第一篇:人教版小学数学六年级下册说课稿 成数与折扣(写写帮整理)
人教版小学数学六年级下册说课稿 成数与折扣
教材说明
这是一节小学六年级的数学课。
学生分析
学生整体上思维敏捷,在新授课上总是表现出较浓的兴趣,课堂反应与接受较快。
本节课将要教学的“成数与折扣”,大多数同学在日常生活中通过新闻媒体、交往、购物等多少都有所接触、了解。但学生的这种认识还只是凭借生活经验产生的感性认识。如打折,学生都能想到是便宜了,比原价少了,但问其所以然,能解释清楚的并不多。所以对成数、折扣知识概念学生并未真正理解。另外,学生很少会将这种生活中的商业折扣、农业成数与数学、与课本上的百分数数学知识相联系,欠缺知识间沟通互化的意识。所以,需要教师规范、指导形成系统的概念,联系生活实践来展开教学。
教学目标
1.明确成数、折扣的含义。
2.能熟练地把成数、折扣写成分数、百分数。
3.正确解答有关成数、折扣应用题。
4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
课前准备
电脑课件一份,学生准备计算器。
教学流程
一、联系主活,导入新课。
师:我们刚刚度过一个有意义的寒假。愉快的寒假结束了,一年一度的新春佳节过去了,就在春节过后,各商家又会搞些什么样的促销活动呢?学生汇报调查情况。
二、在生活情境中,讲授新知。
1.教学折扣的含义,会把折扣改写成百分数。
(1)谈话,探学情。
师:刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?学生回答。
师:你们举的例子都很好,老师也搜集到某商场打七折的售价标签。
(电脑显示)
①大衣,原价:1000元,现价:700元。
②围巾,原价:100元,现价:70元。
③铅笔盒,原价:10元,现价:?
④橡皮,原价:1元,现价:?
师:动脑筋想一想。如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?
学生回答。
师:仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,拿出你手中调查到的打七折的标签,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。
(2)讨论,找规律。
学生动手操作、计算,并在计算或讨论中发现规律。
师:说说你们组寻找的方法。
学生的方法有:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。
(3)归纳,得定义。
师:通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打九折呢?打八五折呢?
学生回答。
师:概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?
师小结:“几折”是就是十分之几,也就是百分之几十。
(4)练习。
①四折是十分之(),改写成百分数是()。
②六折是十分之(),改写成百分数是()。
③七五折是十分之(),改写成百分数是()。
④九二折是十分之(),改写成百分数是()。
2.运用折扣含义解决实际问题。
例1:商店出售录音机,每台原价430元,现价打九折出售,比原价便宜多少元?
(1)出示提纲。
①打九折怎么理解?
②是以谁为单位“1”?
③可以改写成一道怎样的应用题?
④要求便宜多少元?也就是要求什么?
(2)学生试做,讲评。
(3)练习,做一做。
3.教学成数的含义,把成数改写成百分数。
(1)新闻,探学情。
(电脑显示:一则新闻《毛阿敏八成不能来晋演出》)
师:看了这则新闻,你想到什么?是肯定不能来吗?从哪儿看出来的?你认为八成表示有多大的把握?
学生回答。
师:大家说得都很好。如果把肯定来晋看作100%的话,八成就相当于80%。这种说法除了日常生活之外,在工农业生产中也经常用到。
(2)自学,得意义。
打开书自学课本相关内容。
学生汇报情况,概括成数的含义。
(3)练习。
师:就要单元测试了,能不能用含有成数的句子表达你对这次测试有多大的信心?
①四成是十分之(),改写成百分数()。
②二成五是十分之(),改写成百分数()。
③七成五是十分之(),改写成百分数()。
④八成七是十分之(),改写成百分数()。
4.运用成数含义解决实际问题。
例2:小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了二成五,去年收白菜多少吨?
学生试做、汇报、讲评。
三、巩固练习、应用所学。
1.判断。
(1)成数表示两数之间的倍数关系。()
(2)五成八改写成百分数是5.8%。()
(3)商品打折扣都是以原商品价格为单位“1”,即标准量。()
(4)某县今年蔬菜比去年增产四成,这里的四成是把去年看作单位“1”。()
(5)一件上衣现在打八折出售,就是说比原价降低10%。()
2.做课本中的相关练习题。
四、全课总结。
今天你又知道了什么知识?
板书:
折扣
成数:
例1:430×(1-90%)
例2:41.6×(1+25%)
=430×0.1
=41.6×1.2=43(元)
=52(吨)
答:比原价便宜43元。
答:去年收白菜52吨。
评析
这是非实验年级教师尝试用新理念教老教材的一节课。
本节课的教学注重紧密联系学生的生活实际,利用学生在日常生活中触手可及的商场购物、新闻消息等,创设教学氛围,让学生既体会到数学源于生活,又认识到所学数学可应用于生活。同时,教师引导学生大胆地猜测,积极地讨论,主动地探索,勇敢地尝试,将教学活动建立在学生已有的知识经验基础之上,所以课堂气氛活跃,学生学得起劲,学得主动。但在成数、折扣应用题的教学上,个别学困生还是有理解较慢的情况。由此看来,教师应在讲授新课前,适当增加对百分数应用题的复习。
第二篇:小学六年级数学《成数与折扣》说课稿
学生分析
学生整体上思维敏捷,在新授课上总是表现出较浓的兴趣,课堂反应与接受较快。
本节课将要教学的成数与折扣,大多数同学在日常生活中通过新闻媒体、交往、购物等多少都有所接触、了解。但学生的这种认识还只是凭借生活经验产生的感性认识。如打折,学生都能想到是便宜了,比原价少了,但问其所以然,能解释清楚的并不多。所以对成数、折扣知识概念学生并未真正理解。另外,学生很少会将这种生活中的商业折扣、农业成数与数学、与课本上的百分数数学知识相联系,欠缺知识间沟通互化的意识。所以,需要教师规范、指导形成系统的概念,联系生活实践来展开教学。
教学目标
1.明确成数、折扣的含义。
2.能熟练地把成数、折扣写成分数、百分数。
3.正确解答有关成数、折扣应用题。
4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
课前准备
电脑课件一份,学生准备计算器。
教学流程
一、联系主活,导入新课。
师:我们刚刚度过一个有意义的寒假。愉快的寒假结束了,一年一度的新春佳节过去了,就在春节过后,各商家又会搞些什么样的促销活动呢?学生汇报调查情况。
二、在生活情境中,讲授新知。
1.教学折扣的含义,会把折扣改写成百分数。
(1)谈话,探学情。
师:刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打七折,你怎么理解?学生回答。
师:你们举的例子都很好,老师也搜集到某商场打七折的售价标签。
(电脑显示)
①大衣,原价:1000元,现价:700元。
②围巾,原价:100元,现价:70元。
③铅笔盒,原价:10元,现价:?
④橡皮,原价:1元,现价:?
师:动脑筋想一想。如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?
学生回答。
师:仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,拿出你手中调查到的打七折的标签,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。
(2)讨论,找规律。
学生动手操作、计算,并在计算或讨论中发现规律。
师:说说你们组寻找的方法。
学生的方法有:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。
(3)归纳,得定义。
师:通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打九折呢?打八五折呢?
学生回答。
师:概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?
师小结:几折是就是十分之几,也就是百分之几十。
(4)练习。
①四折是十分之(),改写成百分数是()。
②六折是十分之(),改写成百分数是()。
③七五折是十分之(),改写成百分数是()。
④九二折是十分之(),改写成百分数是()。
2.运用折扣含义解决实际问题。
例1:商店出售录音机,每台原价430元,现价打九折出售,比原价便宜多少元?
(1)出示提纲。
①打九折怎么理解?
②是以谁为单位1?
③可以改写成一道怎样的应用题?
④要求便宜多少元?也就是要求什么?
(2)学生试做,讲评。
(3)练习,做一做。
3.教学成数的含义,把成数改写成百分数。
(1)新闻,探学情。
(电脑显示:一则新闻《毛阿敏八成不能来晋演出》)
师:看了这则新闻,你想到什么?是肯定不能来吗?从哪儿看出来的?你认为八成表示有多大的把握?
学生回答。
师:大家说得都很好。如果把肯定来晋看作100%的话,八成就相当于80%。这种说法除了日常生活之外,在工农业生产中也经常用到。
(2)自学,得意义。
打开书自学课本相关内容。
学生汇报情况,概括成数的含义。
(3)练习。
师:就要单元测试了,能不能用含有成数的句子表达你对这次测试有多大的信心?
①四成是十分之(),改写成百分数()。
②二成五是十分之(),改写成百分数()。
③七成五是十分之(),改写成百分数()。
④八成七是十分之(),改写成百分数()。
4.运用成数含义解决实际问题。
例2:小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了二成五,去年收白菜多少吨?
学生试做、汇报、讲评。
三、巩固练习、应用所学。
1.判断。
(1)成数表示两数之间的倍数关系。()
(2)五成八改写成百分数是5.8%。()
(3)商品打折扣都是以原商品价格为单位1,即标准量。()
(4)某县今年蔬菜比去年增产四成,这里的四成是把去年看作单位1。()
(5)一件上衣现在打八折出售,就是说比原价降低10%。()
2.做课本中的相关练习题。
四、全课总结。
今天你又知道了什么知识?
板书:
折扣 成数:
例1:430(1-90%)例2:41.6(1+25%)
=4300.1 =41.61.2
5=43(元)=52(吨)
答:比原价便宜43元。答:去年收白菜52吨。
评析
这是非实验年级教师尝试用新理念教老教材的一节课。
本节课的教学注重紧密联系学生的生活实际,利用学生在日常生活中触手可及的商场购物、新闻消息等,创设教学氛围,让学生既体会到数学源于生活,又认识到所学数学可应用于生活。同时,教师引导学生大胆地猜测,积极地讨论,主动地探索,勇敢地尝试,将教学活动建立在学生已有的知识经验基础之上,所以课堂气氛活跃,学生学得起劲,学得主动。但在成数、折扣应用题的教学上,个别学困生还是有理解较慢的情况。由此看来,教师应在讲授新课前,适当增加对百分数应用题的复习。
第三篇:小学数学六年级上《成数与折扣》说课稿
教材说明
这是一节小学六年级的数学课。
学生分析
学生整体上思维敏捷,在新授课上总是表现出较浓的兴趣,课堂反应与接受较快。
本节课将要教学的“成数与折扣”,大多数同学在日常生活中通过新闻媒体、交往、购物等多少都有所接触、了解。但学生的这种认识还只是凭借生活经验产生的感性认识。如打折,学生都能想到是便宜了,比原价少了,但问其所以然,能解释清楚的并不多。所以对成数、折扣知识概念学生并未真正理解。另外,学生很少会将这种生活中的商业折扣、农业成数与数学、与课本上的百分数数学知识相联系,欠缺知识间沟通互化的意识。所以,需要教师规范、指导形成系统的概念,联系生活实践来展开教学。
教学目标
1.明确成数、折扣的含义。
2.能熟练地把成数、折扣写成分数、百分数。
3.正确解答有关成数、折扣应用题。
4.学会合理、灵活地选择方法,锻炼运用数学知识解决实际问题的能力。
课前准备
电脑课件一份,学生准备计算器。
教学流程
一、联系主活,导入新课。
师:我们刚刚度过一个有意义的寒假。愉快的寒假结束了,一年一度的新春佳节过去了,就在春节过后,各商家又会搞些什么样的促销活动呢?学生汇报调查情况。
二、在生活情境中,讲授新知。
1.教学折扣的含义,会把折扣改写成百分数。
(1)谈话,探学情。
师:刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?学生回答。
师:你们举的例子都很好,老师也搜集到某商场打七折的售价标签。
(电脑显示)
①大衣,原价:1000元,现价:700元。
②围巾,原价:100元,现价:70元。
③铅笔盒,原价:10元,现价:?
④橡皮,原价:1元,现价:?
师:动脑筋想一想。如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?
学生回答。
师:仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,拿出你手中调查到的打七折的标签,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。
(2)讨论,找规律。
学生动手操作、计算,并在计算或讨论中发现规律。
师:说说你们组寻找的方法。
学生的方法有:利用计算器,原价乘以70%恰好是标签的售价;或现价除以原价大约都是70%;或查书,等等。
(3)归纳,得定义。
师:通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打九折呢?打八五折呢?
学生回答。
师:概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?
师小结:“几折”是就是十分之几,也就是百分之几十。
(4)练习。
①四折是十分之(),改写成百分数是()。
②六折是十分之(),改写成百分数是()。
③七五折是十分之(),改写成百分数是()。
④九二折是十分之(),改写成百分数是()。
2.运用折扣含义解决实际问题。
例1:商店出售录音机,每台原价430元,现价打九折出售,比原价便宜多少元?
(1)出示提纲。
①打九折怎么理解?
②是以谁为单位“1”?
③可以改写成一道怎样的应用题?
④要求便宜多少元?也就是要求什么?
(2)学生试做,讲评。
(3)练习,做一做。
3.教学成数的含义,把成数改写成百
分数。
(1)新闻,探学情。
(电脑显示:一则新闻《毛阿敏八成不能来晋演出》)
师:看了这则新闻,你想到什么?是肯定不能来吗?从哪儿看出来的?你认为八成表示有多大的把握?
学生回答。
师:大家说得都很好。如果把肯定来晋看作100%的话,八成就相当于80%。这种说法除了日常生活之外,在工农业生产中也经常用到。
(2)自学,得意义。
打开书自学课本相关内容。
学生汇报情况,概括成数的含义。
(3)练习。
师:就要单元测试了,能不能用含有成数的句子表达你对这次测试有多大的信心?
①四成是十分之(),改写成百分数()。
②二成五是十分之(),改写成百分数()。
③七成五是十分之(),改写成百分数()。
④八成七是十分之(),改写成百分数()。
4.运用成数含义解决实际问题。
例2:小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了二成五,去年收白菜多少吨?
学生试做、汇报、讲评。
三、巩固练习、应用所学。
1.判断。
(1)成数表示两数之间的倍数关系。()
(2)五成八改写成百分数是5.8%。()
(3)商品打折扣都是以原商品价格为单位“1”,即标准量。()
(4)某县今年蔬菜比去年增产四成,这里的四成是把去年看作单位“1”。()
(5)一件上衣现在打八折出售,就是说比原价降低10%。()
2.做课本中的相关练习题。
四、全课总结。
今天你又知道了什么知识?
板书:
折扣
例1:430×(1-90%)
=430×0.1
=43(元)
答:比原价便宜43元。
成数:
例2:41.6×(1+25%)
=41.6×1.25
=52(吨)
答:去年收白菜52吨。
评析
这是非实验年级教师尝试用新理念教老教材的一节课。
本节课的教学注重紧密联系学生的生活实际,利用学生在日常生活中触手可及的商场购物、新闻消息等,创设教学氛围,让学生既体会到数学源于生活,又认识到所学数学可应用于生活。同时,教师引导学生大胆地猜测,积极地讨论,主动地探索,勇敢地尝试,将教学活动建立在学生已有的知识经验基础之上,所以课堂气氛活跃,学生学得起劲,学得主动。但在成数、折扣应用题的教学上,个别学困生还是有理解较慢的情况。由此看来,教师应在讲授新课前,适当增加对百分数应用题的复习。
第四篇:六年级下册《折扣和成数》练习题
折扣和成数练习题
一、填空
1、一成=()%
六成=()%
八成五=()%
七成二=()%
九折=()%
五折=()%
三八折=()%
六六折=()%
2、70%=()折=()成 88%=()折=()成()
3、商品()折出售就是按原价的65%出售。
4、五折是指现价是原价的()%。
5、一种商品八折销售,现价比原价便宜了()%,八五折销售,现价比原价便宜了()%。
6、一块玉米地,今年比去年增产一成,今年的产量是去年的()%。
二、选择
1、一辆自行车原价450元,现在只花了九折的钱。现价比原价便宜了()元。
A、405
B、45
C、4402、一种童装原价每套120元,现价为96元,打了()。
A、八折
B、八五折
C、九折
3、一种洗衣机现价每台1200元,是把进价加二成五后确定的,它的进价是每台()元。
A、1000
B、960
C、10504、某品牌牛仔裤降价15%,表示的意义是()。A.比原价降低了85% B.比原价上涨了15% C.是原价的85%
5、一条裙子原价430元,现打九折出售,比原价便宜()元。A.430×90% B.430×(1+90%)C.430×(1-9%)D.430×(1-90%)
三、判断。
1.五成八改写成百分数是5.8%。()
2.商品打折扣都是以商品的原价为单位“1”,即标准量。()3.兴华镇今年的蔬菜产量比去年增产四成,这里的四成是把去年的蔬菜产量看作单位“1”。()
4.一件上衣现在打八折出售,就是说比原价降低l0%。()5.一个足球打九折再加价10%,价格比原来便宜。()6.一双80元的鞋,先打八折,再加价25%,现价比原价贵。()
四、解决问题
1、家电商场店庆日。全场商品一律八五折。
电视机7900元
冰箱3480元 洗衣机620元
微波炉475元
(1)打折后,买台冰箱可以节省多少钱?
(2)节省的钱能买一台洗衣机吗?
(3)聪聪家买一台电视机和一个微波炉共用多少钱?
2、一个书包七五折销售是24元,原价是多少元?比原价便宜了多少元?
3、一件上衣零售价240元,它是把进价加二成确定的,这件上衣的进价是多少元?
4、某小区的楼房每平方米2000元,现在要八折销售,丫丫家要在这个小区买一套80平方米的房,可节省多少万元?
5、一个种植大户去年收玉米10万千克,预计今年比去年增产一成五,预计今年可收玉米多少万千克?
6、一种鞋在甲、乙、丙三个鞋城原价相同,现在他们同时搞促销活动。甲鞋城的鞋一律八折出售,乙鞋城的鞋一律九折出售,购物100元以上还返15元现金,丙鞋城的鞋一律九折出售,若满200元打七五折。
(1)若买一双原价180元的旅游鞋,应选哪个鞋城?
(2)若买一双原价350元的皮鞋,应选哪个鞋城?能节省多少钱?
第五篇:六年级数学下册第二单元折扣 成数
折扣
成数
教学内容:人教版六年级数学下册课本第8~9页例1、2及做一做,练习二第1~5题。教学目标:明确折扣的含义,能熟练地把折扣写成分数、百分数,正确解答有关折扣的实际问题。明确成数的含义,能熟练的把成数写成分数、百分数,能正确解答有关成数的实际问题。
教学重点:理解“折扣”和“成数”的意义。
教学难点:合理、灵活地选择方法,解答有关折扣和成数的实际问题。教学过程:
一、创设情境,导入新课
圣诞节期间各商家搞了哪些促销活动?谁来说说他们是怎样进行促销的?(学生汇报调查情况。)
二、探索交流,解决问题
1.教学折扣的含义,会把折扣改写成百分数。
(1)刚才大家调查到的打折是商家常用的手段,是一个商业用语,那么你所调查到的打折是什么意思呢?比如说打“七折”,你怎么理解?
(2)你们举的例子都很好,老师也搜集到某商场打七折的售价标签。(电脑显示)①大衣,原价:1000元,现价:700元。②围巾,原价:100元,现价:70元。③铅笔盒,原价:10元,现价:?元。④橡皮,原价:1元,现价:?元。
(3)动脑筋想一想:如果原价是10元的铅笔盒,打七折,猜一猜现价会是多少?如果原价是1元的橡皮,打七折,现价又是多少?
(4)仔细观察,商品在打七折时,原价与现价有一个什么样的关系?带着这样的问题,可以利用计算器,也可以借助课本,四人小组一起试着找到答案。(5)讨论,找规律。
A.学生动手操作、计算,并在计算或讨论中发现规律。
B.学生汇报寻找的方法:利用计算器,原价乘以70%恰好是标签的售价或现价除以原价大约都是70%;或查书等等。(6)归纳,得定义。
A.通过小组讨论,谁能说说打七折是什么意思?打八折是什么意思?打八五折呢?
B.概括地讲,打折是什么意思?如果用分母是十的分数,该怎样表示?(“几折”就是十分之几,也就是百分之几十)
C.通俗来讲,商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就是十分之几,也就是百分之几十。如八五折就是85%,九折就是90%。一般情况下,不把折扣写成十分之几这样的分数形式,写成分数时,有时会出现小数(例如八五折就会写成),不便于计算和理解。
2.运用折扣含义解决实际问题。出示问题(1):爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?
①导学生分析题意:打八五折怎么理解?是以谁为单位“1”? ②找出数量关系式。先让学生找出单位“1”,然后再找出数量关系式: 原价×85%=实际售价
③根据数量关系式,学生独立列式解答。④全班交流。根据学生的汇报。出示问题(2):爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?
①导学生理解题意:只花了九折的钱怎么理解?以谁为单位“1”? ②学生试算,独立列式。
③全班交流。根据学生的汇报,板书:
第一种算法:原价160元,减去现价,就是比原价便宜多少钱。160-160×90% =160-144 =16(元)
第二种算法:原价160元,现价比原价便宜了(1-90%)。160×(1-90%)=160×10% =16(元)
重点引导学生理解第二种算法,知道现价比原价便宜了10%。3.介绍成数的含义,会把成数改写成分数,百分数。
(1)刚才大家都说了很多有成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?(学生讨论并回答)(成数:表示一个数是另一个数的十分之几,通称“几成”)(2)试说说以下成数表示什么?
①出口汽车总量比去年增加三成。这里的“三成”表示什么? ②北京出游人数比去年增加两成。这里的两成表示什么? 引导学生讨论并回答。
4.运用成数的含义解决实际问题。
(1)出示教材第9页例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
(2)分析题目,理解题意:
①今年比去年节电二成五怎么理解?是以哪个量为单位“1”? ②找出数量关系式。先让学生找出单位“1”,然后再找出数量关系式: 今年的用电量=去年的用电量×(1-25%)
③根据关系式,学生独立列式解答。全班交流。
方法一:350×(1-25%)=350×75%=350×0.75=262.5(万千瓦时)方法二:350×(1-25%)=350×75%=350×75/100=262.5(万千瓦时)
三、巩固应用,内化提高 1.课本第8页“做一做”。2.课本第9页“做一做”。
3.课本第13页练习二第1~5题。
四、回顾整理,反思提升
通过这节课的学习你有什么收获?