第一篇:牛顿运动定律解决问题说课稿
牛顿运动定律解决问题
(二)说课稿
主要内容包括
1.通过分析教材和学生说三维教学目标的确定
2.说教学的组织方式、教学程序及体现的教育科学理论依据 3.说板书、教学评价及教学效果
一.说结合教材和课程标准,针对学生的心理特点和认知水平,确定三维教学目标
1.说教材:《牛顿运动定律解决问题
(二)》是必修一第四章牛顿运动定律第7节内容,是本章的重点内容。本节内容有五个特点:一是物体的平衡和超重、失重问题具有一定的代表性,课本以例题的形式呈现,反映出教科书新的基本知识观,因此本节内容知识性与分析问题的过程与方法并重;二是自由落体运动是从受力确定运动情况,超重和失重是从运动情况确定受力,所以说本节内容即是《牛顿运动定律解决问题
(一)》的延续又是牛顿运动定律的进一步应用;三是共点力作用下物体的平衡是牛顿第二定律中加速度为0,合外力为0时的特例,要通过列平衡方程进行求解;四是本节内容涉及牛顿三条定律,尤其是牛顿第二定律和牛顿第三定律的内容。还涉及到物体的受力分析尤其是共点力物体平衡的受力分析;五是本节内容涉及运用数学知识(建立坐标系)分析和处理物理问题。
2.说学生:高一学生刚刚接触动力学知识,思维具有单一性和不确定性;受力分析还不熟练甚至出错;对超重和失重尽管在电视上见过,或日常生活中听说过,但基本没有亲身感悟,还存在着某些错误的认识;利用运动学公式解决竖直上抛运动因存在往复现象,有一定的难度,空间想象能力较差。
3.重点:共点力物体的平衡;超重和失重现象. 4.难点:物体的受力分析;竖直上抛运动的理解.
5.教学目标:知识与技能―――知道共点力作用下物体的平衡及平衡条件;知道物理学中超重和失重现象的含义,能利用牛顿运动定律进行定性分析和定量计算;能解答以自由落体运动为基础的竖直方向的运动学问题;能运用牛顿运动定律解答较复杂的问题。过程与方法―――让学生领会如何从受力分析入手,学会分析复杂问题的过程与方法;让学生合作探究、研讨交流解决问题。情感态度与价值观―――让学生亲身感悟超失重现象,激发学生学习物理的兴趣;让学生观察力传感器实验,培养学生科学意识。
二.说教学程序、教法、学法及教育科学理论依据
设计思想:运动学是描述物体做什么运动,而动力学是研究物体为什么这样运动的问题,从动力学角度研究物体的平衡,超失重现象和自由落体运动,既有知识性,又有分析问题、探究过程的方法性。结合本节内容的三个“独立知识点”,结合高一学生的认知水平,结合与前一节内容的连续性,结合市要求的“三课型五环节”和“三案教学”。确定主要采用教师演示观察,学生体验感悟,问题驱动,以学生为主体合作研讨、教师引领下点评矫正的评研法,多媒体辅助教学,使知识主动构建,使能力得到提升。
教学方法:整个教学过程中,以教师引领,学生自主探究合作学习为主线的评研法;以实验为基础,逐步深入的诱思法;体现新课程改革所倡导的新的学习理念。
教学程序、教法、学法及教育科学理论依据: 1.任务一:研究超重和失重――从运动情况确定受力(12分钟)教师活动:(1)演示两种超失重现象,引导学生观察现象;(2)利用力的传感器演示超失重中拉力的大小,引导学生思考;(3)引领评研“课前预习案”上系列问题(超失重中速度方向、加速度方向、两同学黑板展示两道计算题)让学生展示自己的预习成果,给予鼓励性评价;(4)归纳超失重特点,给出超失重和完全失重定义。
学生活动:(1)观察教师的演示实验并认真思考;(2)亲身感悟超失重现象;(3)回扣研讨预习案上系列问题;(4)完成“课中导学案”任务(5)理解超失重定义及其内涵知识。
教学设计说明:通过演示实验创设物理情景,变抽象为亲身感悟,在实验研究的基础上解决物理问题,即帮助学生掌握基本知识,又培养学生观察、分析和探究的能力。
教育科学理论依据:教师的职责现在已经越来越少的传递知识,而越来越多的激励思考(《新课程与教学改革》)
2.任务二:从动力学看自由落体运动――从受力确定运动情况(12分钟)
教师活动:(1)描述自由落体运动的条件,引导学生受力分析;(2)演示竖直上抛运动,学生仔细观察;(3)引领评研“课前预习案”上系列问题(竖直上抛运动上升过程的加速度、下落过程的加速度、到达最高点的时间等问题)。
学生活动:(1)积极思考,明确自由落体运动的性质及其原因;(2)观察演示实验现象;(3)结合“课中导学案”明确竖直上抛运动过程的特点及其运动性质。
教学设计说明:“课前预习案”上系列问题,目的是一步步的引导学生明确比较复杂的竖直上抛运动过程。
教育科学理论依据:突出独立获取物理知识,探究物理规律,体现以揭示规律为重点的原则。(《高中物理课程标准教师读本》)
3.任务三:共点力的平衡条件(11分钟)
教师活动:(1)演示三种平衡现象,学生观察平衡的特点;(2)回扣“课前预习案”从牛顿运动定律得出平衡条件;(3)展示三角支架,分析结点“O ”的受力情况;(4)引领学生列出平衡方程,求出弹力大小。
学生活动:(1)观察平衡现象,积极寻找平衡状态;(2)理解三角支架上“O”点的受力情况;(3)在教师引导下列出平衡方程,求出弹力大小,完成“课中导学案”任务。
教学设计说明:平衡态是具体的一种状态,从观察到得出结论顺理成章。三角支架的受力和施力情况易于混淆,出示模型化难为易。
教育科学理论依据:教学应以人的全面发展为本。因此:师者,所以引路、开窍、促进也。(《诱思探究学科教学论》)
4.任务四:总结本节课学习的主要知识内容和物理方法,布置“课后提升案”任务(5分钟)
三.说板书:多媒体及导学案辅助下,主要板书课题,任务环节,共点力平衡的条件,超失重概念等内容。
四.说教学评价及教学效果:适时恰当的运用激励评价机制,促进学生的合作交流、点评学生的展示、激发学生的思维、提高学生的能力,构建和谐的课堂氛围,完成教学任务。但本节课内容较多,也有一定的难度,在教学中对外开发的有一定限度,练习也不够充分,需要在“课后提升案”中加以巩固和提高。
第二篇:用牛顿运动定律解决问题二说课稿
各位老师:
大家好,很荣幸能向各位同行汇报我对人教版高中物理必修1《用牛顿运动定律解决问题(二)》的教学设计,下面我将从以下六个方面展开我的说课。
(一)教材分析
牛顿运动定律是力学乃至整个物理学的基本规律,是动力学的基础.运用牛顿运动定律解决有关问题,对于学生学好物理,掌握力学知识和提高分析解决问题的能力是十分重要的.本节课用牛顿运动定律解决两类实际问题:一是共点力的平衡,另一个是常见的超重和失重。我在处理这节教材时本着两个指导思想,一是从实际生活中抽象出物理问题引起学生兴趣,二是注意总结归纳,讲练结合,方便学生理解记忆。
(二)教学目标
一是知识传授方面:能够解决共点力的平衡问题,了解超重和失重现象并运用牛顿第二定律研究超重和失重问题。
二是智能培养方面:培养学生运用牛顿第二定律分析和解决问题的能力
三是思想教育方面:渗透“学以致用”的思想,鼓励学生多观察生活中遇到的物理现象和用所学知识去分析解决这些物理问题。
(三)教学方法
第一:以激发学生的学习动机为主线,通过实验,观察,讨论多种形式,激发学生的学习兴趣。第二:以思维训练为中心,让学生动手画受力分析图,通过板演,提问、讨论,达到使学生多种器官协调合作的作用,充分发挥学生的主体地位
(四)重难点
处理共点力的平衡时受力分析要全面,不多力,不少力。
对超重失重的理解,在超重和失重中有关对支持物的压力和对悬挂物拉力的计算
(五)学情分析
共点力的平衡几乎年年高考都有,但学生在此处得分率很低,原因不是对共点力的条件掌握不了,而是对某些力的产生和分析不到位,所以在此处多加强调弹力和摩擦力有无的判断。再就是超重失重,对这两个概念学生能记住,但具体到一个实例中,学生经常忽视首先找出加速度的方向这一方面,而是凭想当然的去做去选,所以在讲这个专题时一定要强调出物体处于超重还是失重状态是由加速度的方向决定而不是物体的运动方向决定的。
(六)教学过程
共点力的平衡
观看幻灯片导入,该物体处于平衡状态,再通过提问学生什么是共点力的平衡条件。(此处教师提示从牛顿第二定律的角度思考),然后让学生动手画出该物体的受力图,这是正确解题的关键.养成良好的分析和处理问题的习惯,对以后的学习会很有帮助的.由受力图引出什么是共点力(几个力都作用在同一点上或者几个力的作用线交与一点),紧接着让学生动手做这个练习,用平衡条件求解某一个力。
【例题】如右图所示,在光滑墙壁上用网兜把足球挂在A点,足球与墙壁的接触点为B,足球的质量为m,悬绳与墙壁的夹角为,网兜的质量不计。求悬绳对球的拉力和墙壁对球的支持力。
通过上面的例题拓展:
1.物体受三个力作用而平衡时,任意两个力的合力与第三个力等大反向。
2.物体受到几个共点力作用而平衡时,其中任意(n-1)个力的合力必与第n个力等大反向。
最后板书总结共点力的平衡条件。
超重和失重
实验导入:把矿泉水瓶的下部挖一个小孔,装入水后,让瓶子做竖直上抛运动,发现上升过程中水不能流出。
文字交代:自从人造地球卫星和宇宙飞船发射成功以来,人们经常谈到超重和失重,刚才的实验就是因为水完全失重造成的。通过这些引起学生兴趣。在通过例题讲解超重和失重
【例题】升降机以0.5m/s2的加速度匀加速上升,升降机里的物体的质量是50kg,物体对升降机地板的压力是多大?如果物体放在升降机里的测力计上,测力计的示数是多大?(提示学生用牛顿第二定律解题),并让学生板演,通过板演了解学生对牛顿第二定律的掌握情况。
比较前边两种情况下人对地板的压力大小,得到人对地板的压力跟物体的运动状态有关。
总结:升降机加速度向上的时候,物体对升降机地板的压力比物体实际受到的重力大,我们把这种现象叫超重。
让学生讨论什么时候物体处于超重状态,超重时重力怎么改变。
学生总结
(1)当物体向上加速度时,产生超重现象;
(2)产生超重现象时,物体的重力并没有改变,只是对水平支持物的压力或对悬挂物的拉力增大。
用类比法推导失重,最后总结
(1)当物体有向下的加速度时,产生失重现象(包括匀减速上升,匀加速下降)。此时F压或F拉小于G。
(2)当物体有向下的加速度且a=g时,产生完全失重现象,此时F压=0或F拉=0;
(3)产生失重和完全失重时,物体的重力并没有改变,只是对水平支持物的压力或对悬挂物的拉力小于物体的重力。
回到开头的实验,让学生讨论得出水不流出的原因。
老师总结处理这类问题的一般思路
1、确定研究对象;
2、对研究对象进行运动分析和受力分析;
3、列出方程或方程组;
4、求解方程,并对结果做必要说明。
强调完全失重的情况下所有和重力有关的仪器都无法使用!
最后板书总结超重失重,这样可以给学生一个完整的概念。
板书
第三篇:牛顿运动定律 机械能
牛顿运动定律 机械能
【教学结构】
牛顿运动定律
一、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。又称为惯性定律。
惯性:物体有保持原来匀速直线运动状态或静止状态的性质。一切物体都有惯性。与运动状态无关,静止状态、匀速直线运动状态、匀变速运动等,物体都有惯性,且不变。惯性的大小是由质量量度的。物体的速度不需要力来维持。
二、牛顿第二定律
1.运动状态变化:物体运动速度发生变化,运动状态就变化。速度是矢量,有大小,有方向,大小和方向一个变化或同时都变,都叫速度变化,加速度描述物体运动状态变化快慢。
2.力的作用效果:改变物体运动状态,使物体形状或体积发生变化。
3.质量:质量是惯性的量度。质量越大,惯性越大,阻碍物体改变运动状态作用越大。
4.牛顿第二定律:物体的加速度跟物体所受外力成正比,跟物体质量成反比。∑F=ma 等号左边是物体所受的合外力,等号右边是物体质量和加速度的乘积。在使用牛顿第二定律时,(1)选择研究对象,(2)分析物体受力,(3)利用正交分解方法求物体的合力,建立xoy坐标系,根据解题方便确立x、y方向,(4)列牛顿第二定律方程,∑Fy=may,∑Fx=max(5)解方程。关键是正确分析物体受力,求合力。
5.力的平衡:当物体所受合外力为零时,物体为平衡状态,即静止状态或匀速直线运动状态。静止状态应是υ=0,a=0。单一速度为零不叫静止状态,使牛顿第二定律解题时,往往是一个方向运动状态不变化,需列平衡方程,另一方向有加速度列第二定律方程,然后联立求解。
6.牛顿第二定律的应用:(1)根据物体受力情况,使用牛顿第二定律求得加速度,然后结合运动学公式,求解位移,速度等。(2)根据运动学规律利用题给定的条件求出加速度再利用牛顿第二定律,求解力或质量。
三、牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。作用力和反作用力与二力平衡的区别:作用力与反作用力作用在两个物体上不能使物体平衡,二力平衡一定是作用在一个物体上。作用力与反作用力一定是同种性质的力,是摩擦力都是摩擦力,二力平衡则可是不同性质的力。在确定作用力的反作用力时,一定发生在两个物体之间,A给B的力为作用力,反作用力一定是B给A的力。
四、单位制:
基本单位:选定几个物理量的单位为基本单位。
导出单位:利用基本单位导出的单位,例如:基本单位位移m,时间s,速s度单位:根据υ=,速度单位为m/s,即为导出单位。
t单位制:基本单位和导出单位一起组成单位制。
国际单位制:基本单位:位移:m, 质量:kg, 时间:s。又称:米,千克,秒制。导出单位:加速度:m/s2,力:1牛顿(N)=1kgm/s2等。机械能
一、功:物体受力的作用,在力的方向上
发生位移,这个力对物体做了功。如图1所示:W=Fscosα,物体 在F1方向上发生位移S。
α<90°时,cosα>0,力对物体做正功
α=90°时,cosα=0,力对物体不做功,这是很重要的情况,必须重视;带电沿等势面移动,电场力不做功,洛仑兹力对运动电荷不做功。90°<α≤180°时,cosα<1,力对物体做负功,也可理解为物体克服某力做功。
功是标量只有大小而无方向,做正功、负功只反映做功的效果。功是能量转化的量度,做功过程是能量转化过程。功的单位:焦耳。1焦耳=1Nm。
w功率:描述做功快慢的物理量,定义:功跟完成这些功所用时间的比值,P=。
t功率的单位1瓦(W)=1J / S,1千瓦(KW)=1000 J / S,功率是标量。
P=Fυ,F大小方向不变,υ在变化,某时刻功率P=Fυt,称为即时功率。若
w时间t完成功为W,P=,又称为在t时间内的平均功率,或表示为PFV。
t额定功率:机械在正常工作时的最大功率。机械的实际功率可以小于额定功率。当机械在额定功率下工作:P额=Fυ,速度越大,牵引力越小,在汽车起动时,速度很小,牵引力很大,且大于阻力,汽车加速运动,υ增大,F减小,加速度随之减小,当F=f时,加速度为零,汽车有最大速度υm,汽车开始的υm做匀速运动,P额=F·υm=fυm。
二、机械能
11.动能:物体动能等于它的质量跟它的速度平方乘积的一半。Ek=m2,动
2能是标量,动能单位:焦耳(J),静止物体动能量为零。动能大小由m、2共同决定。
2.重力势能:物体的重力势能就等于物体所受重力和它的高度的乘积。EP=mgh。势能是标量,单位:焦耳。在研究物体重力势能时,首先要确定重力势能0势能参考平面。h是相对零势能参数面的高度,物体在“0”势能面上面h为正,重力势能为正表示比零重力势能大。在0势能面下面h为负,重力势能为负,表示0重力势能小。零势能面的选择是任意的,在解决具体问题时,以方便为选零势能面的原则。
重力功与重力势能的关系:重力做正功重力势减小,做多少正功重力势能减少多少。重力做负功,重力势能增加,重力做多少负功,重力势增加多少。
3.弹性势能:被拉伸或压缩的弹簧,内部各部分之间的相对位置发生变化,而具有的势能。其它弹性物体形变时也能产生弹性势能。我们主要考虑弹簧的形变势能。
势能:指弹性势能和重力势能。机械能:动能和势能的总和。
三、机械能守恒定律:如果没有摩擦和介质阻力(空气阻力、水的阻力等),物体只发生动能和势能的相互转化,机械能总量保持不变。
对于机械能守恒条件可以理解为:只有重力和产生弹性势能弹力做功,其它力都不做功或其它力做功总和为零,能量转化过程中,机械能守恒。重点要求会用机械能解释一些比较简单的物理过程。例如:单摆在忽略空气阻力情况下,机械能守恒,竖直上抛物体机械能守恒,它们都是动能与势能之间的转化。
【课余思考】
1.牛顿三定律内容是什么?第一定律与第二定律关系?在使用牛顿第二定律时应注意什么?物体的平衡条件是什么?
2.什么叫机械能守恒?机械能守恒条件是什么?
【解题要点】
例
一、下面说法正确的是()A.物体受的合外力越大,动量越大 B.物体受的合外力越大,动量变化量越大
C.物体受的合外力越大,动量变化率越大 D.物体动量变化快慢与合外力没关系
解析:运动物体的质量与运动速度的乘积叫做物体动量,是矢量,用P表示。P=mυ,其单位为:kgm/s,其方向与速度方向相同,设物体受的合外力F合作用
t0时间为t,在此时间内物体速度由υ0变到υt,其加速度a,代入牛顿第tt0二定律式F合=ma=m
tmtm0PtP0PtP0==,PtP0为动量变化量,为动量变化率。可知C选ttt项正确。
牛顿第二定律又可表述为:作用在物体上的合外力等于单位时间动量的变化。
例
二、质量为10kg的物体,原来静止在水平面上,当受到水平拉力F后开始沿直线做匀加速运动,设物体经过时间t位移为x,且x、t的关系为x=t2,物体所受合外力大小为 第4S末的速度是 当4S末时撤去F,则物体再经过10S停止,运动物体受水平拉力F =,物体与平面摩擦因数=。
1解析:依题意,物体做初速度为零的匀加速运动,位移公式为S=at2,与
2x=2t2比较可知a=4m / s2,F合=ma=10×4=40N。4S末的速度υ 4=4×4=16 m / s。撤掉F后在水平方向上受摩擦力f,物体做初速为16m / s的匀减速运动,经10S
2停止运动,υ ′t,a′=1.6m / s,f=ma=10×1.6=16N,F-f=40,F=40+16=56N,4=υ 0-af又f=mg,== mg16 / 100=0.16。
例
三、如图2所示,质量为m的工件,随传送带运动,工件与传送带间无滑动,求下列情况下工件所受静摩擦力,(1)传送带匀速上升,(2)以a=g / 2的加速度向下加速运动,(3)以a=g的加速度向下
加速运动。解析:选工件为研究对象,分析工件受力,如图3所示,受重力、斜面支持力N,斜面给的静摩擦力f,其方向
可设为沿斜面向上,建立xoy坐标,x平行斜面向上 为正,y与斜面垂直,向上为正,分解mg为
1Gx=mgsin30°=mg,沿-x方向,23Gy=mgcos30°=mg沿-y方向。
2(1)物体处于平衡状态,合外力为零,13即f-mg=0 N-mg=0,解方程
221可得f=mg沿斜面向上。第二个方程可不解。
(2)物体以a=g / 2沿斜面向下加速运动,在x方向列牛顿第二定律方程
1f-mg=-ma,y方向方程可不列,但在很多题目中列y方向方程也是必要2的。方程中的正、负是以x轴方向而决定的,a方向向-x,故为负,将a=g / 2代入方程解得:f=0。
1(3)当a=g时,其它情况同于(2),f=-mg此负号表示与原设定方向相
21反,f大小为mg,方向沿斜面向下。
2例
四、在某次实验中获得的纸带上 每5个点取为一个计数点0、1、2、3、4、5,每个计数点相对于起点距离 如图4所示,由纸带测量数据可知,从起点O到第5个计数点的时间间隔为
S,这段时间里小车的平均速度为
cm / s,在连续相等的时间内位移差均为
,所以小车运动可看作为
,小车的加速度为
计数点4处小车的速度为
cm / s。
解析:打点计时器每打两个点所用时间t0=0.02S,所以每两个计数点之间的时间间隔T=0.1S,从O点到第5个计数点所时间t=0.5S。这段时间内小车位移
s14.30为14.30 cm,平均速度V=28.6 cm / s。
t0.5第一个T内位移S1=12.6 mm,第二个T内位移S2=33.2-12.6=20.6 mm,S3=61.8-33.2=28.6 mm,S4=98.4-61.8=36.6 mm,S5=143.0-98.4=44.6 mm,连续相等时间位移差S=20.6-12.6=28.6-20.6=36.6-28.6=44.6-36.6=8mm。根据匀加速直SnSn1线运动:a=,可知aT2为恒量,连续相等时间内位移差一定时,此运动2T便为匀加速直线运动。
S0.8a=2280cm/s2。在匀加速直线运动中,时间中点的即时速度即等于T01.S4S536.644.6这段时间的平均速度,V4==40.6 cm / s。2T201.例
五、如图5所示,质量为m的物体静止在水平面上,物体与平面间摩擦因数为,在与水平成
角的恒力F作用下,做直线运动,当
位移为S时,F对物体做功为
,摩擦力做功为
,重力做功为。
解析:WF=F·Scos直接可求得F做功。摩擦力 的做功,首先分析物体受力,如图6所示,在 竖直方向上无加速度处于平衡
N+F2-mg=0,N=mg-F sin,f=N=(mg-F sin)摩擦力功Wf=(mg-F sin)S。重力功W重=0重力与
位移方向垂直。解决功的问题关键是确定力的大小
和方向,位移的大小和方向,然后根据功的定义计算功。
例
六、自高为H处,以速度υ0抛出一个质量为m的小球,在不计空气阻力的情况下,小球落地时速度大小为多少?若以相同的速度向不同方向抛出不同质量的小球,它们落地时速度大小关系是什么
解析:在忽略空气阻力情况下,小球自抛出点落地过程机械能守恒,抛出时11机械能为E1=mgH+m02,落地时只有动能而无重力势能,机械能E2=m2。
221
1mgH+m02=m2 022gh
22从上式知物体落地时的速度与物体的质量无关,与抛出的方向无关,只要抛出时速度大小相等,抛出高度相同,落地时速度应相等。
【同步练习】
1.如图7所示,把质量为m的物体沿倾角不同斜面拉至 同一高度,若物体与不同斜面摩擦系数相同,倾角 θ1<θ2<θ3
(1)拉m从坡底到坡顶过程中,克服重力做 功为W1、W2、W3则()
A.W1>W2>W3、B.W1<W2<W
3C.W1=W2=W3
D.无法确定
(2)在此过程中克服摩擦力的功为W1、W2、W3则()
A.W′′′B.W′′′1>W2>W1<W2<W3
C.W′′′ D.不知运动状态无法确定。1=W2=W3
2.在有空气阻力情况下,竖直上抛一物体,到达最高点又落回原处,若过程中阻力不变,则()
A.上升过程中重力对物体做功的大小大于下降过程中重力做功的大小
B.上升过程和回落过程阻力做功相等
C.上升过程和回落过程合力做功前者大于后者
D.上升过程重力做功平均功率大于回落过程重力做功的平均功率
3.质量为m的物体,受到位于同一平面内的共点力F1、F2、F3、F4的作用,并处于平衡状态,当其中F2变为F2+F,且方向不变时,则()
A.物体一定做匀加速直线运动 B.物体一定做变加速直线运动
C.物体的加速度一定是F/m D.在任何相等时间内物体速度变化一定相同
4.如图8所示,升降机静止时弹簧伸长8cm,运动时弹簧伸长4cm,则升降机运动状态可能是()
A.a=1m/s2,加速下降
B.以a=1m/s2,加速上升
C.以a=4.9m/s2,减速上升
2D.以a=4.9m/s,加速下降
5.对于质量相同的甲、乙两个物体,下列说法正确 的是()
A.当甲、乙两物体的速度相同时,它们所受的合外力一定相等
B.当它们受到合外力相同时,它们的动量改变得快慢相同
C.当甲、乙两物体的加速度相同时,它们所受的合外力一定相等
D.当甲、乙两物体的位移相等时,它们所受的合外力一定相等 6.以υ=5m/s的速度匀速上升的气球,吊篮连同重物的质量为10kg,在500m的高空,从吊篮中落下一重物为2kg,经过10S钟,气球离开地面高度为多少?(g取10m/s2)
[参考答案] 1.(1)C(2)A 2.B C D 3.C D 4.C D 5.B C 6.675m
第四篇:牛顿运动定律教案
三、牛顿运动定律
教学目标 1.知识目标:
(1)掌握牛顿第一、第二、第三定律的文字内容和数学表达式;(2)掌握牛顿第二定律的矢量性、瞬时性、独立性和对应性;(3)了解牛顿运动定律的适用范围. 2.能力目标:
(1)培养学生正确的解题思路和分析解决动力学问题的能力;(2)使学生掌握合理选择研究对象的技巧. 3.德育目标:
渗透物理学思想方法的教育,使学生掌握具体问题具体分析,灵活选择研究对象,建立合理的物理模型的解决物理问题的思考方法.
教学重点、难点分析
1.在高
一、高二的学习中,学生较系统地学习了有关动力学问题的知识,教师也介绍了一些解题方法,但由于学生掌握物理知识需要有一个消化、理解的过程,不能全面系统地分析物体运动的情境,在高三复习中需要有效地提高学生物理学科的能力,在系统复习物理知识的基础上,对学生进行物理学研究方法的教育.本单元的重点就是帮助学生正确分析物体运动过程,掌握解决一般力学问题的程序.
2.本单元的难点在于正确、合理地选择研究对象和灵活运用中学的数学方法,解决实际问题.难点的突破在于精选例题,重视运动过程分析,正确掌握整体—隔离法.
教学过程设计
一、引入
牛顿运动定律是经典力学的基础,应用范围很广.
在力学中,只研究物体做什么运动,这部分知识属于运动学的内容.至于物体为什么会做这种运动,这部分知识属于动力学的内容,牛顿运动定律是动力学的支柱.我们必须从力、质量和加速度这三个基本概念的深化理解上掌握牛顿运动定律.这堂复习课希望学生对动力学的规律有较深刻的理解,并能在实际中正确运用.
二、教学过程 教师活动
1.提问:叙述牛顿第一定律的内容,惯性是否与运动状态有关? 学生活动
回忆、思考、回答:
一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止. 教师概括.
牛顿第一定律指明了任何物体都具有惯性——保持原有运动状态不变的特性,同时也确定了力是一个物体对另一个物体的作用,力是改变物体运动状态的原因.
应该明确:
(1)力不是维持物体运动的原因;
(2)惯性是物体的固有性质.惯性大小与外部条件无关,仅取决于物体本身的质量.无论物体受力还是不受力,无论是运动还是静止,也无论是做匀速运动还是变速运动,只要物体质量一定,它的惯性都不会改变,更不会消失,惯性是物体的固有属性.
放投影片:
[例1]某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动,可见:
A.力是使物体产生运动的原因 B.力是维持物体运动速度的原因 C.力是使物体产生加速度的原因 D.力是使物体惯性改变的原因 讨论、思考、回答: 经讨论得出正确答案为:C. 2.提问:牛顿第二定律的内容及数学表达式是什么? 学生回忆、回答:
物体受到外力作用时,所获得的加速度的大小跟外力大小成正比,跟物体的质量成反比,加速度的方向与合外力方向相同.
ΣF=ma
理解、思考. 教师讲授: 牛顿第二定律的意义
(1)揭示了力、质量、加速度的因果关系.(2)说明了加速度与合外力的瞬时对应关系.(3)概括了力的独立性原理
提问:怎样应用牛顿第二定律?应用牛顿第二定律解题的基本步骤如何? 讨论:归纳成具体步骤.
应用牛顿第二定律解题的基本步骤是:(1)依题意,正确选取并隔离研究对象.
(2)对研究对象的受力情况和运动情况进行分析,画出受力分析图.(3)选取适当坐标系,一般以加速度的方向为正方向.根据牛顿第二定律和运动学公式建立方程.
(4)统一单位,求解方程组.对计算结果进行分析、讨论. 在教师的引导下,分析、思考. 依题意列式、计算.
[例2]有只船在水中航行时所受阻力与其速度成正比,现在船由静止开始沿直线航行,若保持牵引力恒定,经过一段时间后,速度为v,加速度为a1,最终以2v的速度做匀速运动;若保持牵引力的功率恒定,经过另一段时间后,速度为v,加速度为a2,最终也以2v的速度做匀速运动,则a2=______a1.
放投影片,引导解题: 牵引力恒定:
牵引力功率恒定:
提问:通过此例题,大家有什么收获?随教师分步骤应用牛顿第二定律列式. 学生分组讨论,得出结论:
力是产生加速度的原因,也就是说加速度与力之间存在即时直接的因果关系.被研究对象什么时刻受力,什么时刻产生加速度,什么时刻力消失,什么时刻加速度就等于零.这称做加速度与力的关系的同时性,或称为瞬时性.
放投影片:
[例3]已知,质量m=2kg的质点停在一平面直角坐标系的原点O,受到三个平行于平面的力的作用,正好在O点处于静止状态.已知三个力中F2=4N,方向指向负方向,从t=0时起,停止F1的作用,到第2秒末物体的位置坐标是(-2m,0).求:(1)F1的大小和方向;(2)若从第2秒末起恢复F1的作用,而同时停止第三个力F3的作用,则到第4秒末质点的位置坐标是多少?(3)第4秒末质点的速度大小和方向如何?(4)F3的大小和方向?
读题,分析问题,列式,求解. 画坐标图:
经启发、讨论后,学生上黑板写解答.
(1)在停止F1作用的两秒内,质点的位置在x轴负方向移动,应
所以F1=-Fx=-ma=2(N)F1的方向沿X轴方向.
(2)当恢复F1的作用,而停止F3的作用的2秒内,因为F1在x轴正方向,F2在y轴负方向,直接用F1和F2列的动力学方程
所以第4秒末的位置坐标应是
其中v1x=a1t1=-2(m/s),t2=2s
(3)第4秒末质点沿x轴和y轴方向的速度分别为v2x和v2y,有
即第4秒末质点的速度为4m/s,沿y轴负方向.
限,设F3与y轴正向的夹角为θ,则有
对照解题过程理解力的独立作用原理. 教师启发、引深:
大量事实告诉我们,如果物体上同时作用着几个力,这几个力会各自产生自己的加速度,也就是说这几个力各自产生自己的加速度与它们各自单独作用时产生的加速度相同,这是牛顿力学中一条重要原理,叫做力的独立作用原理,即:
3.提问:叙述牛顿第三定律的内容,其本质是什么? 回忆,思考,回答:
两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上. 放投影片:
牛顿第三定律肯定了物体间的作用力具有相互作用的本质:即力总是成对出现,孤立的单个力是不存在的,有施力者,必要有受力者,受力者也给施力者以力的作用.这一对作用力和反作用力的关系是:等大反向,同时存在,同时消失,分别作用于两个不同的物体上,且具有相同的性质和相同的规律.
[例4] 如图1-3-2,物体A放在水平桌面上,被水平细绳拉着处于静止状态,则:
[
]
A.A对桌面的压力和桌面对A的支持力总是平衡的 B.A对桌面的摩擦力的方向总是水平向右的 C.绳对A的拉力小于A所受桌面的摩擦力
D.A受到的重力和桌面对A的支持力是一对作用力与反作用力 思考、讨论、得出正确结论选B,并讨论其它选项错在何处. 放投影片:
4.牛顿运动定律的适用范围
牛顿运动定律如同一切物理定律一样,都有一定的适用范围.牛顿运动定律只适用于宏观物体,一般不适用于微观粒子;只适用于物体的低速(远小于光速)运动问题,不能用来处理高速运动问题.牛顿第一定律和第二定律还只适用于惯性参照系.
理解,记笔记.
三、课堂小结
提问:你怎样运用牛顿运动定律来解决动力学问题? 组织学生结合笔记讨论并进行小结.
由牛顿第二定律的数学表达式ΣF=ma,可以看出凡是求瞬时力及作用效果的问题;判断质点的运动性质的问题,都可用牛顿运动定律解决.
解决动力学问题的基本方法是:
(1)根据题意选定研究对象,确定m.
(2)分析物体受力情况,画受力图,确定F合.(3)分析物体运动情况,确定a.
(4)根据牛顿定律,力的概念、规律、运动学公式等建立有关方程.(5)解方程.(6)验算、讨论.
四、教学说明
1.作为高三总复习,涉及概念、规律多.因此复习重点在于理解概念、规律的实质,总结规律应用的方法和技巧.
2.复习课不同于新课,必须强调引导学生归纳、总结.注意知识的连贯性和知识点的横向对比性.如一对作用力和反作用力与一对平衡力有什么不同?
3.复习课可以上得活跃些,有些综合题可以由学生互相启发,互相讨论去解决,这样既可以提高学生的学习兴趣又可提高学生分析问题的能力.
同步练习
一、选择题
1.如图1-3-3所示,物体A放在物体B上,物体B放在光滑的水平面上,已知mA=6kg,mB=2kg.A、B间动摩擦因数μ=0.2.A物上系一细线,细线能承受的最大拉力是20N,水平向右拉细线,下述中正确的是(g=10m/s2)
[
]
A.当拉力F<12N时,A静止不动 B.当拉力F>12N时,A相对B滑动 C.当拉力F=16N时,B受A摩擦力等于4N D.无论拉力F多大,A相对B始终静止
2.如图1-3-4所示,物体m放在固定的斜面上,使其沿斜面向下滑动,设加速度为a1;若只在物体m上再放上一个物体m′,则m′与m一起下滑的加速度为a2;若只在m上施加一个方向竖直向下,大小等于m′g的力F,此时m下滑的加速度为a3,则
[
]
A.当a1=0时,a2=a3且一定不为零 B.只要a1≠0,a1=a2<a3 C.不管a1如何,都有a1=a2=a3 D.不管a1如何,都有a1<a2=a3
3.如图1-3-5所示,在光滑的水平面上放着两块长度相等,质量分别为M1和M2的木板,在两木板的左端分别放有一个大小、形状、质量完全相同的物块.开始都处于静止状态,现分别对两物体施加水平恒力F1、F2,当物体与木板分离后,两木板的速度分别为v1和v2,若已知v1>v2,且物体与木板之间的动摩擦因数相同,需要同时满足的条件是
[
]
A.F1=F2,且M1>M2 B.F1=F2,且M1<M2 C.F1>F2,且M1=M2 D.F1<F2,且M1=M2
二、非选择题
4.如图1-3-6所示,一质量为M=4kg,长为L=3m的木板放在地面上.今施一力F=8N水平向右拉木板,木板以v0=2m/s的速度在地上匀速运动,某一时刻把质量为m=1kg的铁块轻轻放在木板的最右端,不计铁块与木板间的摩擦,且小铁块视为质点,求小铁块经多长时间将离开木板?(g=10m/s2)
5.一艘宇宙飞船飞近一个不知名的行星,并进入靠近该行星表面的圆形轨道,宇航员着手进行预定的考察工作.宇航员能不能仅仅用一只表通过测定时间来测定该行星的平均密度?说明理由.
6.物体质量为m,以初速度v0竖直上抛.设物体所受空气阻力大小不变,已知物体经过时间t到达最高点.求:
(1)物体由最高点落回原地要用多长时间?(2)物体落回原地的速度多大?
7.如图1-3-7所示,质量均为m的两个梯形木块A和B紧挨着并排放在水平面上,在水平推力F作用下向右做匀加速运动.为使运动过程中A和B之间不发生相对滑动,求推力F的大小.(不考虑一切摩擦)
8.质量m=4kg的质点,静止在光滑水平面上的直角坐标系的原点O,先用F1=8N的力沿x轴作用了3s,然后撤去F1,再用y方向的力F2=12N,作用了2s,问最后质点的速度的大小、方向及质点所在的位置.
参考答案
1.CD
2.B
3.BD
4.2s
7.0<F≤2mgtanθ
第五篇:高中物理用牛顿运动定律解决问题(一)说课稿新人教版必修1
用牛顿运动定律解决问题
(一)说课稿
大家好:
今天我说课的题目是《用牛顿运动定律解决问题
(一)》。下面我从教材分析、学情分析、教学方法、教学程序设计、板书设计五个方面进行说课。
一、教材分析
1、教材的地位与作用
课题选自人教版高中物理必修一第四章第六节。牛顿运动定律是力学乃至整个物理学的基本规律,是动力学的基础。教科书通过两个简单的实例,向学生展示了利用牛顿运动定律解决实际问题的一般方法。为学生学好整个物理学奠定基础。
2、教学目标
结合以上教材分析,充分考虑了学生的心理特点,根据新课程标准对三维目标的要求,我制定了这节课的教学目标:
知识与技能
(1)知道应用牛顿运动定律解决的两类主要问题。
(2)掌握应用牛顿运动定律解决问题的基本思路和方法。
(3)会用牛顿运动定律和运动学公式解决简单的力学问题。
过程与方法
通过例题变式、学生探究,培养学生发散思维和合作学习的能力,通过例题示范让学生学会画受力分析图和过程示意图,培养学生分析物理情景构建物理模型的能力。
情感态度与价值观
通过问题探究让学生主动自主学习,受到科学方法的训练,养成积极思维,解题规范的良好习惯;让学生体会到生活中处处蕴含着物理知识,从生活走向物理,再从物理走向社会,从而进一步培养学生学习物理的兴趣。
3、重点、难点
重点:应用牛顿运动定律解决问题的基本思路和方法。
难点:物体的受力分析及运动状态分析,解题方法的灵活选择和运用。正交分解法的应用。
二、学情分析
学生已经学习了牛顿运动定律和运动学的基本规律,已经具备了进一步学习求解动力学问题的知识基础。同时,高中学生思维活跃,关心生活,对物理规律和现实生
活的联系比较感兴趣。但由于本节课的综合程度较高,特别是对高一学生来说,他们一时不太适应,所以在选题时每个题中出现的难点不可过多,应循序渐进。
三、教学方法
这节课我主要根据三勤四环节教学法,其要义是通过“定向·诱导”、“自学·探究”、“讨论·解疑”、“反馈·总结”四个环节的教与学,促使学生养成“勤动脑、勤动口、勤动手(三勤)”的良好的学习习惯,提升学生的学习能力,促进学生的全面发展。在学生课前预习的基础上,创设学习情境,诱导学生独立思考探究。对例题的处理:①展示例题,展示分步提示(降低难度),学生独立完成。②小组讨论,教师巡视指导。③小组展示、点评。④教师展示标准答案。⑤在教师的引导下由学生自己归纳总结此类问题的处理方法。⑥例题变式,举一反三,触类旁通。
四、教学程序设计
为了完成这节课的教学目标,依据三勤四环节教学模式,我是这样安排教学过程的:
1、定向·诱导
(多媒体展示)日常生活中为了安全,高速公路上行驶的汽车之间,保持必要的距离,安全距离是怎样确定的?将学生由生活情境引向物理问题激发学生的学习兴趣。这个环节要让学生明确本节课应解决的两类问题:(1)从受力确定运动情况(2)从运动确定受力情况。这个环节还要复习运动学公式、受力分析及牛顿运动定律的内容,从而为本节课的学习打好基础。
2、自学·探究
(一)从受力确定运动情况
①展示例题1,展示分步提示(降低难度),学生独立完成。
②小组讨论,教师巡视指导。
3、讨论·解疑
③小组展示、点评,一定要注意规范。
④教师展示标准答案,答案一定要排版得当,以利于学生对方法规律的总结。⑤在教师的引导下由学生自己归纳总结此类问题的处理方法。
该环节教师要对表现突出的小组给予表扬和鼓励。
4、反馈·总结
在例题1做完后又总结出方法规律,这是学生们的劳动成果,通过激励性的引导,引起学生有将此方法规律应用到实际中去的强烈愿望,这时出示设计好的例题,从而
起到良好的巩固提升的作用。
比如对例题1,我进行了两个拓展,学生自主讨论解决问题后,我再引导学生自主创新,比如把“水平地面”改成“倾角是30°的斜面”,物块沿斜面可以上升,还可以下滑。这样一个例题就变成了多个题,实现了一题多变、以点带面的教学效果。
(二)从运动确定受力情况
例题2的处理方法与例题1相同,在此就不再多说。
课堂小结:
为了体现课程改革的新理念——学生是学习的主人,我改变传统的教师总结为学生总结的模式,既强化了学生所学的知识,又培养了学生的归纳和概括能力。
布置作业:
①为了安全,在公路上行驶的汽车之间应保持必要的距离,已知某高速公路上大巴车最高限速v =90km/h。假设前方车辆因故障突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.40s。刹车时汽车受到的阻力的大小f为汽车重量的0.50倍。该高速公路上汽车间的距离s至少应为多少?
该作业题是为了呼应课前设计的问题情境。
②开放性探究问题:例题1还可拓展为哪些情况,请大家课后自编题目作好解答。
五、板书设计
由于多媒体在物理教学中仅是一种辅助手段,不能完全取代黑板,因此一节课的主要内容和学生的必要参与还需要借助黑板来帮助。我在这节课的板书设计中突出了主要内容,简洁明了。
(多媒体展示板书内容。)