能模块IPM、隔离二极管、滤波电感、电容,外围信号采样器等元件组成。模块是主电路中的核心元件,它将直流电能逆变为与交流电网同步的三相电流回送电网。隔离二极管可防止能量回馈器反送电能给变频器,确保系统安全运行。电感和电容构成高次谐波滤波器,阻止模块高频开关产生的高次谐波电流进入电网,提高电能回馈器的电磁兼容(EMC)性能。回馈器采用电压自适应控制,即无论电网电压如何波动,只有当电梯机械能转换成电能送入直流回路电容中时,电梯专用电能回馈器才及时将电容中的储能回送电网,如果电容器中没有储能,回馈器就不工作(不发电)。为保证能量回馈器能够安全可靠地工作,产品还采用了可编程逻辑器件,使回馈器具有极强的抗干扰能力。回馈器都有完备保护功能,保证了回馈器的可靠运行。
主要技术指标大致如下:
1.采用PWM脉宽调制技术,输出相位准确、有效抑制高次谐波。
2.采用DSP中央处理器,速率高、精度高、稳定性能好、抗干扰能力强。
3.采用自诊断技术确保输出电压精确,防止电流回送,使变频器不受影响。
4.电压畸变小于5%,符合IEC61000-3-2及GB/T14549标准。
5.应用电抗器和噪声滤波器,可直接和0.4kV电网驳接使用。
6.能量转换率达97%以上,节电率在25%~45%(根据不同工况)。
7.实现变频调速系统四象限运行;
8.制动能量得到回收,系统效率提高;在频繁制动的工况下运行时节电更明显。
六、电能回馈器简介
电梯能源反馈本身不是新技术,但仍属于先进技术,只是我国引进得比较晚。在国外从90年代起,我们常见的电梯品牌如:富士达,东芝,迅达,奥蒂斯,三菱,日立,蒂森等等品牌的原装电梯上就都可以带能源反馈装置。另外在油田抽油机,矿井的提升机等等地方,这项技术也得到了较为广泛的应用。
国内超高层建筑物内或者梯速3米/秒以上的高档电梯的基本都使用了这套装置,因为电阻放热的方式对这样的电梯已经不起作用了。但在一般建筑物中,由于在引进的时候这套装置报价相当高,所以绝大部分开发商在初期建设的时为了降低成本都没有选用。如果你有兴趣去电梯机房观察一下电梯控制柜,在其变频器的出线端子排上几乎都有标着“+”和“—”这样两个端子,这就是电能回馈装置的接线点。目前国产电梯出厂时都不配有电能回馈装置。
进入本世纪以后,这项技术被一些厂家引入国内,目前北京市场上常见的有深圳0TT,深圳加能,秦皇岛PROSPECT,西子奥的斯等几个厂家的产品。他们的产品从原理,构造和性能上基本相似,只是在辅助功能上有些差别而已。理论寿命可达70000小时以上
图1:壁挂式
图2 :落地式
目前市场上的能源反馈装置的设计完全是按照无人管理的全智能模式设计的(傻瓜型)。外观上看就像一个配电箱,大多采用壁挂式,体积大约在300×300×500mm(各个厂家有所差异),采用落地式的相对少一些。
原理图如下:
整个安装过程相当简单,主要的工作内容是固定回馈器和接线。然后根据实际情况对动作电压和控制参考电压进行一下设定,回馈器即可投入运行。
回馈器有6根引出线:其中3根是相线,分别接在三相电源上,作用是向低压电网回馈电能。另外 2根接在变频器的直流端子上,(变频器接线端子排上的那2个直流端子因变频器品牌的不同,其名称不完全一样,在接线以前应仔细阅读变频器说明书)其作用这是从直流母排上收集过剩的电能。剩下一根是接地线(PE线)。
为了用户能够确认回馈器的节电功能,各个厂家在安装首台回馈器的线路上通常还要安装三块电表(见下图),其中一块(A)用来计量不含有回馈电量的用电量,也就是没有安装回馈器时候电梯的用电量。第二块(B)计量包含回馈电量在内的电梯用电量。第三块(C)专门用于计量回馈的电量,也就是节约的电量。
它们之间的关系是:B=A-C 接线图
在电梯运行的期间,一旦电梯的电动机进入发电状态,人们就可以清楚地看见电表A在反转,电表B微动,电表C在正转。不过有一点一定要予以注意:在这里安装的电表必须是机械式电表,因为电子式电表是不会反转的。
五、节能效益
电梯能源回馈器的节能效益是相当高的。中国特种设备检验协会对某产品进行过能好测试:
工况为100%载荷(满载)时往返10次的耗电量,用电能回馈技术前耗电0.852Kw.h,应用电能回馈技术后耗电0.472Kw.h,节电率查过44%;
工况为0%载荷(空载)时往返10次的耗电量,用电能回馈技术前耗电0.748Kw.h,应用电能回馈技术后耗电0.486Kw.h,节电率超过35%。
根据笔者这几年的实际观察和测试,节电量与电梯的工作状况有很大的关系。在楼层越高,日平均运行频次越多,电梯的梯速越高,停站次数越频繁的电梯上面使用回馈器的节能效益越好。在高层写字楼内,每天叫梯次数超过1000次的电梯,安装回馈装置以后节电率几乎都能够达到35%以上。
此外使用该项技术以后,放热电阻不再工作,电梯机房的室内温度大幅度下降,通常可以下降5~10摄氏度。机房空调机的开启时间减少了50~75%(依电梯机房的位置和结构而异),进一步降低了电梯系统的能耗。同时电梯机房的温度下降以后,对电梯机房设备的安全运行和延长使用寿命都很有好处。
写字楼,商场,医院由于受到电梯客户群的影响,其主要工作时间往往都相对集中在8:30到18:00这段时间内,此间正值用电高峰期,电价都比较高,北京地区商业电价在高峰期间(10:00-15:00)是1.2283元/千瓦时,夏季7、8、9月的尖峰期间(11:00-13:00)1.3377元/千瓦时,因此节电效益更加明显。一年节约的电费基本上就能够达到初期投资的水平。
例如:深圳某大厦
电梯停站30层,梯速2.5m/s。实验状态:不用回馈器和用回馈器,各运行2周(336小时)。
不用回馈器用电量是817千瓦时。电阻温度128摄氏度。使用回馈器用电量是491千瓦时。电阻温度 22摄氏度。节电率大约39%。一年节约的电费就超过了改造的投资。
即使在叫梯次数很少的电梯上使用回馈器,节电率也相当可观。笔者曾经组织过一次测试,在XX高档公寓,2号楼7单元,楼高12层楼,地下2层,电梯功率是 11千瓦。一星期才叫梯次数230多次,使用回馈器以后节电率仍可以达到19.5%。
只是在这种工况下,节电效益很低,投资回收期过长。
六、对几个问题的解答
1、电能回馈装置发出来的电到哪里去了?
安装了电能回馈装置等于在建筑物低压电网中并联了一台不是连续工作的小发电机。当电梯处在发电状态的时候,回馈的电能进入局域电网,与时电网中其他正在运行中的用电设备(如水泵,冷水机组,风机,照明灯等等)将这一部分电消耗掉了,于是这些设备减少了对总电源的电力需求,从而达到了节约用电的目的。
2、加装电能回馈装置是否会影响电梯的安全运行? 电梯的电能回馈装置是在直流母排上并入的。回馈装饰都具备完整的保护功能(如:过压保护、欠压保护、过流保护、过热保护,采用自诊断技术确保输出电压精确,防止电流回送等),而且这些保护的设置参数都大幅度低于电梯控制柜和变频器的保护参数的水平,一旦回馈装置发生故障,其本身的各种保护就会先于电梯控制回路中保护起作用,使回馈装置停止工作。此时电梯仍可以正常工作,只是没有了电能回馈的功能而已,因此安装电能回馈装置对电梯的安全性能没有任何影响。另外该产品已经得到国家电梯质量检测中心认可,可以放心使用。
3、在不同建筑物内,同样功率,层站的电梯为什么节电率相差很大? 问题出在电梯的使用频率不一样。正如前面提到的,回馈器只是在轻载上 升,重载下降以及电梯停站之前的制动期间才会发电,所以发电量的取决于出现上面三种运行状况的几率。总体上讲,使用频率越高,电梯出现上述三种状况的几率就越高,回馈的电量就越多,节电率就越高。
4、什么样的电梯适合安装电能回馈器?
从理论个上讲,只要变频的垂直电梯都可以安装电能回馈器。非变频电梯、液压电梯由于工作原理不同,不能安装电能回馈器。无机房电梯也可以安装回馈器,安装回馈器后的节能效果不如有机房电梯那样明显,所以人们不太应用。
从节能效益上讲,应该首先应该考虑在楼层高,运行频率高,梯速高和停站多的电梯上使用这项技术。这样投资回收期比较短,而且电梯机房环境的改变更加明显。使用单位可以根据实验数据进行推算,大约在2-3年内可以收回投资的电梯都可以考虑进行改造。
电梯电能回馈技术是一项完全成熟而且很值得推广的节能技术,已经得到国家电梯质量管理部门的认可。在设备选型的时候,写字楼,医院,商厦等等建筑物就应该考虑安装带电能回馈装置的电梯。建议有关部门早日完成国家相关标准和规范的制定,使这项节能技术的推广和应用进入法制化的轨道。应该在建筑物方案审核的时候就进行相应的干预,以便从源头上控制住高能耗电梯的进入市场。避免再次陷入先耗能再治理的怪圈内。