运用aspen及其套件设计换热器

时间:2019-05-14 01:45:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《运用aspen及其套件设计换热器》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《运用aspen及其套件设计换热器》。

第一篇:运用aspen及其套件设计换热器

运用aspen及其套件EDR设计换热器

青海大学化工学院 张鹏宇

目录 1.生产要求设定

2.启动aspen设置前奏

2.1确定合适的modle library 模块

2.2建立流程图

2.3输入工程标题

2.4输入组分

2.5选择物性方法

2.6输入物流参数

3.进行换热器选型

3.1采用shortcut简捷计算

3.2填写估计的总传热系数

3.3模拟计算,列出简捷计算结果

3.4按国家标准选型 4.选择Detailed详细核算

4.1设置冷热流体走程

4.2使用Design Specification调整冷却水流率

4.3设置壳程管程压降计算方式

4.4设置总传热系数计算方式

4.5填写冷热流体侧污垢系数

4.6填写壳程管程数据

4.7填写折流板及管嘴数据

4.8运行计算,列出换热器详细计算结果

4.8.1 exchanger details换热器详细数据

4.8.2 pres drop 各程压力降及压力降分析

4.8.3 流速探讨及分析 5.用EDR 软件核算,出图

5.1 数据传递

5.2 EDR数据检查,核对补充

5.3运行计算,列出换热器详细计算结果

5.3.1 EDR换热器详细数据

5.3.2 pres drop 各程压力降及压力降分析

5.3.3 流速探讨及分析

5.4列出换热器装配图

5.5列出换热器布管图和设备数据

5.6打印出图

6.对比Aspen换热器详细计算,说明EDR其优缺点。

1.生产要求设定

某生产过程中,需处理每年114000吨/年苯,现将苯从80度冷却至40度,冷却介质采用循环水。循环水入口温度32.5度,出口温度取37.5度。要求换热器裕度为10%~25%,换热器内流体流动阻力小于50Kpa.2.启动ASPEN设置前奏

2.1选择合适的modle library 模块

启动ASPEN,新打开一个空白的blank文件,该换热器用循环水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式换热器。在heat Exchangers 下选择heatX下的GEN-HS模块。

2.2建立流程图

连接物流线,建立如图所示的流程图,至此flowsheet已经完整。

2.3输入工程标题

单击下一步N,填写标题,这个可以随意。

2.4输入组分

继续单击下一步,在component ID 中填写H20按回车,再填C6H6回车,物质直接出现,不用查找。

2.5选择物性方法

继续单击下一步,选择物性方法。根据一些其他文献的选择方法,我们在property method一栏下拉选择CHAO-SEA.物性方法。

2.6输入物流参数

由于循环冷却水较易结垢,为便于水垢清洗,应使水走管程,苯走壳程。所以1与2走的水,3与4走的苯。那么在接下来的stream 1中填写温度32.5度,设置压力为1.2个大气压。在composition下拉选择MASS-FLOW,单位选择KG/h。暂时设置循环水的初始流量为5000KG/h.过后将运用Design Specification 调整水的流量。将stream 2填写37.5度,压力1.2atm.其他不设置。将stream 3填写温度80度,压力也为1.2atm,填写苯的流量16000kg/h(根据处理114000吨苯每年而约得)。stream 4不作设置。

3.进行换热器选型

3.1采用shortcut简捷计算

下一步,在blocks-B1-specification-calculation下面选择shortcut表示采用简捷计算以便进行换热器的选型。在pressure drop下面设置冷热流体的outlet pressure压力降为0.3.2填写估计的总传热系数

在UMethods 下面填写估计的换热器总传热系数为300 W/(M2*K).至此简捷计算数据已经输入完成。

3.3模拟计算,列出简捷计算结果

单击下一步,按确定,在数据浏览器里的blocks-b1下的exchanger details 可以看到该换热器的热负荷为319KW.需要的换热面积为52.8M2.与纸质版换热器设计中的325KW,51.3M2.相差不大。可以继续采用详细核算。

3.4按国家标准选型

按照换热器面积及规定6M的管长,查《化工工艺手册》从JB/T4715-1992<固定管板式换热器>中选标准系列换热器BEM450-1.6-62.5-6/25--1,单管程,单壳程,壳径450mm,换热面积62.5m2,换热管Φ25mm×2.5mm,管长6M,管数135根。三角形排列,管心距32 mm。

4.选择Detailed详细核算 4.1设置冷热流体走程

现在选择Detailed 表示type 选择rating 表示详细核算。Hot fluid 选择shell。在exchanger specification 下面选择Hot stream outlet temperature.Value 填写40度。表示要规定苯的出口温度为40度。

4.2使用Design Specification调整冷却水流率

在此栏新建一个DS-1.在DS-1下的define新建一个S。点击edit,开始编辑。在type下选择stream-var,选择2,表示要设计调整水出口(2)的输出流量。然后选择variable为temp表示温度是可以操作的变量。

在spec下面按如图填写,target 填写37.5度表示要使水的出口温度为37.5度。

在vary栏下填type为 stream-var,stream选择1,variable填 mass-flow.这些表示要调整1的水流量数据使2出口温度达到我所想要的37.5度。然后在lower上填写40000,uper上填写60000.表示水的调整区间。

运行后可以得到水的流量为55164Kg/h。

4.3设置壳程管程压降计算方式

壳程和管程都选择calculated from geometry,表示根据换热器几何结构计算壳程和管程的压降。LMTD不用选择,是它默认值constant就好了。

4.4设置总传热系数计算方式

在U METHOD选择film coefficients,表示根据传热面两侧的膜系数计算总传热系数。

4.5填写冷热流体侧污垢系数

在film coefficients 页面壳程和管程都选择 calculated from geometry,表示根据换热器传热面两侧的几何结构计算膜系数。查《化工工艺设计手册》热流体侧的污垢系数取0.000176M2*K/W,冷流体侧的污垢系数取0.00026M2*K/W.4.6填写壳程管程数据

在blocks-B1-geometry 栏下的shell下的TEMA shell type选择E-One pass shell 表示单壳程。填写包括管程数1,换热器水平安置,壳径450mm.在tubes一栏下选择管子类型光滑管,填写管程数据,包括管子根数135根,管长6000mm,管心距32mm,管外径0.025meter.管内径0.00225meter。

4.7填写折流板管嘴数据

包括19块折流板,切率25%。

管嘴设置如下。

4.8运行计算,列出换热器详细计算结果

4.8.1 exchanger details换热器详细数据

如上图,热负荷319KW,需要换热面积为56.9平米,实际换热面积为63.6平米,富余6.7平米。面积裕度11%,完美满足要求。

4.8.2 pres drop 各程压力降及压力降分析

如图,壳程管程压力降都小于1KPA。远远小于50KPA,满足 要求。即壳程和管程的流动阻力都非常满足要求。

4.8.3 流速探讨及分析

由上图可以看出,管程壳程流速非常平缓,这既能满足水和苯的流量要求,还能避免因流速过快而对换热器产生更多损耗。壳程最大流速0.08m/s,管程最大流速0.28m/s,均偏小,因为软件计算结果未报警,所选换热器可用。

5.用EDR 软件核算,出图 5.1 数据传递

在blocks--B1--specification中选择shell and tube 表示用EDR软件详细核算。用EDR软件新建一个”shell and tube”空白的冷凝器设计文件后关闭。在B1下的EDR option中把EDR空白文件导入。然后单击“transfer geometry to shell and tube”按钮,把ASPEN plus对冷凝器详细核算结果传入EDR软件。

5.2 EDR数据检查,核对补充

在下面的几个图中,按照图中的数据,填写完整。

热流组成页面

热流物性方法选择

冷流组成页面

冷流物性方法选择

5.3运行计算,列出换热器详细计算结果

5.3.1 EDR换热器详细数据

在rezult-overall summary 可看到全方位的换热器详细数据

5.3.2 pres drop 各程压力降及压力降分析

由以上详细核算图可知,各程压力降总和50KPA,符合设计要求,比课本求压力降方法要迅速,便捷得多。

5.3.3 流速探讨及分析

壳程速率为0.19m/s,管程速率为0.34m/s。均比较小。这是由于换热器形态以及送料大小和进出口规定温度的缘故。

5.5列出换热器装配图

5.6列出换热器布管图和设备数据

5.7打印出图 6.对比Aspen换热器详细计算,说明EDR其优缺点。在进行换热器详细核算的时候,EDR确实比Aspen的计算要精确,而且EDR能计算Aspen 不能计算的数据。EDR软件是换热器的专业精细设计核算软件,能够完整地从设计直到出图。用Aspen进行换热器的设计只够参看一些换热器基本数据,无法进行出图。但EDR由于其功能更全,包络面更广,其也产生一些问题,用Aspen 传递数据时需要补充数据,有些不需要处理的部分也加进来了,所以会显得不够简洁明了。

第二篇:换热器设计现状

摘要:随着现代工业的快速发展,在保护生态环境下的能源紧缺问题逼迫着人们寻找新能源的开发,换热器是一种重要的在不同温度的 的不同介质之间实现热量交换的设备,在世界能源危机不断加剧的情形下,换热器的强化传热技术备受关注,大量的相关研究也是层出不 穷,都在努力解决能源短缺问题。而本文主要介绍了我国换热器的现状以及存在的问题,还涉及换热器的基本概念、工作原理、分类、发展趋势。

关键词:换热器;设计现状;管式换热器;板面式换热器

前言

换热器又称热交换器,是将热流体的部分热量传递 给冷流体的设备,实现热量的传递。热换器在工业领域应 用广泛,在食品、化工、石油、制药、机械等领域都有涉 及。换热器存在的形式既可以是一种单位设备,如加热 器、冷却器等,也可以不是独立存在的,比如是某一工艺 设备的组成部分。热换器的不断更新发展不仅是热换器行 业自身的发展,更是为使用热换器的各个工业行业的能源 问题的解决提供好的途径。

一、换热器的国内研究现状

对于各型换热器的强化换热技术的研究,主要集中在对 换热器内流体流态变化以及对各部件的参数优化研究两方 面,而对换热器部件参数的主要研究对象就是换热管(板)排 列方式(顺排或叉排)、换热管(板)排数、换管(板)间距大 小、肋片布置问距、肋片形状等。国内对于换热器肋片换热 的研究起步比较晚、经验比较少,多借鉴于国外,无论是理论 研究还是实验研究都还需进一步深入,技术创新还不够,但 是对各因素对换热器性能影响的研究也比较全面。总的来 说,仍然存在以下问题:(1)换热器换热的理论研究不够完 善,可供对肋片实际应用优化设计的理论依据太少,对于换 热公式推导出的解析解较少,目前大多是通过试验、数据分 析拟和而成的经验公式;(2)换热的理论体系缺乏系统性,不够完善;(3)因为试验环境、材料、仪器的精度以及试验方 法不同,在同一个研究方向的某些问题的研究结论存在的分 歧较多,很难形成统一的意见,暂不能形成对实践的可靠指 导;(4)目前对换热器的研究大多基于一维、二维的换热,国 内对于三维的换热模型的研究过少,同时,对于一维和二维 传热模型的前提假设条件很苛刻,得出的结论适用性不强;(5)结合试验建立的部分换热理论还缺乏严谨性和局限性。

一、热换器的工作原理1.工作原理 换热器按照传热原理可以分为表面式换热器、蓄热式 换热器、流体连接间接式换热器、直接接触式换热器。但 总的来说,换热器就是遵循了热平衡的原理,简而言之就 是把高温物体的热量传送给低温物体。在传热工程中,其

内部有两个管道回路,一个是热源温度高,另一个温度低 是被加热源,通过热源将热量传输给被加热源来提高被加 热源的温度。而且在加热源之前有个调节阀用来控制被 加热源的温度,用调节阀来控制所需的热量的程度和时间 点等。

二、典型的热换器类型 1.管式换热器 管式换热器主要分为套管式换热器和管壳式换热器。套管式换热器如字面意思,是将直径不同的管进行同心套 接,然后将多个元件用u型弯管连接而成的。而管壳式换热 器是由壳体、折流板等部分组成,管束安装在壳体内部,再把一端或者两端固定在管板上面。而管板与管箱的连接 方式也多种多样了,可以焊接也可以用螺栓,但是连接处 的检测就需要格外严格了,要充分保障连接处无缝隙,质量确保。套管式换热器运用范围主要是用于传热面积需 求不大的地方,只能小范围运用,主要是小空间的建筑室 内。因为他的占地面积较大,管与管连接所用的接头过 多,发生泄漏的可能性也随之增大,如果工程量过大就会 使得发生泄漏的可能性也随之增大,后期的危险性大,承 担过大风险造成不必要的费用。所用材料多,物质流动的 阻力也增大,加热的效率降低,而且能覆盖的面积也减少 了。但是它的优点是组合方式简单易懂,损坏后无需专人 也能大概看懂问题所在,所需的专业知识少。维修清洗便 捷,适合高温、高压的流体物质使用。管壳式换热器依靠 其结构简易、安全性能高、承受高温高压能力强等优良性 能,所以在目前的大多数工业工程中使用比例大。管壳式 换热器按照不同的分类标准可以分为不同的种类。根据其 结构不同可以分为固定管板式换热器、浮头式换热器、U 型管式换热器等等。

2.板面式换热器 板面式换热器顾名思义就是通过板面进行换热的换热 器。板面一般不是平滑的表面,是有凹凸不平的纹路,流 体通过板面时造成扰动提高热效率。板面式换热器的优点 是占地面积较小,能省下更大的空间,也会对室内的美观 减少影响。相比于管壳式换热器,板面式质量更轻,所用 的材料更少,而且凹凸不平的版面使得传热效率更高。由 于其结构特点,使得流体能在较低的速度下就到达端流状 态,加强了传热,节省了不少时间,提高效率。但是板式 换热器流道狭窄,处理量小,流动阻力大,承受高压高温 效果也较差的缺点。板面式换热器形式多种多样,可分为 板式换热器、板壳式换热器、螺旋板式换热器伞板式换热 器等等。螺旋式换热器由于其螺旋状的外形,能促使流体 随螺旋状自动流动,易于冲刷,不易结垢。

三、换热器未来发展趋势

未来工业生产上对换热器的要求是:传热效率高、流 体阻力小;强度、刚度、稳定性都要足够;结构合理,节 省材料,成本较低;制造、装拆、检修方便等。产品高效 化、节能化、大型化都将是换热器产业发展的方向。国家 要大力建设节约型环保社会,这一方面将促进换热器产业 的高速发展,国家提供足够的支持力度,刺激换热器行业 的积极性。另一方面也将引领产业向高效、环保、节能方 面发展。2013年,国务院颁布了《能源发展的“十二五” 规划》,规划中的条例表明了基于石油、化工等行业的需 求将稳定增长。市场的广阔需求和国家的大力支持都推动 着换热器产业在技术上的革新和在品种上的多样化趋势。国家的资金和政策支持引领更多的人才投入和精力投入,必然推动换热器行业的创新发展。

四、总结 随着经济发展,工业化进程加快,能源短缺问题成为 世界性难题,新能源的开发、节能环保都成为世界共同关 注的话题。近年来,国内换热器行业在节能增效、提高传 热效率、降低降压方面都取得了显著的成绩。但是在技术 上,与国外的换热器相比依然有很多难题需要去克服。我 国在换热、散热、冷却设备上都是强大的重要的市场,市 场需求量大。基于国家政策的支持和市场日益增长的需求 量,我国换热器产业具有一个很好的前景,是蓬勃发展的 朝阳企业。

参考文献 [1]祝银海,厉彦忠.板翅式换热器翅片通道中流体流动与传热的算流 体力学模拟[J].化工学报,2006,57(5):1102-1106.[2]陈永东,陈学东.LNG成套装置换热器关键技术分析[J].天然气工 业,2010,30(1):96-100.[3]陈永东,周兵,程沛.LNG工厂换热技术的研究进展[J].天然气工 业,2012,32(10):80-85.

第三篇:南昌大学食品列管式换热器设计书

食品工程原理课程设计

设计题目:列管式换热器的设计

班级:

设计者:

学号:

设计时间:2013 年 5 月 12 日~19 日

指导老师: 食品工程原理课程设计

目录

1.1 概述.............................................................................................................................................3

1.2 换热器的结构与类型..................................................................................................................3

1.2.1 列管式换热器的基本构型与流体行程.....................................................................................4

1.2.2 列管式换热器的类型.................................................................................................................5

1.3 列管式换热器的主要部件...........................................................................................................7

1.3.1 换热管.........................................................................................................................................7

1.3.2 管板.............................................................................................................................................9

1.3.3 封头、管箱、分程隔板.............................................................................................................9

1.3.4 折流挡板的选用.......................................................................................................................10

1.3.5 其他主要部件...........................................................................................................................10

1.4 固定管板式换热器的优点.........................................................................................................11

1.5 确定设计方案............................................................................................................................12

1.5.1 选择换热器的类型...................................................................................................................12

1.5.2 流体流动途径的选择...............................................................................................................12

1.6 传热过程工艺计算....................................................................................................................13

1.6.1 冷热流体的物理性质...............................................................................................................13

...............................................................................................................14 1.6.2 传热面积的初步计算

1.7 核算...........................................................................................................................................16

.......................................................................................................................16 1.7.1 传热系数的计算 1.7.2 核算传热面积 A0......................................................................................................................19 1.7.3 核算压力降...............................................................................................................................20 1.6.3 结构设计及计算........................................................14

1.8 主要附属件的选定....................................................................................................................23

1.8.1 接管直径...................................................................................................................................23

1.8.2 封头的选用...............................................................................................................................24

1.8.3 管板的选择...............................................................................................................................24

1.8.4 管板与管子连接.......................................................................................................................25

1.8.5 管箱的选择...............................................................................................................................25

1.8.6 定距管.......................................................................................................................................26

1.8.7 拉杆的选择及数量...................................................................................................................26

1.8.8 各零件的选用...........................................................................................................................27

1.9 主题装置图的绘制(见 A1 图纸)...........................................................................................27

2.0 附表...........................................................................................................................................27

2.1 收获及感想.........................................................................................................错误!未定义书签。

2.2 主要参考文献............................................................................................................................30 / 32

食品工程原理课程设计

《食品工程原理及单元操作》课程设计任务

班级:

姓名:

设计一台用饱和水蒸气(表压 400~500kPa)加热水的列管式固 定管板换热器,水流量为 80(t/h),水温由20℃ 加热到 60℃。

1、设计项目:

①热负荷

②传热面积 ④外壳直径及长度 ⑤接管直径

2.设备图主视图、左视图(部分剖)。0 号、1 号或 A4 纸(4 号)画图 3.设备管口表零部件明细表,标题栏表。

管子排列 外壳及管板厚度 ③⑥2 / 32

食品工程原理课程设计

1.1 概述

在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。在换热器中至少要有两种温度不同的流体,一种流体温度较高,放出热量;另一种流体则温度较低,吸收热量。35%~40%。随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热机理的研究十分活跃,一些新型高效换热器相继问世。

随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。按用途不同可分为:加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。按传热方式的不同可分为:混合式、蓄热式和间壁式,列管式换热器是间壁式换热器的主要类型,也是应用最普遍的一种换热设备。按其结构类型分,有列管式、板面式、版壳式、螺旋板式、板翅式、管翅式等。

列管式换热器发展 较早,设计资料和技术数据较完整,目前在许多国家都已有系列化标准产品。虽然在换热效率、紧凑性材料消耗等方面还不及一些新型换热器,但它具有结构简单、牢固、耐用,适应性强,操作弹性大,成本较低等优点,因此仍是化工、石化、石油炼制等工业中应用最广泛的换热设备。

1.2 换热器的结构与类型 / 32

食品工程原理课程设计

1.2.1 列管式换热器的基本构型与流体行程

列管式换热器主要由壳体、换热管束、管板、封头等部件组成,图 2-1 为它的基本构型,此式为卧式换热器,此外还有立式的。在圆

筒形的壳体内装有换热管束,管束安装固定在壳体内两端的管板上。

封头用螺丝钉与壳体两端的法兰连接,如需检修或清洗,课将封头盖

拆除。

图 2-1 列管式换热器的基本构型

冷热流体在列管式换热器内进行热交换时,一种流体在管束与壳

体间的环隙内流动,其行程称为壳程;另一种流体在换热管内流动,其行程成为管程。如需换热器较大传热面积时,则应排列较多的换热

管束。为提高管程流体流速,强化传热,可将换热管分为若干组,称

为多管程。同样,为提高壳程流体的涡流程度,以提高对流传热系数,强化传热,可在壳体内安装横向式或纵向式的折流挡板。这样,壳程

流体的流速和流向可不断发生改变,使雷诺数在较低时

就 能达到湍流。/ 32

第四篇:换热器原理与设计期末复习题重点

换热器原理与设计期末复习题重点

第一章

1.填空:

1.按传递热量的方式,换热器可以分为间壁式,混合式,蓄热式

2.对于沉浸式换热器,传热系数低,体积大,金属耗量大。

3.相比较沉浸式换热器和喷淋式换热器,沉浸式换热器传热系数较低,喷淋式换热器冷却水过少时,冷却器下部不能被润湿.4.在沉浸式换热器、喷淋式换热器和套管式换热器中,套管式换热器中适用于高温高压流体的传热。

5.换热器设计计算内容主要包括热计算、结构计算

流动阻力计算和强度计算

6.按温度状况来分,稳定工况的和

非稳定工况的换热器

7.对于套管式换热器和管壳式换热器来说,套管式换热器金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。

2.简答:

1.说出以下任意五个换热器,并说明换热器两侧的工质及换热方式

答:如上图,热力发电厂各设备名称如下:

1.锅炉(蒸发器)

*;

2.过热器*;

3.省煤器*

4.空气预热器*;

5.引风机;

6.烟囱;

7.送风机;

8.油箱

9.油泵

0.油加热器*;

11.气轮机;

12.冷凝器*;

13.循环水冷却培*

14.循环水泵;

15.凝结水泵;16.低压加热器*;

17.除氧(加热)器*;18.给水泵

19.高压加热器·

柱!凡有·者均为换热器

2.比较沉浸式换热器、喷淋式换热器、套管式换热器和管壳式换热器的优缺点

答:⑴沉浸式换热器

缺点:自然对流,传热系数低,体积大,金属耗量大。

优点:

结构简单,制作、修理方便,容易清洗,可用于有腐蚀性流体

⑵喷淋式换热器:

点:结构简单,易于制造和检修。换热系数和传热系数比沉浸式换热器要大,可以用来冷却腐蚀性流体

缺点:冷却水过少时,冷却器下部不能被润湿,金属耗量大,但比沉浸式要小

⑶套管式换热器:

优点:结构简单,适用于高温高压流体的传热。特别是小流量流体的传热,改变套管的根数,可以方便增减热负荷。方便清除污垢,适用于易生污垢的流体。

缺点:流动阻力大,金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。

⑷管壳式换热器:

优点:结构简单,造价较低,选材范围广,处理能力大,还可以适应高温高压的流体。可靠性程度高

缺点:与新型高效换热器相比,其传热系数低,壳程由于横向冲刷,振动和噪音大

3.举例说明5种换热器,并说明两种流体的传热方式?说明两种流体的传热机理?

1)蒸发器:间壁式,蒸发相变—导热—对流

2)冷凝器:间壁式,冷凝相变—导热—对流

3)锅炉:间壁式,辐射—导热—对流

4)凉水塔:混合式,接触传热传质

5)空气预热器:蓄热式,对流—蓄热,蓄热—对流

第一章

1.填空:

1.传热的三种基本方式是_导热__、____对流__、和

辐射_。

2..两种流体热交换的基本方式是___直接接触式___、_间壁式_、和___蓄热式_。

3.采用短管换热,由于有入口效应,边界层变薄,换热得到强化。

4.采用螺旋管或者弯管。由于拐弯处截面上二次环流的产生,边界层遭到破坏,因而换热得到强化,需要引入大于1修正系数。

5.通常对于气体来说,温度升高,其黏度增大,对于液体来说,温度升高,其黏度减小

6.热计算的两种基本方程式是_传热方程式__和热平衡式_。

7.对于传热温差,采用顺流和逆流传热方式中,顺流

传热平均温差小,逆流时传热平均温差大。

8.当流体比热变化较大时,平均温差常常要进行分段计算。

9.在采用先逆流后顺流<1-2>型热效方式热交换器时,要特别注意温度交叉问题,避免的方法是增加管外程数和两台单壳程换热器串联工作。

10.冷凝传热的原理,层流时,相对于横管和竖管,横管传热系数较高。

11.对于单相流体间传热温差,算术平均温差值大于对数平均温差

12.管内流体的换热所遵守的基本准则为努赛尔准则数,其大小与雷诺数、普兰特数和格拉肖夫数有关

13.设计计算时,通常对传热面积进行判定,校核计算时,通常对传热量进行判定

2.简答(或名词解释):

1.什么是效能数?什么是单元数?(要用公式表示)

答:实际情况的传热量q总是小于可能的最大传热量qmax,我们将q/qmax定义为换热器的效能,并用

e

表示,即

换热器效能公式中的KA依赖于换热器的设计,Wmin

则依赖于换热器的运行条件,因此,KA/Wmin在一定程度上表征了换热器综合技术经济性能,习惯上将这个比值(无量纲数)定义为传热单元数NTU

2.热交换器计算方法的优缺点比较?

对于设计性热计算,采用平均温差法可以通过Ψ的大小判定所拟定的流动方式与逆流之间的差距,有利于流动方式的选择。

而在校核性传热计算时,两种方法都要试算。在某些情况下,K是已知数值或可套用经验数据时,采用传热单元书法更加方便

假设的出口温度对传热量Q的影响不是直接的,而是通过定性温度,影响总传热系数,从而影响NTU,并最终影响

Q值。而平均温差法的假设温度直接用于计算Q值,显然e-NTU法对假设温度没有平均温差法敏感,这是该方法的优势。

3、传热的基本方式有哪几种?

答:分为三种,热传导,热对流和辐射

热传导

热量从物体内部温度较高的部分传递到温度较低的部分或者传递到与之相接触的温度较低的另一物体的过程称为热传导,简称导热。

热对流

流体中质点发生相对位移而引起的热量传递,称为热对流,对流只能发生在流体中。

热辐射

辐射是一种通过电磁波传递能量的过程。物体由于热的原因而发出辐射能的过程,称为热辐射。

4、流体换热的基本方式有哪些?

答:主要分为三种:直接接触式传热,蓄热式换热和间壁式换热。

直接接触式传热

直接接触式传热的特点是冷、热两流体在换热器中以直接混合的方式进行热量交换,也称混合式换热。

蓄热式换热

蓄热式换热器是由热容量较大的蓄热室构成。室中充填耐火砖作为填料,当冷、热流体交替的通过同一室时,就可以通过蓄热室的填料将热流体的热量传递给冷流体,达到两流体换热的目的。

间壁式换热

间壁式换热的特点是冷、热流体被一固体隔开,分别在壁的两侧流动,不相混合,通过固体壁进行热量传递。

5、流体传热的基本准则方程式为努赛尔准则,与哪些无因次方程有关?

答:根据量纲分析

努赛尔准则数与雷诺数、普兰特数和格拉肖夫数有关

6.当换热管分别为短管时和螺旋管时,换热系数增加还是减少,为什么?

答:对于短管。入口效应,边界层变薄,换热得到强化。换热系数增加。

对于螺旋管或者弯管。由于拐弯处截面上二次环流的产生,边界层遭到破坏,因而换热得到强化,需要引入修正系数,换热系数增加。

7、当出现大温差加热流体时,分别对于气体和液体,换热系数增加还是减少,为什么?

答:当流体与壁面之间的温差出现大温差时,一般对气体超过50℃,对水超过30

℃,对油超过10

超过上述温差时,气体被加热粘度增大,换热能力减小;液体加热时,液体粘度减小,换热能力增大。

8、什么是对数平均温差,算术平均温差和积分平均温差,它们之间的联系和区别是什么?

答:

由于计算结果表达式中包含了对数项,我们称之为对数平均温差,例如我们将顺流和逆流情况下对数平均温差写成如下统一形式

平均温差的另一种更为简单的形式是算术平均温差,即

积分平均温差的形式。

按比热不同分段

按温度等分段可得

算术平均温差相当于温度呈直线变化的情况,因此,总是大于相同进出口温度下的对数平均温差,当

时,两者的差别小于4%;当

时,两者的差别小于2.3%。

当流体的比热随温度变化不大时,采用对数平均温差。

当流体的比热随温度变化较大时(大于2-3倍时),采用对数平均温差计算,误差较大,这时应该采用积分平均温差。

9、采用平均温差法进行设计计算的步骤?

平均温差法用作设计计算时步骤如下:

(1)假定传热系数,求得初始传热面积

(2)初步布置换热面(实际传热面积),计算出相应的传热系数。

(3)根据给定条件,由热平衡式求出进、出口温度中的那个待定的温度。(约束)

(4)由冷、热流体的4个进、出口温度确定平均温差∆tm,计算时要注意保持修正系数Ψ具有合适的数值。

(5)由传热方程求出所需要的换热面积A(与原传热面积比较),并核算换热面两侧有流体的流动阻力。

(6)如流动阻力过大,改变方案重新设计。

10.采用效能单元数法进行设计计算的步骤?

(1)

先假定一个流体的出口温度,按热平衡式计算另一个出口温度

(2)

根据4个进出口温度求得平均温差∆tm

(3)

根据换热器的结构,算出相应工作条件下的总传热系数k(或已知)

(4)

已知kA,按传热方程式计算在假设出口温度下的∆tm,得到Q

(5)

根据4个进出口温度,用热平衡式计算另一个Q,这个值和上面的Q,都是在假设出口温度下得到的,因此,都不是真实的换热量

(6)

比较两个

Q

值,满足精度要求,则结束,否则,重新假定出口温度,重复(1)-(6),直至满足精度要求。

11.对于冷凝换热,卧式和立式换热器选型选型及原因说明

膜状冷凝

垂直管

水平管

一般来说,由于管子的长度远大于管子的直径,即L>>d,因而,水平管的凝结换热系数大于垂直管的凝结换热系数。

12.采用积分平均温差适用的条件?

当流体的比热随温度变化较大时(大于2-3倍时),采用对数平均温差计算,误差较大,这时应该采用积分平均温差。

积分平均温差的出发点:

虽然流体的比热在整个温度变化范围内是个变量,但是若把温度范围分成若干个小段,每个小段内的温度变化小,就可将流体的比热当作常数来处理。

3.计算题

1.有一蒸汽加热空气的热交换器,它将流量为5kg/s的空气从10℃加热到60℃,空气与蒸汽逆流,其比热为1.02KJ/(kg℃),加热蒸汽系压力为P=0.3Mpa,温度为150℃的过热蒸汽,在热交换器中被冷却为该压力下90℃的过冷水,试求其平均温差。(附:饱和压力为0.3MP,饱和蒸汽焓为2725.5KJ/kg,饱和水焓为561.4KJ/kg.150℃时,水的饱和温度为133℃,过热蒸汽焓为2768

KJ/kg,90时,过冷水的焓为377

KJ/kg)

解:由于蒸汽的冷却存在着相变,因此在整个换热过程中,蒸汽的比热不同,在整个换热过程中的平均温差应该分段计算再求其平均值。

将整个换热过程分为三段:

过热蒸汽冷却为饱和蒸汽所放出的热量Q1,相变过程的换热量Q2,从饱和水冷却到过冷水所放出的热量Q3

Q=M2C2(t-t)=5×1.02×50=255KJ/s;

根据热平衡蒸汽耗量M1=Q/(i-i)=255/(2768-377)

=0.1066kg/s

因为在热交换器换热过程中存在着两个冷却过程和一个冷凝过程,因而将之分为三段计算。

Q1=

M1(i-i’)=0.1066×(2768-2725.5)=4.531

KJ/s

Q2=

M1(i’-i”)=0.1066×(2725.5-561.4)=230.693

KJ/s

Q3=

M1(i”-i)=0.1066×(561.4-377)=19.657

KJ/s

因为Q3=M2C2(tb-t),可得tb=19.567/(5×1.02)+10=13.837℃

因为Q2+

Q3=M2C2(ta-t),可得ta=250.47/(5×1.02)+10=59℃

△t1=[(150-60)-(133-59)]/ln[(150-60)/(133-59)]=81.7℃

△t2=[(133-13.837)-(133-59)]

/ln[(133-13.837)/(133-59)]

=94.725℃

t3=[(90-10)-(133-13.837)]/

ln[(90-10)/

(133-13.837)]

=98.212

总的平均温差为:△tm=Q/(Q1/△t1+

Q2/△t2+

Q3/△t3)

=255/(4.531/81.7+230.693/94.725+19.657/98.212)

=94.8℃

沿换热器流程温度示意图如下:

2.在一传热面积为15.8m2,逆流套管式换热器中,用油加热冷水,油的流量为2.85kg/s,进口温度为110℃,水的流量为0.667kg/s,进口温度为35℃,油和水的平均比热分别为1.9KJ/kg•℃和4.18KJ/kg

•℃,换热器的总传热系数为320W/m2•℃,求水的出口温度?

解:W1=2.85X1900=5415W/

W2=0.667X4180=2788W/

因此冷水为最小热容值流体

单元数为

效能数为

所以:

3、一换热器用100℃的水蒸汽将一定流量的油从20℃加热到80℃。现将油的流量增大一倍,其它条件不变,问油的出口温度变为多少?

注:

解:根据题意,相比较水蒸气换热为相变换热的流体,油为热容值小的流体

因此根据效能数和单元数的关系

可得:

现将油的流量增大一倍,其它条件不变,单元数减小为原来的0.5倍,因此

可得

解得。

4.某换热器用100℃的饱和水蒸汽加热冷水。单台使用时,冷水的进口温度为10℃,出口温度为30℃。若保持水流量不变,将此种换热器五台串联使用,水的出口温度变为多少?总换热量提高多少倍?

解:根据题意,将换热器增加为5台串联使用,将使得传热面积增大为原来的5倍,相比较水蒸气换热为相变换热的流体,水为热容值小的流体,因此

因此根据效能数和单元数的关系

可得:

现将传热面积增大为原来的5倍,单元数增大为原来的5倍,由于

效能数为

水的出口温度为

根据热平衡式,对于冷水,热容值不变,温差增大的倍数为换热量增加的倍数:

5.一用13℃水冷却从分馏器得到的80℃的饱和苯蒸气。水流量为5kg/s,苯汽化潜热为395

kJ/kg,比热为1.758

kJ/kg•℃,传热系数为1140

W/m2•℃。试求使1

kg/s苯蒸气凝结并过冷却到47℃所需的传热面积(1)顺流;(2)逆流。

解:根据题意

(1)

顺流时

由于有相变传热,因此比热不同,需要分段计算平均传热温差。

1)在苯相变冷凝段:

根据热平衡式,苯的放热量:

在相变段,水吸收热为Qln

可得

平均温差为

2)在苯冷却段

在苯冷却段,水吸收热为Qlq

可得:

平均温差为

总的平均温差为

根据传热方程式:

可得

沿换热器流程温度示意图如下:

(2)

逆流时

由于有相变传热,因此比热不同,需要分段计算平均传热温差。

1)在苯冷却段

在苯冷却段,水吸收热为Qlq

可得:

平均温差为

2)在苯相变冷凝段:

根据热平衡式,苯的放热量:

在相变段,水吸收热为Qln

可得:

平均温差为

总的平均温差为

根据传热方程式:

可得

沿换热器流程温度示意图如下:

第二章

1.填空:

1.根据管壳式换热器类型和标准按其结构的不同一般可分为:固定管板式换热器、U型管式换热器、浮头式换热器、和填料函式换热器等。

2.对于固定管板式换热器和U型管式换热器,固定管板式换热器适于管程走易于结垢的流体

3相对于各种类型的管壳式换热器固定管板式换热器不适于管程和壳程流体温差较大的场合。

4.相对于各种类型的管壳式换热器,填料函式换热器不适用于易挥发、易燃、易爆、有毒及贵重介质,使用温度受填料的物性限制。

5.管子在管板的固定,通常采用胀管法和焊接法

6.在管壳式换热器中,管子的排列方式常有等边三角形排列(正六角形排列)法、同心圆排列法和正方形排列法排列法。

7.如果需要增强换热常采用等边三角形排列(正六角形排列)法、,为了便于清洗污垢,多采用正方形排列。同心圆排列法使得管板的划线、制造和装配比较困难。

8.为了增加单位体积的换热面积,常采用小管径的换热管

9.为了提高壳程流体的流速和湍流强度,强化流体的传热,在管外空间常装设纵向隔板和折流板。

10.折流板的安装和固定通过拉杆和定距管

11.壳程换热公式Jo=jHjcjljbjsjr,其中jb表示管束旁通影响的校正因子,jl表示折流板泄漏影响的校正因子。jc表示折流板缺口的校正因子

12.管壳式换热器理想壳程管束阻力包括理想错流段阻力∆Pbk和理想缺口段阻力∆Pwk。

13.管壳式换热器的实际阻力要考虑考虑折流板泄漏造成的影响Rl,旁路所造成的影响Rb,和进出口段折流板间距不同对阻力影响Rs

14.在廷克流动模型中ABCDE5股流体中,真正横向流过管束的流路为B股流体,D股流体折流板与壳体内壁存在间隙而形成的漏流,设置旁路挡板可以改善C流路对传热的不利影响

15.若两流体温差较大,宜使传热系数大的流体走壳程,使管壁和壳壁温差减小。

16.在流程的选择上,不洁净和易结垢的流体宜走管程,因管内清洗方便。被冷却的流体宜走壳程,便于散热,腐蚀性流体宜走管程,流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数(Re>100)下即可达到湍流。

17.采用小管径换热器,单位体积传热面积增大、结构紧凑、金属耗量减少、传热系数提高

18.流体诱发振动的原因是涡流脱落,湍流抖振和流体弹性旋转

19.减小管子的支撑跨距能增加管子固有频率,在弓形折流板缺口处不排管,将减小管子的支撑跨距

20.蒸发器的三种温降分别为物理化学温降

∆′,静压温降∆″和流动阻力温降∆“’

21.管壳式换热器的设计标准应遵循GB151标准和GB150标准

22.为了提高换热效果,对于辐射式换热器,应增大流通截面积,对于对流式换热器,应减小流通截面积。

2.名词解释:

(1).卡路里温度

对于油类或其他高粘度流体,对于加热或冷却过程中粘度发生很大变化,若采用流体进出口温度的算术平均温度作为定性温度,往往会使换热系数的数值有很大误差,虽然可以分段计算,但是工作量较大,工业上常采用卡路里温度作为定性温度。

热流体的平均温度

冷流体的平均温度

壳侧流体被管侧的水冷却时

Fc=0.3

壳侧流体被管程的水蒸气加热时

Fc=0.55

壳侧和管侧均为油时

Fc=0.45

粘度在10-3Pa•s以下的低粘性液体

Fc=0.5

(2).布管限定圆

热交换器的管束外缘受壳体内径的限制,因此在设计时要将管束外缘置于布管限定圆之内,布管限定圆直径Dl大小为

浮头式:

固定板或U型管式

3.简答:

(1).试分析廷克流动模型各个流路及其意义

答:

(1)

流路A,由于管子与折流板上的管孔间存在间隙,而折流板前后又存在压差所造成的泄漏,它随着外管壁的结垢而减少。

(2)

流路B,这是真正横向流过管束的流路,它是对传热和阻力影响最大的一项。

(3)

流路C,管束最外层管子与壳体间存在间隙而产生的旁路,此旁路流量可达相当大的数值。设置旁路挡板,可改善此流路对传热的不利影响。

(4)

流路D,由于折流板和壳体内壁间存在一定间隙所形成的漏流,它不但对传热不利,而且会使温度发生相当大的畸变,特别在层流流动时,此流路可达相当大的数值。

(5)

流路E,对于多管程,因为安置分程隔板,而使壳程形成了不为管子所占据的通道,若用来形成多管程的隔板设置在主横向流的方向上,他将会造成一股(或多股)旁路。此时,若在旁通走廊中设置一定量的挡管,可以得到一定的改善。

(2).说明下列换热器的型号

1)

BEM600-2.0/1.5-250-5/19-4Ⅰ

固定管板式换热器:前端管箱为封头管箱,壳体型式为单壳程,后端管箱为封头管箱,公称直径600mm,管程压力为2.0Mpa,壳程压力为1.5Mpa,公称换热面积250m2,管长为5m,管外径为19mm,4管程,Ⅰ级管束,较高级冷拔钢管。

2)

固定管板式换热器:前端管箱为封头管箱,壳体型式为单壳程,后端管箱为封头管箱,公称直径800mm,管程压力为2.0Mpa,壳程压力为1.0Mpa,公称换热面积254m2,管长为6m,管外径为19mm,4管程,铜管。

3)

BIU500-4.0/1.6-75-6/19-2Ⅰ

U型管式换热器:前端管箱为封头管箱,中间壳体为U型管式,后端为U型管束。公称直径500mm,管程压力为4.0Mpa,壳程压力为1.6Mpa,公称换热面积75m2,管长为6m,管外径为19mm,2管程Ⅰ级管束,较高级冷拔钢管。

4)

平盖管箱,公称直径500mm,管程和壳程的设计压力均为1.6MPa,公称换热面积为54m2,碳素钢较高级冷拔换热管外径25mm,管长6m,4管程,单壳程的浮头式热交换器。Ⅰ级管束,较高级冷拔钢管。

(3).找出下列图中,换热器的名称及各零部件名称和及作用

1)

固定管板式换热器

1.折流板---使壳程流体折返流动,提高传热系数。支撑管束,防止弯曲

2.膨胀节---补偿管壳式式换热器的温差应力

3.放气嘴---释放不凝结气体

2)浮头式换热器

1.管程隔板---增大管程流体的流速

2.纵向隔板---提高壳程流体的流速和湍流强度,强化流体的传热,在管外空间常装设纵向隔板

3.浮头---补偿管壳式式换热器的温差应力

3)U形管式换热器

1.U形管---使流体通过及换热

2.纵向隔板---提高壳程流体的流速和湍流强度,强化流体的传热,在管外空间常装设纵向隔板

3.管程隔板---增大管程流体的流速

4)

请说出序号2、6、7、8、18各代表什么零件,起什么作用?

2----管程接管法兰,与换热器管程外流路官路连接;

6---拉杆,安装与固定折流板;

7---膨胀节,补偿管子与壳体热应力不同;

8---壳体,用来封装壳程流体,并承受壳程流体压力,18---折流板-使壳程流体折返流动,提高传热系数。支撑管束,防止弯曲

第三章

第一节:

1.填空:

1.热交换器单位体积中所含的传热面积的大小大于等于700m2/m3,为紧凑式换热器

2.通常采用二次表面来增加传热表面积,或把管状的换热器改为板状表面,3.螺旋板式热交换器的构造包括螺旋型传热板、隔板、头盖和连接管

4.螺旋板式换热器的螺旋板一侧表面上有定距柱,它的作用主要是保持流道的间距、加强湍流、和增加螺旋板刚度。

5.在Ⅲ型螺旋板式热交换器中:一侧流体螺旋流动,流体由周边转到中心,然后再转到另一周边流出。另一侧流体只作(),适用于有相变流体换热

2.简答

1)

说明下列换热器的型号

换热面积为80m2,碳钢不可拆螺旋板式换热器,其两螺旋通道的举例分别为14mm和18mm,螺旋板的板的板宽为1000mm,公称压力为1.6MPa,公称直径为1600mm.贯通型

3.计算:

(1).设螺旋板的板厚为4mm,两通道宽b1和b2为10mm和20mm,内侧有效圈数为3,d1为100mm,以d1为基准半圆直径绕出的螺旋板作为内侧板时,d2为基准半圆直径绕出的螺旋板作为外侧板时试作图绘制螺旋体,并计算中心隔板宽B,基准半圆直径d2,内侧螺旋板总长度Li,外侧螺旋办总长度

Lo,螺旋板最大外径D等参数

解:(1)B=d1-b1+δ=100-10+4=94mm

因为B=d1-b1+δ=

d2-b2+δ,可推导d2=

d1-b1+

b2=110mm,c=

b1+

b2+2δ=10+20+8=38

t1=10+4=14,t2=20+4=24

因为n=n=3,以d1为基准半圆直径绕出的,所以

Li=/2{n(d1+2b1+4δ+d2)+2(n-n)c}

=/2{3(100+20+16+110)+2(9-3)38}

=/21194

=1876mm

Lo=/2{n(d1+2b2+4δ+d2)+(d2+δ)+2nc}

=/2{3(100+40+16+110)+(110+4)+2938}

=/21596

=2507mm

D=

d2+2nc+2δ=110+2338+24=346mm

分别以t1/2,t2/2,为内侧螺旋板和外侧螺旋板的圆心,画出螺旋板换热器示意图如下图所示

第二节

1.填空:

1.板式换热器按构造可以划分为可拆卸、全焊式和串焊式

2.可拆卸板式换热器结构由传热板片,密封垫片,压紧装置和定位装置组成2.简答:

1).说明下列换热器的型号

人字形波纹板式损热器,单片公称换热面积0.05m2,设备总的公称换热面积2m2,设计压力8×105Pa,设计温度120

℃组装形式

2).BR0.3-1.6-20-F-І

板式热交换器:人字形波纹,单板公称换热面积为0.3m2,设计压力为1.6MPa,换热面积为20m2,氟橡胶垫片密封的双支撑框架结构的板式热交换器。

3)BPl.0–1.0–1002–E–Ⅱ

波纹形式为水平平直波纹,单板公称换热面积为l.0

m2,设计压力为1.0

MPa,换热面积为100

m2。用三元乙丙垫片密封的带中间隔板双支撑框架结构的板式换热器,4).板式换热器的流程和通道配合为,其中甲流体为热流体,乙流体为冷流体

甲流体进

乙流体出

甲流体出

乙流体进

3名词解释:

1)热混合:

为了使换热器更好地满足传热和压力降的要求,传热流体流经混合板流道就相当于其单独流过这两种倾角的板片各自组成的流道后再混合,所以此种组合而成的板式热交换器在性能上体现了一种“热混合”

采用方法:

⑴每两种波纹倾角不同的人字形板片相叠组装成一台板式热交换器

⑵各自分段采用波纹倾角不同的人字形板片组装成一台板式热交换器

⑶将流道数分段组装,进一步实现热混合第三节

1.填空:

1.板翅式换热器由隔板、翅片、封条基本单元和导流片和封头组成简答:

1.对于板翅式热交换器,两个热通道之间相隔三个冷通道A、B、C,冷热通道的翅高均为H,求每个冷通道的定性尺寸及翅片效率。

2.简答:

1)说明定性尺寸及翅片效率

定型尺寸为b,翅片效率为η=tan(mb)/(mb)

对于冷通道A,定性尺寸为H,翅片效率为ηA=tan(mH)/(mH),对于冷通道B,定性尺寸为1.5H,翅片效率为ηA=tan(1.5mH)/(1.5mH),对于冷通道C,定性尺寸为H,翅片效率为ηC=tan(mH)/(mH),单相强化换热方面:

1.根据场协同理论,当温度场和速度场夹角为,换热器传热系数最大。

2.相对于螺旋槽管和光管,的换热系数高,的防结垢性能好。

3.对于螺旋槽管和横纹槽管,其传热面积没有得到有效提高

4.按照强化传热的方法可分为主动强化传热方法和被动强化传热方法

5.对螺旋管起强化传热的流动主要为螺旋流和二次流

6.相同壁厚,管径的螺旋槽管的结构强度大于同等条件的光管。

7.低肋管和内肋管的传热面积得到有效提高

8.当雷诺数较高时,管内插入螺旋线的传热强化效果明显。

9.一般而言,静态混合器的阻力损失大

10.螺旋扁管换热器不需要安装折流板。

11.百叶窗翅片的传热机理与交叉翅片的传热机理类似。

12.C管和花瓣形翅片为三维翅片管。

相变强化换热方向:

1.一般而言,粗糙表面的沸腾传热系数大于光滑表面的沸腾传热系数,过热度小于光滑表面

2.对于冷凝换热,翅片顶部应该有较小的曲率半径,翅片底部有较大的排液空间。

3.对于花瓣形管,由于齿底被完全切割开,因而其传热系数稍大于同等条件下得C管

4.

第五篇:固定管板换热器优化设计分析论文

一、引言

换热设备是核电、化工、石油及其他许多工业部门广泛使用的设备,其中管壳式换热器以其高度的可靠性和广泛的适用性,至今仍占据主导地位。在固定管板换热器中,壳体,管板和换热管之间为刚性连接,在各种载荷作用下的变形必须互相协调。本文采用有限元分析的方法,计算固定管板换热器在内压和温度载荷耦合场的作用下,其管板所受的应力,并分别计算了不同厚度的管板所受的应力,以获得管板厚度与应力的关系。

二、工作条件与结构

本文以核电厂的某冷却器为例,该换热器为固定管板式换热器,壳体为Ф219.1×4mm,换热管为Ф19×2mm,正三角形排列,管板上共布了26根管子,管板厚度为30mm,壳体厚度为4mm,壳侧材料为022Cr19Ni10,管侧材料为022Cr17Ni12Mo2。换热器的设计参数如下:设计压力:管程pt=0.66MPa,壳程ps=0.5MPa;设计温度:管程进出口温度为20℃~70℃,壳程流体发生相变,进出口温度均为138.8℃。材料的弹性模量为E=2.1×105MPa,泊松比为ν=0.3。换热管与管板的连接采用胀焊并用的方法,焊接后进行胀接。在之前的工程中出现过该换热器由于工厂工艺限制,无法满足换热器的管子和管板之间拉脱力的要求,为此工厂不断提高胀接压力试图达到所需的拉脱力。随着胀接力的增加,残余接触应力的峰值也会增加,使换热管在胀管区和非胀管区的应力都不断增加,令管板内的换热管发生开裂,并且制造厂在提高胀接压力后发现换热管的壁厚减薄率超出适用范围,无法满足设计需求,最后只能通过增加胀接距离的方法来提高拉脱力,但在非胀管区进行胀接需要工厂操作控制得当,否则容易损坏焊缝,因此不推荐该做法。通过经验反馈,吸取以往的工程经验,将本换热器重新进行优化设计,考虑将管板的厚度增加,以满足拉脱力的要求。理论上增加管板的厚度相当于加强其刚度,是降低应力的一个措施,到底是不是这样还需要计算所得,通过有限元分析来获取一个合适的管板厚度。因此接下来利用ANSYS热结构耦合场分析方法对管板进行分析。

三、有限元建模

以厚度为45mm的管板为模型,利用热工计算出的换热参数,对换热器进行温度场分析,完成热分析后,再施加结构载荷再通过耦合场分析,获得管板的应力,分别计算不同厚度的管板其应力的大小来获得管板厚度与应力的关系,来选择最合适的管板厚度。(一)载荷与边界条件。为了提高计算的精度,真实模拟换热管与管板连接处各个部件的应力状态,管箱、管板、换热管和壳体均采用实体单元,为减少计算量,利用对称功能将其简化为1/4的实体分析模型,在壳侧只保留一部分的外伸换热管和壳体,外伸长度,设置材料参数属性,并对其进行网格划分,(二)热分析施加载荷与边界条件。热分析过程中,只为模型添加热载荷,不需添加力边界条件。首先为模型添加对流传热方式,设置换热器内部流体与换热器壁面为对流边界,根据热工计算结果,分别输入壳程和管程的对流传热系数11432.1W/m2℃与2407.1W/m2℃,对换热管的外表面、壳程筒体内表面和管板壳侧表面施加138.8℃的温度载荷,并对换热管的内表面、管箱内表面和管板管程表面施加20℃的温度载荷。(三)结构分析模型载荷与边界条件。在热分析后进行结构分析,此时在换热器的壳侧和管侧施加相应的压力载荷;压力载荷施加完成后再将热分析得到的温度分析结果作为载荷加载到模型上。力边界条件为,在换热器的对称面上施加位移约束。

四、计算结果

(一)热分析结果。为换热器的温度场分布云图,通过热分析可清楚看出换热器在正常工况下各处的温度分布情况。可见壳体和管侧筒体的温度分布较为均匀,管板与壳侧筒体连接区域的温度梯度较大。最大应力发生在管板与壳体连接的地方,靠近底部;分析原因,一是管板与壳体连接处温度变化剧烈,从高温急剧变化到低温,该区域存在较大的温差,于是受到的应力急剧增大;二是壳体与管板的厚度相差较大,造成了连接处的不连续性,形成了局部的应力集中;三是管板材料为022Cr17Ni12Mo2,壳体材料为022Cr19Ni10,两种不同的材料性能存在差异。(二)结构分析结果。结构分析时,将热分析的结果导入到结构分析模块中,温度场分析所得的节点温度作为载荷施加到模型上,同时施加力边界条件,可见最大应力值发生在管板与管程筒体的连接处,其他较大应力的位置是壳程筒体与管板连接处和管板开孔的位置,这三个位置均为结构不连续位置,因为得到的应力较大。对其进行应力线性化,对应力进行评定,换热器满足工作要求,结构安全可靠。(三)管板厚度对比分析。以上的分析是以管板厚度45mm为例,获得换热器所受的应力,为了获得不同管板厚度下换热器的应力分布,本节分别选择管板厚度为30mm,45mm和60mm对其进行热分析与结构分析应力计算,可见当管板的厚度达到一定值后,增加管板的厚度并未降低所受应力,原因在于壳体壁厚较小(4mm),两者的刚度相差较大,换热器结构的变形和应力主要由管板和壳体之间的温度载荷及内压引起,由于增加了管板的厚度,管板抵抗变形的刚度变大,对与之连接的壳体有较强的约束,形成局部的应力集中。因此选择管板厚度45mm是比较合适的。经工厂验证,在该胀接距离下胀接压力不超过200MPa就可以达到所需的拉脱力,管子的壁厚减薄率也满足要求。

五、结语

第一,壳侧与管侧的温差较大,由于温差的存在会形成较大的温差应力,因为温度载荷对管板会造成较大的热应力,因此对温差较大的换热器进行结构热耦合分析非常必要。第二,在施加了热载荷和力边界条件后,发现最危险的区域没有发生在管板上,而是发生管板与壳体的连接处,因该处结构不连续,容易形成较大的应力。第三,管板厚度的增加并不一定能降低应力,管板的厚度需与壳体的厚度相匹配,以免造成局部的应力集中。采用有限元分析的方法将温度场和结构分析相耦合,通过计算管板在压力载荷和温度载荷联合作用下的应力,优化了管板的厚度,使其既满足了拉脱力的要求又满足了经济性要求,为管板强度的设计提供了借鉴。

【参考文献】

[1]付磊,唐克伦,文华斌,王维慧,付玲.管壳式换热器流体流动与耦合传热的数值模拟[J].化工进展,2012,31(11):2384~2389

[2]张智,刘江伟,王思文,郑卫刚.管壳式换热器的热力计算和数值仿真[J].金属材料与冶金工程,2012,2(1):33~37

[3]杨明,孟晓风,张卫军.管壳式换热器的一种优化设计[J].北京航空航天大学学报,2009,5(35):615~618

[4]张亚新,唐丽,别超.固定管板是换热器管板热-力耦合场有限元分析[J].机械设计与研究,2012,3(28):124~126.

下载运用aspen及其套件设计换热器word格式文档
下载运用aspen及其套件设计换热器.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    列管式换热器的选用与设计原则(五篇)

    5.7.3 列管式换热器的选用与设计原则 换热器的设计即是通过传热过程计算确定经济合理的传热面积以及换热器的结构尺寸,以完成生产工艺中所要求的传热任务。换热器的选用也是......

    积累运用教学设计范文

    积累·运用四 教学目标: ① 背诵和积累课外选编的成语。 ② 阅读短文,练习讲故事。 ③ 选择一个话题进行演讲,学会演讲的方法。 ④ 写一篇读后感或观后感。 教学重难点:学会演讲......

    成语运用教学设计

    成语运用教学设计 教学目标 知识与技能:了解成语辨析的一般思路,掌握成语辨析的角过程与方法:教师引导,学生主动学习,探究成语的运用的规律。 情感态度与价值观:培养学生热爱祖国......

    词语运用教学设计

    “词语运用复习”教学设计 九年级组 江影霞 教学目标: 1.正确理解常见词语(包括成语)的词义。 2.辨析同义(近义)词,正确运用常见词语(包括成语)。 3.掌握关联词语的固定搭配,正确运用关......

    地图的运用教学设计★

    七年级地理《地图的运用》教学设计 阆中市妙高镇大庆中心学校 陈朝党 课 题 教学目标 教学重点 教学难点 教学方法 教 具 教学过程 前提测评 地图的运用 教学课时 1课时 1......

    成语辨析运用 教学设计

    成语使用解题指要 在汉语的语言宝库中,珍藏着一颗颗瑰丽夺目的宝石,这就是成语。成语是一种相沿习用的特殊固定短语,它以言简意赅、形象生动的特点,成为我们日常阅读和口头表达......

    作文讲评运用教学设计

    作文讲评运用教学设计 1、通过作文讲评,学会选取典型事例,把生活中难忘的人或事情写具体,写出真情实感。 2、激发学生热爱生活的生活态度,进行德育渗透。3、针对习作要求,学习对......

    积累运用四教学设计

    积累运用(四)教学设计 【教学内容】 五年级上册语文积累运用(四) 【教学目标】 1.了解形容词重叠后的表达作用。 2.积累描写人物外貌、心理、情感的四字词语。体会人物外貌描写的......