第一篇:逆变电源毕业设计文献翻译
文献翻译
题
目 学生姓名 专业班级 学
号 院(系)指导教师 完成时间
逆变器
电子信息工程
电气与信息工程学院
2009年06 月 05日
Inverter 1 Introduction An inverter is an electrical device that converts direct current(DC)to alternating current(AC);the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits.Solid-state inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power.Inverters are commonly used to supply AC power from DC sources such as solar panels or batteries.There are two main types of inverter.The output of a modified sine wave inverter is similar to a square wave output except that the output goes to zero volts for a time before switching positive or negative.It is simple and low cost and is compatible with most electronic devices, except for sensitive or specialized equipment, for example certain laser printers.A pure sine wave inverter produces a nearly perfect sine wave output(<3% total harmonic distortion)that is essentially the same as utility-supplied grid power.Thus it is compatible with all AC electronic devices.This is the type used in grid-tie inverters.Its design is more complex, and costs 5 or 10 times more per unit power The electrical inverter is a high-power electronic oscillator.It is so named because early mechanical AC to DC converters were made to work in reverse, and thus were “inverted”, to convert DC to AC.The inverter performs the opposite function of a rectifier.2 Applications 2.1 DC power source utilization An inverter converts the DC electricity from sources such as batteries, solar panels, or fuel cells to AC electricity.The electricity can be at any required voltage;in particular it can operate AC equipment designed for mains operation, or rectified to produce DC at any desired voltageGrid tie inverters can feed energy back into the distribution network because they produce alternating current with the same wave shape and frequency as supplied by the distribution system.They can also switch off automatically in the event of a blackout.Micro-inverters convert direct current from individual solar panels into alternating current for the electric grid.They are grid tie designs by default.2.2 Uninterruptible power supplies An uninterruptible power supply(UPS)uses batteries and an inverter to supply AC power when main power is not available.When main power is restored, a rectifier supplies DC power to recharge the batteries.2.3 Induction heating Inverters convert low frequency main AC power to a higher frequency for use in induction heating.To do this, AC power is first rectified to provide DC power.The inverter then changes the DC power to high frequency AC power.2.4 HVDC power transmission With HVDC power transmission, AC power is rectified and high voltage DC power is transmitted to another location.At the receiving location, an inverter in a static inverter plant converts the power back to AC.2.5 Variable-frequency drives A variable-frequency drive controls the operating speed of an AC motor by controlling the frequency and voltage of the power supplied to the motor.An inverter provides the controlled power.In most cases, the variable-frequency drive includes a rectifier so that DC power for the inverter can be provided from main AC power.Since an inverter is the key component, variable-frequency drives are sometimes called inverter drives or just inverters.2.6 Electric vehicle drives Adjustable speed motor control inverters are currently used to power the traction motors in some electric and diesel-electric rail vehicles as well as some battery electric vehicles and hybrid electric highway vehicles such as the Toyota Prius and Fisker Karma.Various improvements in inverter technology are being developed specifically for electric vehicle applications.[2] In vehicles with regenerative braking,the inverter also takes power from the motor(now acting as a generator)and stores it in the batteries.2.7 The general case A transformer allows AC power to be converted to any desired voltage, but at the same frequency.Inverters, plus rectifiers for DC, can be designed to convert from any voltage, AC or DC, to any other voltage, also AC or DC, at any desired frequency.The output power can never exceed the input power, but efficiencies can be high, with a small proportion of the power dissipated as waste heat.Circuit description
3.1 Basic designs
In one simple inverter circuit, DC power is connected to a transformer through the centre tap of the primary winding.A switch is rapidly switched back and forth to allow current to flow back to the DC source following two alternate paths through one end of the primary winding and then the other.The alternation of the direction of current in the primary winding of the transformer produces alternating current(AC)in the secondary circuit.The electromechanical version of the switching device includes two stationary contacts and a spring supported moving contact.The spring holds the movable contact against one of the stationary contacts and an electromagnet pulls the movable contact to the opposite stationary contact.The current in the electromagnet is interrupted by the action of the switch so that the switch continually switches rapidly back and forth.This type of electromechanical inverter switch, called a vibrator or buzzer, was once used in vacuum tube automobile radios.A similar mechanism has been used in door bells, buzzers and tattoo guns.As they became available with adequate power ratings, transistors and various other types of semiconductor switches have been incorporated into inverter circuit designs 3.2 Output waveforms The switch in the simple inverter described above, when not coupled to an output transformer, produces a square voltage waveform due to its simple off and on nature as opposed to the sinusoidal waveform that is the usual waveform of an AC power supply.Using Fourier analysis, periodic waveforms are represented as the sum of an infinite series of sine waves.The sine wave that has the same frequency as the original waveform is called the fundamental component.The other sine waves, called harmonics, that are included in the series have frequencies that are integral multiples of the fundamental frequency.The quality of output waveform that is needed from an inverter depends on the characteristics of the connected load.Some loads need a nearly perfect sine wave voltage supply in order to work properly.Other loads may work quite well with a square wave voltage.3.3 Three phase inverters Three-phase inverters are used for variable-frequency drive applications and for high power applications such as HVDC power transmission.A basic three-phase inverter consists of three single-phase inverter switches each connected to one of the three load terminals.For the most basic control scheme, the operation of the three switches is coordinated so that one switch operates at each 60 degree point of the fundamental output waveform.This creates a line-to-line output waveform that has six steps.The six-step waveform has a zero-voltage step between the positive and negative sections of the square-wave such that the harmonics that are multiples of three are eliminated as described above.When carrier-based PWM techniques are applied to six-step waveforms, the basic overall shape, or envelope, of the waveform is retained so that the 3rd harmonic and its multiples are cancelled History 4.1 Early inverters From the late nineteenth century through the middle of the twentieth century, DC-to-AC power conversion was accomplished using rotary converters or motor-generator sets(M-G sets).In the early twentieth century, vacuum tubes and gas filled tubes began to be used as switches in inverter circuits.The most widely used type of tube was the thyratron.The origins of electromechanical inverters explain the source of the term inverter.Early AC-to-DC converters used an induction or synchronous AC motor direct-connected to a generator(dynamo)so that the generator's commutator reversed its connections at exactly the right moments to produce DC.A later development is the synchronous converter, in which the motor and generator windings are combined into one armature, with slip rings at one end and a commutator at the other and only one field frame.The result with either is AC-in, DC-out.With an M-G set, the DC can be considered to be separately generated from the AC;with a synchronous converter, in a certain sense it can be considered to be “mechanically rectified AC”.Given the right auxiliary and control equipment, an M-G set or rotary converter can be “run backwards”, converting DC to AC.Hence an inverter is an inverted converter.4 4.2 Controlled rectifier inverters Since early transistors were not available with sufficient voltage and current ratings for most inverter applications, it was the 1957 introduction of the thyristor or silicon-controlled rectifier(SCR)that initiated the transition to solid state inverter circuits.The commutation requirements of SCRs are a key consideration in SCR circuit designs.SCRs do not turn off or commutate automatically when the gate control signal is shut off.They only turn off when the forward current is reduced to below the minimum holding current, which varies with each kind of SCR, through some external process.For SCRs connected to an AC power source, commutation occurs naturally every time the polarity of the source voltage reverses.SCRs connected to a DC power source usually require a means of forced commutation that forces the current to zero when commutation is required.The least complicated SCR circuits employ natural commutation rather than forced commutation.With the addition of forced commutation circuits, SCRs have been used in the types of inverter circuits described above.In applications where inverters transfer power from a DC power source to an AC power source, it is possible to use AC-to-DC controlled rectifier circuits operating in the inversion mode.In the inversion mode, a controlled rectifier circuit operates as a line commutated inverter.This type of operation can be used in HVDC power transmission systems and in regenerative braking operation of motor control systems.Another type of SCR inverter circuit is the current source input(CSI)inverter.A CSI inverter is the dual of a six-step voltage source inverter.With a current source inverter, the DC power supply is configured as a current source rather than a voltage source.The inverter SCRs are switched in a six-step sequence to direct the current to a three-phase AC load as a stepped current waveform.CSI inverter commutation methods include load commutation and parallel capacitor commutation.With both methods, the input current regulation assists the commutation.With load commutation, the load is a synchronous motor operated at a leading power factor.As they have become available in higher voltage and current ratings, semiconductors such as transistors or IGBTs that can be turned off by means of control signals have become the preferred switching components for use in inverter circuits.5 4.3 Rectifier and inverter pulse numbers Rectifier circuits are often classified by the number of current pulses that flow to the DC side of the rectifier per cycle of AC input voltage.A single-phase half-wave rectifier is a one-pulse circuit and a single-phase full-wave rectifier is a two-pulse circuit.A three-phase half-wave rectifier is a three-pulse circuit and a three-phase full-wave rectifier is a six-pulse circuit。With three-phase rectifiers, two or more rectifiers are sometimes connected in series or parallel to obtain higher voltage or current ratings.The rectifier inputs are supplied from special transformers that provide phase shifted outputs.This has the effect of phase multiplication.Six phases are obtained from two transformers, twelve phases from three transformers and so on.The associated rectifier circuits are 12-pulse rectifiers, 18-pulse rectifiers and so on.When controlled rectifier circuits are operated in the inversion mode, they would be classified by pulse number also.Rectifier circuits that have a higher pulse number have reduced harmonic content in the AC input current and reduced ripple in the DC output voltage.In the inversion mode, circuits that have a higher pulse number have lower harmonic content in the AC output voltage waveform.逆变器 简介
逆变器是一种能将直流电转化为可变的交流电的电子装置,使用适当的变压器、开关以及控制电路可以将转化的交流电调整到任何需要的电压以及频率值。
固定的逆变器没有移动部件,其应用范围极其广泛,从小型计算机开关电源,到大型电力公司高压直流电源应用,运输散货。逆变器通常用于提供从诸如太阳能电池板或电池直流电源转换的交流电源..逆变器有两种主要类型。对修改后正弦波逆变器输出是一个类似方波输出,输出去除了一时间为零伏特,然后才转到正或负。它的电路简单而且成本一般较低,并与大多数电子设备兼容,除了敏感或专用设备,例如某些激光打印机。纯正弦波逆变器产生一个近乎完美的正弦波输出“(<3%的总谐波失真),它本质上与公用事业电网提供的相同。因此它与所有的交流电子设备兼容。这是网逆变器配合使用的类型。它的设计更为复杂,成本5人以上每单位功率。[1]电逆变器是一种高功率电子振荡器的10倍。它是如此命名是因为早期机械AC到DC转换器的工作作了相反,因此是“倒“,转换成直流到交流。变频器的整流执行相反的功能 应用
2.1 直流电源利用率
逆变器将直流电,如电池,太阳能电池板,燃料电池等转换为交流电直流电。转换的交流电可以是任意需要大小的交流电,特别是它可以操作交流设备用于电源操作,或者滤波产生任何需要的直流电压。
配电网络逆变器可以将能量反馈到分配网络,因为他们产生的交流电和分配网络提供的交流电的波形和频率可以是一样的。而且他们也可以自动关断输出当遇到停电事故时。微型逆变器将由个人太阳能电池板产生的直流电转化为交流电并入电网。接从个人的太阳能电池板的电流。它们使用默认的输电网设计。
2.2 不间断电源
不间断电源(UPS)当主电源无法使用时使用电池和逆变器提供交流电源。当主电源恢复时,一个整流器供应直流电源对电池进行充电。
2.3 感应加热
逆变器将低频交流电源转化为更高的频率以用于感应加热使用。要做到这一点,首先交流电源经过滤波提供直流电源。该逆变器,然后更改为高频率的交流电源直流电源。
2.4 高压直流输电
随着高压直流输电,交流电源进行整流和高压直流电源被传输到另一个位置。在接收的位置,在一个静止变流器厂将直流电源转换回交流电
2.5 变频驱动器
一个变频驱动控制器通过控制供应给电机的电源电压和频率来控制交流电机的运行速度。逆变器提供控制信号。在大多数情况下,变频驱动器包括一个整流器,因而提供给逆变器的直流电源可以由交流主电源提供。由于逆变器是关键部件,变频驱动器有时也被称为逆变器驱动器或只是逆变器
2.6 电动汽车驱动
调速电动机控制逆变器是目前用于电力牵引在一些电动和柴油电动轨道车辆以及一些电池电动汽车上的电机,如丰田Prius和菲斯克噶玛混合动力电动汽车高速公路交通工具。在变频技术的各项改善措施正在制定专门针对电动车辆的应用。与更新制动车辆,还需要从变频器的电机(现在作为发电机)和它储存在电池里的电源。
2.7 一般情况下
一个变压器允许交流电源被转换为任何所需的电压,但是却在相同的频率。逆变器,直流加整流器,可以设计成任何转换电压,交流或直流,在任何需要的频率,以任何其他电压,也可以是交流或直流。输出功率不能超过输入功率,但效率可以很高,可以允许作为一部分余热消耗掉功率很小的一部分。电路描述
3.1 基本设计
在一个简单的逆变电路中,直流电源通过初级绕组的中心抽头连接到变压器。开关以极高的频率来回切换,使电流回流在变压器的初级绕组里流过一个方向后再向另一个方向流动。初级绕组里电流方向的变化通过变压器在次级绕组里产生交变电流。
在开关设备机电版本包括两个固定触点和弹簧支撑移动接触点。弹簧持有一个可移动的触体来和固定触点接触,电磁铁拉动可移动的触体到对面的固定的触体。在电磁铁的电流中断的交换机中,使交换开关不断来回迅速切换迅速。这种机动逆变器式开关,称为一个振动器或蜂鸣器,曾经在真空电子管汽车收音机中使用。一个类似的电子装置已用于门铃,蜂鸣器和纹身枪。当开关管有有足够的额定功率,晶体管和半导体开关各种其他类型的的电子开关器件可用已纳入逆变器电路设计。
3.2 输出波形
上述简单的逆变器中的开关,当不耦合到输出变压器时,输出电压波形由于开关管简单的导通或关断产生一个方波电压输出,而不是交流电最常见的正弦波形,它是一个AC电源波形通常由于其简单。利用傅里叶分析,周期性波形表示为一个无穷级数的正弦波的总和。正弦波中和原始波形具有相同的频率的波称为基波。其他频率的正弦波,称为谐波,这是该系列中包括有频率是基波频率的整数倍。
输出波形是从一个逆变器所需的质量取决于逆变器所连接的负载特性。一些载入需要一个近乎完美的正弦波电压供应才能正常工作。其他的负载可能使用方波电压也能工作的很好。
3.3 三相逆变器
三相逆变器是用于变频驱动应用以及诸如高压直流输电高功率传输。一个基本的三相逆变器由三个单相开关每个连接到三个负载接线端子之一的逆变器组成。对于最基本的控制方案,对三个开关运作协调,以便在每一个开关输出波形的基本操作60度点。这将创建一个线到线输出波形有六个步骤。六步之间有一个波形的方波的正面和负面的部分零电压一步,这样的谐波,是三个被淘汰上述倍数。当载波脉冲调宽技术技术应用到六步波形时,在整体上基本形状,或着波形的包络将被保留,以使三次谐波及其倍数被取消 历史
4.1 早期的变频器
从十九世纪晚期到二十世纪中叶直流到交流电源的转换使用旋转逆变器或者发电机组来完成。在二十世纪早期,真空电子管和充气管开始被作为逆变电路开关使用。应用最广的电子管的类型是闸流管。
机动电子逆变器一词解释了学术上逆变器的来源。早期的交流到直流转换器使用的感应或同步交流电动机直接连接到一台发电机(发电机),使发电机的整流子扭转在正确的时间来产生直流电。一个后来的发展是同步转换器,其中电机和发电机绕组组合成一个电枢,一个滑环在电枢一端,整流子在另一端,只有一帧。这样的结果是交流输入,直流输出。随着设置,直流电可以被认为是分开的出现的交流电;具有同步转换器,在一定意义上讲,它可以被认为是“机械纠正交流“。只要有了正确的辅助和控制设备,设置或旋转转换器可“向后跑“,转换直流到交流。因此,逆变器是一个倒置的转换器。4.2 整流逆变器控制
自从1957年初以来晶体管没有足够的电压和额定电流可用于大多数逆变器应用,晶闸管或可控硅整流器的开始到固态逆变器电路过渡。
晶闸管换相的条件是在可控硅电路设计中考虑的关键因素。可控硅不关闭或整流时自动门控制信号被切断。只有当正向电流降至低于最低维持电流,他们才会关闭,通过外部加工,不同类型的晶闸管最低电流也会不同。对于连接到交流电源的可控硅,每一次整流源电压极性都会自然反转。连接到直流电源的可控硅整流通常需要强迫转换,迫使电流为零时,需要换一种途径。最不复杂的电路采用可控硅整流自然代偿,而不是强制。随着附加的代偿电路,可控硅已经用于上述逆变器种类。
在逆变电源将直流电转换为交流电的应用中,它可以使用交流到直流整流控制电路中的反演模式运行。在反转模式,可控整流逆变电路工作作为换一条线。这种类型的操作,可用于高压直流输电系统和再生制动电机控制系统的操作。
另一种类型的可控硅逆变电路是电流源输入的逆变器。电流源输入逆变器是一个双重的六个步骤电压源逆变器。用电流源逆变器,直流电源配置为电流源,而不是一个电压源。可控硅逆变器中切换一个六步序电流指示作为加强电流波形三相交流负载。电流源输入逆变器换相方法包括负载代偿和并联电容器代偿。随着这两种方法,输入电流调节辅助代偿。负载换向,负载是一个同步电动机在运行领先的功率因数。由于他们已能够为更高的电压和额定电流使用,如晶体管或可通过控制信号变成了绝缘栅双极性晶体管的半导体手段已成为首选的开关逆变器电路中使用的组件。
4.3 整流器和逆变器脉冲数
整流电路通常是每周期的交流输入电压流入的直流侧的直流帧数来分类。单相半波整流是一个脉冲电路和单相全波整流是双脉冲电路。一个三相半波整流是三脉冲电路和 三相全波整流是一个六脉冲电路。对于三相整流器,有整流器两个或两个以上,有时串联或并联以获得更高的电压或电流额定值。整流器输入,提供从供应特种变压器移相输出。这具有倍增效应阶段。6个阶段分别从两个变压器,从十二相从三个变压器等。相关的整流电路为12脉冲整流器,18脉冲整流器等。
当控制整流电路中的反向模式时,他们也按输出脉冲数分类。整流电路具有较高的脉冲数减少在交流输入电流,并减少直流输出电压纹波的谐波含量。在反向模式,电路具有较高的脉冲数有较低的交流输出电压波形的谐波含量。
第二篇:逆变电源毕业设计文献翻译
文献翻译
题
目 学生姓名 专业班级 学
号 院(系)指导教师 完成时间
逆变器
电气工程及其自动化
电气信息工程系 王刚 2012年02 月 21日
Inverter 1 Introduction An inverter is an electrical device that converts direct current(DC)to alternating current(AC);the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits.Solid-state inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power.Inverters are commonly used to supply AC power from DC sources such as solar panels or batteries.There are two main types of inverter.The output of a modified sine wave inverter is similar to a square wave output except that the output goes to zero volts for a time before switching positive or negative.It is simple and low cost and is compatible with most electronic devices, except for sensitive or specialized equipment, for example certain laser printers.A pure sine wave inverter produces a nearly perfect sine wave output(<3% total harmonic distortion)that is essentially the same as utility-supplied grid power.Thus it is compatible with all AC electronic devices.This is the type used in grid-tie inverters.Its design is more complex, and costs 5 or 10 times more per unit power The electrical inverter is a high-power electronic oscillator.It is so named because early mechanical AC to DC converters were made to work in reverse, and thus were “inverted”, to convert DC to AC.The inverter performs the opposite function of a rectifier.2 Applications 2.1 DC power source utilization An inverter converts the DC electricity from sources such as batteries, solar panels, or fuel cells to AC electricity.The electricity can be at any required voltage;in particular it can operate AC equipment designed for mains operation, or rectified to produce DC at any desired voltageGrid tie inverters can feed energy back into the distribution network because they produce alternating current with the same wave shape and frequency as supplied by the distribution system.They can also switch off automatically in the event of a blackout.Micro-inverters convert direct current from individual solar panels into alternating current for the electric grid.They are grid tie designs by default.2.2 Uninterruptible power supplies An uninterruptible power supply(UPS)uses batteries and an inverter to supply AC power when main power is not available.When main power is restored, a rectifier supplies DC power to recharge the batteries.2.3 Induction heating Inverters convert low frequency main AC power to a higher frequency for use in induction heating.To do this, AC power is first rectified to provide DC power.The inverter then changes the DC power to high frequency AC power.2.4 HVDC power transmission With HVDC power transmission, AC power is rectified and high voltage DC power is transmitted to another location.At the receiving location, an inverter in a static inverter plant converts the power back to AC.2.5 Variable-frequency drives A variable-frequency drive controls the operating speed of an AC motor by controlling the frequency and voltage of the power supplied to the motor.An inverter provides the controlled power.In most cases, the variable-frequency drive includes a rectifier so that DC power for the inverter can be provided from main AC power.Since an inverter is the key component, variable-frequency drives are sometimes called inverter drives or just inverters.2.6 Electric vehicle drives Adjustable speed motor control inverters are currently used to power the traction motors in some electric and diesel-electric rail vehicles as well as some battery electric vehicles and hybrid electric highway vehicles such as the Toyota Prius and Fisker Karma.Various improvements in inverter technology are being developed specifically for electric vehicle applications.[2] In vehicles with regenerative braking,the inverter also takes power from the motor(now acting as a generator)and stores it in the batteries.2.7 The general case A transformer allows AC power to be converted to any desired voltage, but at the same frequency.Inverters, plus rectifiers for DC, can be designed to convert from any voltage, AC or DC, to any other voltage, also AC or DC, at any desired frequency.The output power can never exceed the input power, but efficiencies can be high, with a small proportion of the power dissipated as waste heat.Circuit description
3.1 Basic designs
In one simple inverter circuit, DC power is connected to a transformer through the centre tap of the primary winding.A switch is rapidly switched back and forth to allow current to flow back to the DC source following two alternate paths through one end of the primary winding and then the other.The alternation of the direction of current in the primary winding of the transformer produces alternating current(AC)in the secondary circuit.The electromechanical version of the switching device includes two stationary contacts and a spring supported moving contact.The spring holds the movable contact against one of the stationary contacts and an electromagnet pulls the movable contact to the opposite stationary contact.The current in the electromagnet is interrupted by the action of the switch so that the switch continually switches rapidly back and forth.This type of electromechanical inverter switch, called a vibrator or buzzer, was once used in vacuum tube automobile radios.A similar mechanism has been used in door bells, buzzers and tattoo guns.As they became available with adequate power ratings, transistors and various other types of semiconductor switches have been incorporated into inverter circuit designs 3.2 Output waveforms The switch in the simple inverter described above, when not coupled to an output transformer, produces a square voltage waveform due to its simple off and on nature as opposed to the sinusoidal waveform that is the usual waveform of an AC power supply.Using Fourier analysis, periodic waveforms are represented as the sum of an infinite series of sine waves.The sine wave that has the same frequency as the original waveform is called the fundamental component.The other sine waves, called harmonics, that are included in the series have frequencies that are integral multiples of the fundamental frequency.The quality of output waveform that is needed from an inverter depends on the characteristics of the connected load.Some loads need a nearly perfect sine wave voltage supply in order to work properly.Other loads may work quite well with a square wave voltage.3.3 Three phase inverters Three-phase inverters are used for variable-frequency drive applications and for high power applications such as HVDC power transmission.A basic three-phase inverter consists of three single-phase inverter switches each connected to one of the three load terminals.For the most basic control scheme, the operation of the three switches is coordinated so that one switch operates at each 60 degree point of the fundamental output waveform.This creates a line-to-line output waveform that has six steps.The six-step waveform has a zero-voltage step between the positive and negative sections of the square-wave such that the harmonics that are multiples of three are eliminated as described above.When carrier-based PWM techniques are applied to six-step waveforms, the basic overall shape, or envelope, of the waveform is retained so that the 3rd harmonic and its multiples are cancelled History 4.1 Early inverters From the late nineteenth century through the middle of the twentieth century, DC-to-AC power conversion was accomplished using rotary converters or motor-generator sets(M-G sets).In the early twentieth century, vacuum tubes and gas filled tubes began to be used as switches in inverter circuits.The most widely used type of tube was the thyratron.The origins of electromechanical inverters explain the source of the term inverter.Early AC-to-DC converters used an induction or synchronous AC motor direct-connected to a generator(dynamo)so that the generator's commutator reversed its connections at exactly the right moments to produce DC.A later development is the synchronous converter, in which the motor and generator windings are combined into one armature, with slip rings at one end and a commutator at the other and only one field frame.The result with either is AC-in, DC-out.With an M-G set, the DC can be considered to be separately generated from the AC;with a synchronous converter, in a certain sense it can be considered to be “mechanically rectified AC”.Given the right auxiliary and control equipment, an M-G set or rotary converter can be “run backwards”, converting DC to AC.Hence an inverter is an inverted converter.4 4.2 Controlled rectifier inverters Since early transistors were not available with sufficient voltage and current ratings for most inverter applications, it was the 1957 introduction of the thyristor or silicon-controlled rectifier(SCR)that initiated the transition to solid state inverter circuits.The commutation requirements of SCRs are a key consideration in SCR circuit designs.SCRs do not turn off or commutate automatically when the gate control signal is shut off.They only turn off when the forward current is reduced to below the minimum holding current, which varies with each kind of SCR, through some external process.For SCRs connected to an AC power source, commutation occurs naturally every time the polarity of the source voltage reverses.SCRs connected to a DC power source usually require a means of forced commutation that forces the current to zero when commutation is required.The least complicated SCR circuits employ natural commutation rather than forced commutation.With the addition of forced commutation circuits, SCRs have been used in the types of inverter circuits described above.In applications where inverters transfer power from a DC power source to an AC power source, it is possible to use AC-to-DC controlled rectifier circuits operating in the inversion mode.In the inversion mode, a controlled rectifier circuit operates as a line commutated inverter.This type of operation can be used in HVDC power transmission systems and in regenerative braking operation of motor control systems.Another type of SCR inverter circuit is the current source input(CSI)inverter.A CSI inverter is the dual of a six-step voltage source inverter.With a current source inverter, the DC power supply is configured as a current source rather than a voltage source.The inverter SCRs are switched in a six-step sequence to direct the current to a three-phase AC load as a stepped current waveform.CSI inverter commutation methods include load commutation and parallel capacitor commutation.With both methods, the input current regulation assists the commutation.With load commutation, the load is a synchronous motor operated at a leading power factor.As they have become available in higher voltage and current ratings, semiconductors such as transistors or IGBTs that can be turned off by means of control signals have become the preferred switching components for use in inverter circuits.5 4.3 Rectifier and inverter pulse numbers Rectifier circuits are often classified by the number of current pulses that flow to the DC side of the rectifier per cycle of AC input voltage.A single-phase half-wave rectifier is a one-pulse circuit and a single-phase full-wave rectifier is a two-pulse circuit.A three-phase half-wave rectifier is a three-pulse circuit and a three-phase full-wave rectifier is a six-pulse circuit。With three-phase rectifiers, two or more rectifiers are sometimes connected in series or parallel to obtain higher voltage or current ratings.The rectifier inputs are supplied from special transformers that provide phase shifted outputs.This has the effect of phase multiplication.Six phases are obtained from two transformers, twelve phases from three transformers and so on.The associated rectifier circuits are 12-pulse rectifiers, 18-pulse rectifiers and so on.When controlled rectifier circuits are operated in the inversion mode, they would be classified by pulse number also.Rectifier circuits that have a higher pulse number have reduced harmonic content in the AC input current and reduced ripple in the DC output voltage.In the inversion mode, circuits that have a higher pulse number have lower harmonic content in the AC output voltage waveform.逆变器
1引言
逆变器是一种电动装置,转换成直流电(DC),交流电流转换的AC(交流)可以在任何所需的电压和频率使用适当的变压器,开关,控制circuits.Solid状态逆变器有没有移动部件,用于广泛的应用范围从小型计算机开关电源,高压大型电力公司电力,运输散装直接电流应用。逆变器通常用于提供交流电源,直流电源,如太阳能电池板或电池。
逆变器的主要有两种类型。修改后的正弦波逆变器的输出是类似方波输出,输出变为零伏前一段时间切换积极或消极的除外。它是简单,成本低,是大多数电子设备兼容,除敏感或专用设备,例如某些激光打印机。一个纯正弦波逆变器产生一个近乎完美的正弦波输出(<3%的总谐波失真),本质上是相同的公用事业提供电网。因此,它是与所有的交流电的电子设备兼容。这是在电网领带逆变器使用的类型。它的设计更复杂,成本5或10倍以上每单位功率电逆变器是一个高功率的电子振荡器。它这样命名,因为早期的机械AC到DC转换器工作在反向,因而被“倒”,将直流电转换AC.The变频器执行的整流器对面功能。
2应用
2.1直流电源利用率
逆变器从交流电力来源,如电池,太阳能电池板,燃料电池的直流电转换成。电力,可以在任何所需的电压,特别是它可以操作交流电源操作而设计的设备,或纠正,以产生任何所需的voltage Grid领带逆变器的直流送入分销网络的能量,因为它们产生电流交替使用相同的波形和频率分配制度提供。他们还可以关掉一个blackout.Micro逆变器的情况下自动转换成交流电电网的电流直接从当前个别太阳能电池板。默认情况下,他们是格领带设计。
2.2不间断电源
不间断电源(UPS),电池和逆变器,交流电源,主电源不可用时使用。当主电源恢复正常时,整流提供直流电源给电池充电。2.3感应加热
逆变器的低频交流主电源转换到更高频率的感应加热使用。要做到这一点,首先纠正交流电源提供直流电源。逆变器,然后改变高频率的交流电源,直流电源。
2.4高压直流输电
随着高压直流输电,交流电源经过整流和高压直流电源传输到另一个位置。在接收的位置,在静态逆变器厂逆变器转换回交流电源。
2.5变频驱动器
一个变频驱动控制向电动机提供电源的频率和电压控制交流电机的运行速度。逆变器提供控制电源。在大多数情况下,变频驱动,包括整流器,使逆变器的直流电源,可从交流主电源提供。由于逆变器是关键部件,变频驱动,有时被称为逆变器驱动器,或只是逆变器。
2.6电动汽车驱动器
目前使用的权力,在一些电动和柴油交流功率转换完成使用旋转器或马达发电机组(爵套)。在二十世纪初,真空管和充满气体管开始被用于逆变器电路中的开关。最广泛使用的管型晶闸管。
机电逆变器的起源解释源长期变频器。早期的AC至DC转换器采用感应或同步交流电机直接连接到一台发电机(发电机),使发电机的整流子扭转在正确的时刻其连接生产直流。后来的发展是同步的转换器,电机和发电机绕组结合成一个电枢,一端与滑环和整流子在其他只有一个领域的框架。结果要么是交流,直流。与MG组,直流,可考虑将分别从AC生成,同步器,它在一定意义上可以认为是“机械纠正交流”。由于正确的辅助设备和控制设备,MG集或旋转转换,可以“倒着跑”,将直流转换为交流电。因此,逆变器是一个倒置的转换。
4.2可控整流逆变器
自从1957年初年初以来,晶体管不能提供足够的电压和额定电流最逆变器应用,它是1957年的晶闸管或可控硅(SCR)的介绍,开始过渡到固态逆变电路。
可控硅的换相的条件是在可控硅电路设计的关键考虑因素。不要关闭可控硅整流自动门控制信号被切断时。他们只关闭当正向电流降至低于最低维持电流,每一种可控硅变化,通过一些外部进程。对于连接到交流电源的可控硅,整流发生自然每次源??电压极性反转。可控硅直流电源连接到通常需要强迫换,强制要求减刑时电流为零的一种手段。最复杂的可控硅电路采用自然,而不是被迫换减刑。此外被迫换电路,可控硅已被用于在以上所述的逆变器电路的类型。
在逆变器传输到AC电源由直流电源供电的应用程序,它可以使用交流-直流可控整流电路的反演模式经营。在反演模式,可控整流电路整流逆变器行。这种类型的操作,可用于高压直流输电系统和再生制动电机控制系统的操作。
另一种类型的可控硅逆变电路是电流源输入(CSI)逆变器。一个CSI逆变器是一个六步的电压源逆变器的双。用一个电流源逆变器,直流电源作为电流源而非电压源配置。变频器可控硅开关在六步序列直接阶梯电流波形作为一个三相交流负载的电流。沪深逆变器换方法包括整流负载和并联电容器减刑。这两种方法,输入电流调节协助减刑。带整流负载,负载是在领先的功率因数运行的同步电机。因为他们已经成为在更高的额定电压和电流,如可以通过控制信号的晶体管或IGBT的半导体已成为首选开关元件逆变电路使用。
4.3整流器和逆变器的脉冲数
整流电路往往流的每个周期的AC输入电压整流的直流侧电流脉冲的数量分类。单 相半波整流是一个脉冲电路和单相全波整流是两个脉冲的电路。一个三相半波整流是一个三脉冲电路和三相全波整流是一个六脉冲电路。两个或两个以上的整流器三相整流器,有时串联或并联连接以获得更高的电压或额定电流。提供特种变压器提供相移输出整流器的输入。这有相乘法效应。六个阶段是从两个变压器,12个阶段从三变等。12脉冲整流器,18脉冲整流器等相关的整流电路。当可控整流电路的反演模式在运作,他们将分为脉冲数也。整流电路具有较高的脉冲数减少交流输入电流和减少直流输出电压纹波的谐波含量。在反演模式,有较高的脉冲个数的电路,在AC输出电压波形的谐波含量较低。
第三篇:逆变电源毕业设计
内江师范学院本科毕业设计
目录
1引言...........................................................................................................................................1 2设计说明书...............................................................................................................................2 2.1概述................................................................................................................................2 2.1.1该逆变电源的基本构成和原理.................................................................................2 2.1.2逆变电源的技术性能指标及主要特点.....................................................................4 2.2逆变电源的主要元器件及其特性................................................................................4 2.2.1 TL494电流模式PWM控制器..................................................................................4 2.2.2场效应管.....................................................................................................................7 2.2.3三极管.........................................................................................................................8 2.3各部分支路电路设计及其参数计算............................................................................8 2.3.1 DC/DC变换电路(附工作指示灯)........................................................................8 2.3.2输入过压保护电路...................................................................................................10 2.3.3输出过压保护电路...................................................................................................11 2.3.4 DC/AC变换电路......................................................................................................12 2.3.5 TL494芯片І外围电路............................................................................................13 2.3.6 TL494芯片ІІ外围电路..........................................................................................14 2.3.7该逆变电源的整机电路原理图(附录A)................................................................15 2.3.8该电路的元件参数表(附录B).................................................................................15 3调试.........................................................................................................................................16 附录A整机原理图...................................................................................................................17 附录B元件参数表...................................................................................................................18 附录C整机PCB板(两面).......................................................................................................20 参考文献....................................................................................................................................21 致谢............................................................................................................错误!未定义书签。
i
内江师范学院本科毕业设计
摘要
该设计主要应用开关电源电路技术有关知识。涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片TL494的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。
关键词:过热保护;过压保护;集成电路;振荡频率;脉宽调制
ii
内江师范学院本科毕业设计
Abstract
The design applying the switching power source circuit technology in connected.Relating with knowledge about what imitate integrated circuit、power source integrated circuit、power amplification integrated circuit and switching regulated voltage circuit on principle.Sufficient apply chip TL494 fixed-frequency pulse width modulation circuit and field effect transistor(N channel strengthen MOSFET)whose switch speed quick, nothing secondary Break down and hot stability good merit to design circuit.Owe the inverter main part ingredient by DC/DC circuit、importing the over-voltage crowbar circuit、exporting an over-voltage crowbar protect a circuit、overheat protective circuit、DC/AC shifts circuit、oscillating circuit and entire bridge circuit.Continuing for during the period of the job exports power functions such as being 150 W, having the regular guiding lights working, exporting an over-voltage crowbar, importing the over-voltage crowbar and overheat protective.The cost of manufacture being a power source of turn is comparatively cheap, the pragmatism is strong, and it has a function annex to the various portably type.Key words: over heat protective;over-voltage integrated circuit(IC);oscillating frequency;pulse width modulation(PWM).iii
内江师范学院本科毕业设计
1引言
目前逆变电源应用广泛,但是电路复杂,价格比较昂贵,为此设计一款逆变电源。该电源主要应用开关电源电路技术的有关知识,涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片TL494的固定频率脉冲宽度调制电路[1]和场效应管[2](N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点与三极管一起构成的组合设计电路。
该逆变电源可将电瓶的12V直流电转换为220V/50Hz的交流电,供数码相机、CD机、MD唱机、笔记本电脑、小型录像机、电动剃须刀、手机等便携式产品使用。因此具有相当强的通用性。
该逆变电源在工作时的持续输出功率为150W,并且具有输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,千台以上数量的批产成本仅在40元/台左右,并且当印制板的尺寸不受限制时,可以将输出功率做到200W以上,因此该逆变电源几乎可以替代目前市场上所售的各种逆变器或者逆变电源产品,其应用前景十分广阔。1
内江师范学院本科毕业设计
2设计说明书
2.1概述 2.1.1该逆变电源的基本构成和原理
(1)基本构成
该设计电路的方框图如图1。该电路由12V直流输入、输入过压保护电路、过热保护电路、逆变电路I、220V/50KHz整流滤波、逆变电路II、输出过压保护电路等组成。逆变电路I、逆变电路II的框图分别见图
2、图3。逆变电路又包括频率产生电路(50KHz和50Hz PWM脉冲宽度调制电路)、直流变换电路(DC/DC)将12V直流转换成220V直流、交流变换电路(DC/AC)将12V直流变换为220V交流。
图1 整机原理方框图
逆变电路I原理如图2所示。此电路的主要功能是将12V直流电转换为220V/50KHz的交流电。
内江师范学院本科毕业设计
图2 逆变I电路原理方框图
逆变电路II如图3所示。此电路的主要功能是将220V直流电转换为220V/50Hz的交流电。全桥电路以50Hz的频率交替导通,产生50Hz交流电。
图3 逆变II电路原理方框图
(2)电路工作原理
输入12V直流电源电压,经过逆变电路I得到220V/50KHz的交流电,此交流电再经过整流滤波电路得到220V高压直流电,然后经过逆变II得到220V/50Hz交流电。其中输入过压保护电路、输出过压保护电路、过热保护电路构成整个电路的保护电路。一旦输入电压出现过大或者过小时,保护电路立即启动,然后停止逆变电路I的工作。过热保护电路是当电路工作温度过高时,启动保护使逆变电路I停止工作。输出过压保护电路与逆变电路II构成反馈回路,一旦电路输出异常则停止逆变电路II的工作。在逆变电路I中是用一块TL494芯片产生50KHz的脉冲频率,经过变压器推挽电路将12V直流转换成220V/50KHz的交流电。在逆变电路II中再用一块TL494芯片产生50Hz的
内江师范学院本科毕业设计
脉冲波,全桥电路以50Hz的频率交替导通,从而将220V直流和50Hz脉冲电路整合,然后输出220V/50Hz的交流电。在该电路中都是利用TL494的输出端作为逆变电路工作状态的控制端。
2.1.2逆变电源的技术性能指标及主要特点
(1)输入:12V直流(汽车蓄电池)。(2)输出:220V交流(非正弦波)。(3)输出功率:大于100W。
(4)具有输入过压保护和输出过压保护。(5)有过热保护功能。
(6)可作为多种电器的通用电源。(7)含有工作正常指示灯。
2.2逆变电源的主要元器件及其特性 2.2.1 TL494电流模式PWM控制器
TL494是一种固定频率脉冲宽度调制电路[1],它包含了开关电源控制所需的全部功能,广泛用于单端正激双管式、半桥式以及全桥式开关电源。TL494有SO—16和PDIP—16两种封装形式,以适应不同场合的要求。
(1)主要特征
集成了全部的脉冲宽度调制电路。
TL494内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。TL494内置误差放大器。TL494内置5V参考基准电压源。可调整死区时间。
TL494内置功率晶体管,可提供500mA的驱动能力。有推或拉两种输出方式。(2)引脚设置及其功能
TL494的内部电路由基准电压产生电路、振荡器、死区时间比较器、误差放大器(两个)、PWM比较器以及输出电路等组成,各引脚功能见表1。
内江师范学院本科毕业设计
表1 TL494引脚功能表
引脚号 引脚功能 1、2 误差放大器I的同相和反相输入端 3 相位校正和增益控制端 间歇期调整,其上加0-3.3V电压时,可使截止时间从2%线性变化到100%;死区时间控制,输入直流电压为0-4V,控制TL494输出脉冲的占空比为0.45-0。在此基础上,占空比还受反馈信号控制,四脚还常用作软启动控制端,使输出脉冲宽度由零逐渐达到设计值。5、6 分别用于外接振荡电容Ct和振荡电阻Rt,产生锯齿波电压并送至PWM比较器,振荡频率Fosc1,定时电阻取值在1KΩ以上
CtRt7 接地端 8、9、10、11 分别为TL494内部两个末级输出三极管的集电极和发射极 12
电源供电端 输出控制端,当该端电压为零时,用于驱动单端电路。该端接地时为并联单端 输出方式,接14脚时为推挽输出方式 15、16
5V基准电压输出端,最大输出电流为10mA
误差放大器II的反相和同相输入端
(3)工作原理
TL494是一个固定频率PWM控制电路,其内部结构如图4所示。TL494适用于设计所有的单端或双端开关电源电路,其主要性能如下:
内江师范学院本科毕业设计
图4 TL494内部结构图
·输入电源电压为7~40V,可用稳压电源作为输入电源,从而使辅助电源简化。TL494 末级的两只三极管在7~40V范围工作时,最大输出电流可达250mA。因此,其带负载能力较强,即可按推挽方式工作,也可将两路输出并联工作,小功率时可直接驱动。
·内部有5V参考电压,使用方便,当参考电压短路时,有保护功能,控制很方便。·内部有一对误差放大器,可做反馈放大及保护功能,控制非常方便。
·在高频开关电源中,输出方波必须对称,在其他一些应用中又需要方波人为不对称,即需控制方波的占空比。通过对TL494的4脚控制,即可调节占空比,还可作输出软启动保护用。
·可以选择单端、并联及交替三种输出方式。
TL494的1脚及2脚为误差放大器的输入端。由TL494芯片构成电压反馈电路时,1、2脚上通过电阻从内部5V基准电压上取分压,作为1脚比较的基准。3脚用于补偿校正,为PWM比较器的输入端,接入电阻和电容后可以抑制振荡,4脚为死区时间控制端,加在4脚上的电压越高,死区宽度越大。当4脚接地时,死区宽度为零,即全输出;当其接5V电压时;死区宽度最大,无输出脉冲。利用此特点,在4脚和14脚之间接一个电容,可达到输出软启动的目的,还可以供短路保护用。5脚及6脚接振荡器的接地电容、电阻。
内江师范学院本科毕业设计
TL494内置线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:
Fosc
1(1)CtRt输出脉冲的宽度是通过电容Ct上的正极性锯齿波电压与另外两个控制信号进行比较而实现的。三极管VT1和VT2受控于或非门。当双稳态触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号时才会被选通。当控制信号增大时,输出脉冲的宽度将减小。
控制信号由集成电路外部输入,其中一条送至死区时间比较器,另一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%。当输出端接地时,最大输出占空比为96%,当输出端接参考电平时,占空比为48%。在死区时间控制端上接固定电压(在0~3.3V之间)时,即能在输出脉冲上产生附加的死区时间。
PWM比较器为误差放大器调节输出脉冲宽度提供了一个手段:当反馈电压从0.5V变为3.5V时,输出的脉冲宽度由被死区确定的最大导通百分比时间下降到零。两个误差放大器具有从-0.3V到Ucc-2.0V的共模输入范围,这可从电源的输出电压和电流中察觉到。误差放大器的输出端常处于高电平,它与PWM比较器反相输入端进行“或”运算。正是由于这种电路结构,误差放大器只需最小的输出即可支配控制回路。
当Ct放电时,一个正脉冲将出现在死区时间比较器的输出端,受脉冲约束的双稳态触发器进行计时,同时停止VT1和VT2的工作。若输出控制端连接到参考电压上,那么调制脉冲交替送至两个三极管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且占空比小于50%时,则输出驱动信号可分别从VT1和VT2中取得。输出变压器为一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更大的驱动电流输出时,可将VT1和VT2并联使用,这时需将输出模式控制端接地,以关闭双稳态触发器。在这种状态下,输出脉冲的频率将等于振荡器的频率。
TL494内置一个5V的基准电压产生电路,使用外置偏置电压时,可提供高达10mA的负载电流。在典型的0℃~70℃温度范围和50 mV电压的温漂条件下,该基准电压产生电路能提供±5%的精度。
2.2.2场效应管
内江师范学院本科毕业设计
场效应管是一种适应开关电源小型化、高效率化和高可靠性要求的理想器件。它是利用电场效应来控制其电流大小的半导体器件[3]。其代表符号如图5。这种器件不仅兼有开关速度快、无存储时间、体积小、重量轻、耗电省、寿命长等特点,而且还有输入阻抗高、噪声低、热稳定性好、抗辐射能力强和制造工艺简单等优点,因此大大的扩展了它的应用范围,特别是在大规模和超大规模集成电路中得到了广泛的应用。MOSFET开关较快而无存储时间,故在较高工作频率下开关损耗较小,另外所需的开关驱动功率小,降低了电路的复杂性。本设计采用的是N沟道增强型MOSFET。只有在正的漏极电源的作用下,在栅源之间加上正向电压(栅极接正,源极接负),才能使该场效应管导通。当Vgs>0时才有可能有电流即漏极电流产生。即当Vgs0时MOS管才导通。
图5 MOSFET代表符号图
2.2.3三极管
本设计选用了两种三极管,因为电路中有50KHz和50Hz两个频率,用于50KHz电路的三极管选择为8550型[4],而用于50Hz低频的三极管选择为KSP44型。三极管的工作状态有截止、放大、饱和三种。此设计电路中主要运用三极管的导通截止的开关特性。
2.3各部分支路电路设计及其参数计算 2.3.1 DC/DC变换电路(附工作指示灯)
由DC/AC和整流滤波电路组成[5]。电路结构如图6,VT1和VT2的基极分别接TL494的两个内置晶体管的发射极。中心器件变压器T1,实现电压由12V脉冲电压转变为220V脉冲电压。此脉冲电压经过整流滤波电路变成220V高压直流电压。变压器T1的工作频率选为50KHz左右[4],因此T1可选用EI33型的高频铁氧体磁心变压器,变压器的
内江师范学院本科毕业设计
匝数比为12220005,变压器选择为E型,可自制。经过实践调制选择初级匝数为10×2,次级匝数为190。10190005即满足变压器匝数比约为0.05。电路正常时,TL494的两个内置晶体管交替导通,导致图中晶体管VT1、VT2的基极也因此而交替导通,VT3和VT4 交替导通。因为变压器选择为E型,这样使变压器工作在推挽状态,VT3和VT4以频率为50KHz交替导通,使变压器的初级输入端有50KHz的交流电。当VT1导通时,场效应管VT3因为栅极无正偏压而截止,而此时VT2截止,导致场效应管VT4栅极有正偏压而导通。当VT1导通时,VT2截止,场效应管VT3因为栅极无正偏压而截止,而此时VT2截止,导致场效应管VT4栅极有正偏压而导通。且交替导通时其峰值电压为12V,即产生了12V/50KHz的交流电。当电路工作不正常时,TL494输出控制端为低电平时,TL494的两个内置晶体管的集电极(8脚和9脚)有12V正偏压,基极为高电平,导致两晶体管同时导通。VT1和VT2因为基极都为高电平而饱和导通,而场效应管VT3、VT4将因栅极无正偏压都处于截止状态,逆变电源停止工作,LED指示灯熄灭。极性电容C1滤去12V直流中的交流成分,降低输入干扰。滤波电容C1可取为2200μF。R1、R2、R3起限流作用,取值为4.7KΩ。整流滤波电路由四只整流二极管和一个滤波电容组成。四只整流二极管D1~D4接成电桥的形式,称单相桥式整流电路[2]。在桥式整流电路中,电容C2滤去了电路中的交流成分,由模拟电路直流稳压电源的电容滤波电路[2]知:
dRC3~5T
1(2)
2当f=50KHz时,1,R=116KΩ时,R为后继负载电阻,则C4.31010F。根50KHz据电容标称值选择C2为10μF。输出220V高压直流电,供后继逆变电路使用。
内江师范学院本科毕业设计
图6 直流变换电路图
2.3.2输入过压保护电路
电路结构如图7,由DZ1、电阻R1和电阻R2、电容C1、二极管VD1组成。输出端口接TL494芯片I的同相输入端(第1脚),通过该芯片的误差比较器对其输出进行控制[6],当输入过大电压时,停止逆变电路工作从而使电路得到保护。因为输入电压直接决定了输出电压的值,对输入端电压的保护也是对输出端子间过大电压进行负载保护。VD1、C1、R1组成了保护状态维持电路,只要发生瞬间的输入电压过大现象,就导致稳压管击穿,电路将沿C1和R1支路充电,继续维持同相端的低电平状态,保护电路就会启动并维持一段时间。当C1和R1充电完成,C1和R2支路开始处于放电状态,当C1放电完成时,TL494芯片I的同相输入端由低电平翻转为高电平,导致TL494芯片I的3脚即反馈输入端为高电平状态,进而导致TL494芯片内部的PWM比较器、或门、或非门的输出均发生翻转,TL494芯片内置功率输出级三极管VT1和VT2均转为截止状态。此时将导致直流变换电路的场效应管处于截止状态,直流变换电路停止工作。同时TL494的4脚为高电平状态,4脚为高电平时,将抬高芯片内部死区时间比较器同相输入端的电位,使该比较器的输出为恒定的高电平,由TL494芯片内部结构知,芯片内置三极管截止,从而停止后继电路的工作。稳压管的稳压值一般为输入电压的100%~130%。稳压管DZ1的稳压值决定了该保护电路的启动门限电压值。考虑到汽车行驶过程中电瓶电压的正常值变化幅度大小,通常将稳压管的稳压值选为15V或者16V
内江师范学院本科毕业设计
较为合适。在此取为15V,稳压管的功率为0.15W。R1取为100KΩ,R2、R3均取为4.7KΩ,C1、C2均取为47μF。
图7 输入过压电路保护图
2.3.3输出过压保护电路
电路结构如图8,当输出电压过高时将导致稳压管DZ1击穿,使TL494芯片II的4脚对地的电压升高,启动TL494芯片II的保护电路,切断输出。VD1、C1、R2组成了保护状态维持电路,R3、R4为保护电阻,用以增大输出阻抗。稳压管的稳压值一般规定为输出电压的130%~150%[7]。后继电路为220V/50Hz输出,其中负载电阻为100KΩ,TL494芯片II的输出脚电压最大为12V,R1为限流电阻可取值为100KΩ,R2为保护电阻可取为16KΩ,根据电路分压知识[8],则R2上的电压为:
UR2220R1R12201611630.34V
(3)
即稳压管的电压取值最大为30.34V,这里稳压管取值为30V。
内江师范学院本科毕业设计
图8 输出过压电路保护图
2.3.4 DC/AC变换电路
电路结构如图9,该变换电路为全桥桥式电路[6]。其中TL494芯片的8脚和11脚为内置的两个三极管的集电级,且两个内置三极管是交替导通的,变替导通的频率为50Hz。图中8脚和11脚分别接入了上下两部分完全对称的桥式电路,因为两三极管交替工作,工作频率为50Hz,所以选用桥式电路,目的在于得到50Hz交流电。上下两部分电路工作过程完全相同。选其中一部分作为说明。这里将其简化如图10。图中VT0为TL494芯片II的一个内置三极管设为VT00,另一个设为VT01。当VT00导通时,即VT01截止时:VT1的基级没有正偏压,从而使VT1截止,然后VT3的栅极有12V正偏电压,使VT3导通。而VT4因为栅极无正偏压截止,输出220V电压。当VT00截止时,即VT01导通时:VT1基级有12V正偏压,集电极有12V反向电压,从而导通。VT3的栅极无正偏电压,从而使VT3截止。而VT4因为栅极有12V正偏压导通。因为VT3截止,220V电压无法送至输出。但此时下半部分的电路有220V电压输出。因为此时TL494芯片II的另一个内置三极管VT01导通,它的集电极即第11脚使逆变电路I有220V电压输出。原理同上。上下两部分以频率为50Hz而交替导通,从而使电路有220V/50Hz的交流电输出。由于TL494芯片为脉冲调制器,其产生的波形为脉冲波而不是正弦波。VT1、VT2、VT3、VT4、VT5、VT6应选择低频小功率型的。这里VT1和VT2为晶体三极管可选择KSP14型,VT3、VT4、VT5和VT6为场效应管可选择为IRF740型。限流电阻可选择10KΩ、1KΩ、4.7KΩ、3.3KΩ的经典取值。C1、C2和C3均为平滑输出的吸收电容。C1和C2可取为10μF,C3取为0.01μF。
内江师范学院本科毕业设计
图9 DC/AC转换电路图
图10 简化图
2.3.5 TL494芯片І外围电路
内江师范学院本科毕业设计
电路结构如图11,包含过热保护电路及振荡电路。15脚为芯片TL494的反相输入端,16为同相输入端,电路正常情况下15脚电压应略高于16脚电压才能保证误差比较器II的输出为低电平,才能使芯片内两个三极管正常工作。因为芯片内置5V基准电压源,负载能力为10mA。所以15脚电压应高于5V。15脚电压计算式为:
U12R2R1R2Rt
(4)
这里Rt为正温度系数热敏电阻,常温阻值可在150~300范围内任选,适当选大写可提高过热保护电路启动的灵敏度。这里取200。R1取36KΩ,R2取39KΩ,则15脚电压为6.22V。符合要求。该脉宽调制器的振荡频率为50KHz,由公式(1)知Fosc1CtRt,图中C2、R3为芯片的振荡元件。C2即为Ct,R3即为Rt。其中Fosc取为50KHz,C2取4700pF,则R3取4.3KΩ。
图11 TL494芯片I外围电路
2.3.6 TL494芯片ІІ外围电路
电路结构如图12,同样15脚为芯片TL494的反相输入端,16脚为同相输入端,电路正常情况下15脚电压应略高于16脚电压才能保证误差比较器II的输出为低电平,才能使芯片内两个三极管正常工作。因为芯片内置5V基准电压源,由图可知15脚的电压为5V,16脚的电压为0V。芯片内置比较器II的输出为低电平。5脚和6脚为振荡器的定时电容和定时电阻接入端。因为要使输出频率为50Hz,由公式Fosc1CtRt
内江师范学院本科毕业设计
知:当Rt取为220KΩ时,Ct9.09108μF,可取为0.1μF。C1和R2是芯片的振荡元件,即是R2取值为220KΩ,C1取值为0.1μF。芯片的8脚和11脚接逆变电路II,4脚接输入过压保护电路。电容C2取值为47μF,电阻R3取值为10KΩ,当输入过压保护电路启动后,使电容C2对R3放电,使4脚保持为低电平,使TL494芯片II的电路维持一端时间,直到C2放电完毕,则使4 脚为高电平,抬高死区电压,从而使芯片II停止工作。
图12 TL494芯片II外围电路
2.3.7该逆变电源的整机电路原理图(附录A)2.3.8该电路的元件参数表(附录B)15
内江师范学院本科毕业设计
3调试
该逆变电源在接通12V直流电源后,LED指示灯亮,说明电路工作正常。由于该电路设有上电软启动[9]功能,在接通电源后要等7S左右才有220V直流输出。若发生输入电流过大、输出电压过大或者电路工作环境过热的情况均会使LED指示灯变暗,说明逆变电路停止工作。若在接通电源后要等10S左右指示灯还没有点亮,说明逆变电路有问题或者LED灯极性安装反了。该电路的PCB板[10]示意图见附录C。
内江师范学院本科毕业设计
附录A整机原理图
内江师范学院本科毕业设计
附录B元件参数表
表2 元件参数表
装配位号 C1 C3 C5 C7 C9 C11 C14 VD1~VD4 VD9~VD11 VD13 DZ1 IC1、IC2 VT1、VT3 VT5、VT8 VT9、VT10 R2 R4 R6 R8~R11 R13 R15 R17、R18 R20 R22 R25 R27
装配参数 22μF/16V 47μF/16V 2200μF/16V 47μF /16V 0.01μF 0.22μF 0.01μF/1000V
1N4148 1N4148 1N4148 15V/0.5W TL494CN 8550 KSP44 IRF740 39K 270 4.7K 4.7K 10K 10K 1K 4.7K 10K 1K
3.3K
装配位号 C2 C4 C6 C8 C10 C12 C13 C15 VD5~VD8 VD12 VD14 DZ2 LED VT2、VT4 VT6、VT7
R1 R3 R5 R7 R12 R14 R16 R19 R21 R23、R24 R26
装配参数 47μF/16V 4700pF 47μF/16V 0.1μF 0.01μF 10μF/400V 10μF/50V 10μF/50V HER306 FR107 FR107 30V/0.5W 绿色Ф3 IRF3205 IRF740 36K 100K 100K 4.3K 470K 220K 4.7K 3.3K 1K 4.7K 16K
内江师范学院本科毕业设计
续表2
装配位号 DCIN Rt R28、R29
装配参数 12V/DC 150
100K
装配位号 X AC T1--
装配参数 弹片插孔 EI33--
内江师范学院本科毕业设计
附录C整机PCB板(两面)
内江师范学院本科毕业设计
参考文献
[1] 周志敏,周纪海,纪爱华.现代开关电源控制电路设计及应用[M].北京:人民邮电出版社,2005:124-147.
[2] 康华光,陈大钦.电子技术基础(模拟部分)(第四版)[M].北京:高等教育出版社,1999:37,51,53-55,57,68-70,168-170,444-470.
[3] 康华光,邹寿彬.电子技术基础(数字部分)(第四版)[M].北京:高等教育出版社,2000:32-33,197-198.
[4] 曾兴雯,刘乃安,陈健.高频电子线路[M].北京:高等教育出版社,2004:95-97. [5] 何希才.新型电子电路应用实例[M].北京:科学出版社,2005:22-26,241-245.
[6] 都永超,朱汉林.无线电(期刊)[J].北京:人民邮电出版社.2005年11月总第518期.48-50. [7] 黄燕.常用电子设备开关电源检修方法[M].北京:科学出版社,2002:30-38,84,94,154. [8] 李瀚荪.电路分析基础(第3版)[M].北京:高等教育出版社,1993:51-55.
[9]《日英汉无线电技术词典》编辑组.日英汉无线电技术词典[Z].北京:国防工业出版社,1971:258,496,761,901.
[10] 夏路易,石宗义.电路原理图与电路板设计教程PROTEL99SE[M].北京:北京希望电子出版社,2002:72-79.
第四篇:Cnzassn逆变电源毕业设计
Time will pierce the surface or youth, will be on the beauty of the ditch dug a shallow groove;Jane will eat rare!A born beauty, anything to escape his sickle sweep
.--Shakespeare
目录
1引言...........................................................................................................................................1 2设计说明书...............................................................................................................................2 2.1概述................................................................................................................................2 2.1.1该逆变电源的基本构成和原理.................................................................................2 2.1.2逆变电源的技术性能指标及主要特点.....................................................................4 2.2逆变电源的主要元器件及其特性................................................................................4 2.2.1 TL494电流模式PWM控制器..................................................................................4 2.2.2场效应管.....................................................................................................................7 2.2.3三极管.........................................................................................................................8 2.3各部分支路电路设计及其参数计算............................................................................8 2.3.1 DC/DC变换电路(附工作指示灯)........................................................................8 2.3.2输入过压保护电路...................................................................................................10 2.3.3输出过压保护电路...................................................................................................11 2.3.4 DC/AC变换电路......................................................................................................12 2.3.5 TL494芯片І外围电路............................................................................................13 2.3.6 TL494芯片ІІ外围电路..........................................................................................14 2.3.7该逆变电源的整机电路原理图(附录A)................................................................15 2.3.8该电路的元件参数表(附录B).................................................................................15 3调试.........................................................................................................................................16 附录A整机原理图...................................................................................................................17 附录B元件参数表...................................................................................................................18 附录C整机PCB板(两面).......................................................................................................20 参考文献....................................................................................................................................21 致谢............................................................................................................错误!未定义书签。
摘要
该设计主要应用开关电源电路技术有关知识。涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片TL494的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计的电路。该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。
关键词:过热保护;过压保护;集成电路;振荡频率;脉宽调制
Abstract
The design applying the switching power source circuit technology in connected.Relating with knowledge about what imitate integrated circuit、power source integrated circuit、power amplification integrated circuit and switching regulated voltage circuit on principle.Sufficient apply chip TL494 fixed-frequency pulse width modulation circuit and field effect transistor(N channel strengthen MOSFET)whose switch speed quick, nothing secondary Break down and hot stability good merit to design circuit.Owe the inverter main part ingredient by DC/DC circuit、importing the over-voltage crowbar circuit、exporting an over-voltage crowbar protect a circuit、overheat protective circuit、DC/AC shifts circuit、oscillating circuit and entire bridge circuit.Continuing for during the period of the job exports power functions such as being 150 W, having the regular guiding lights working, exporting an over-voltage crowbar, importing the over-voltage crowbar and overheat protective.The cost of manufacture being a power source of turn is comparatively cheap, the pragmatism is strong, and it has a function annex to the various portably type.Key words: over heat protective;over-voltage integrated circuit(IC);oscillating frequency;pulse width modulation(PWM).1引言
目前逆变电源应用广泛,但是电路复杂,价格比较昂贵,为此设计一款逆变电源。该电源主要应用开关电源电路技术的有关知识,涉及模拟集成电路、电源集成电路、直流稳压电路、开关稳压电路等原理,充分运用芯片TL494的固定频率脉冲宽度调制电路[1]和场效应管[2](N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点与三极管一起构成的组合设计电路。
该逆变电源可将电瓶的12V直流电转换为220V/50Hz的交流电,供数码相机、CD机、MD唱机、笔记本电脑、小型录像机、电动剃须刀、手机等便携式产品使用。因此具有相当强的通用性。
该逆变电源在工作时的持续输出功率为150W,并且具有输出过压保护、输入过压保护以及过热保护等功能。该电源的制造成本较为低廉,千台以上数量的批产成本仅在40元/台左右,并且当印制板的尺寸不受限制时,可以将输出功率做到200W以上,因此该逆变电源几乎可以替代目前市场上所售的各种逆变器或者逆变电源产品,其应用前景十分广阔。
2设计说明书
2.1概述 2.1.1该逆变电源的基本构成和原理
(1)基本构成
该设计电路的方框图如图1。该电路由12V直流输入、输入过压保护电路、过热保护电路、逆变电路I、220V/50KHz整流滤波、逆变电路II、输出过压保护电路等组成。逆变电路I、逆变电路II的框图分别见图
2、图3。逆变电路又包括频率产生电路(50KHz和50Hz PWM脉冲宽度调制电路)、直流变换电路(DC/DC)将12V直流转换成220V直流、交流变换电路(DC/AC)将12V直流变换为220V交流。
图1 整机原理方框图
逆变电路I原理如图2所示。此电路的主要功能是将12V直流电转换为220V/50KHz的交流电。
图2 逆变I电路原理方框图
逆变电路II如图3所示。此电路的主要功能是将220V直流电转换为220V/50Hz的交流电。全桥电路以50Hz的频率交替导通,产生50Hz交流电。
图3 逆变II电路原理方框图
(2)电路工作原理
输入12V直流电源电压,经过逆变电路I得到220V/50KHz的交流电,此交流电再经过整流滤波电路得到220V高压直流电,然后经过逆变II得到220V/50Hz交流电。其中输入过压保护电路、输出过压保护电路、过热保护电路构成整个电路的保护电路。一旦输入电压出现过大或者过小时,保护电路立即启动,然后停止逆变电路I的工作。过热保护电路是当电路工作温度过高时,启动保护使逆变电路I停止工作。输出过压保护电路与逆变电路II构成反馈回路,一旦电路输出异常则停止逆变电路II的工作。在逆变电路I中是用一块TL494芯片产生50KHz的脉冲频率,经过变压器推挽电路将12V直流转换成220V/50KHz的交流电。在逆变电路II中再用一块TL494芯片产生50Hz的
脉冲波,全桥电路以50Hz的频率交替导通,从而将220V直流和50Hz脉冲电路整合,然后输出220V/50Hz的交流电。在该电路中都是利用TL494的输出端作为逆变电路工作状态的控制端。
2.1.2逆变电源的技术性能指标及主要特点
(1)输入:12V直流(汽车蓄电池)。(2)输出:220V交流(非正弦波)。(3)输出功率:大于100W。
(4)具有输入过压保护和输出过压保护。(5)有过热保护功能。
(6)可作为多种电器的通用电源。(7)含有工作正常指示灯。
2.2逆变电源的主要元器件及其特性 2.2.1 TL494电流模式PWM控制器
TL494是一种固定频率脉冲宽度调制电路[1],它包含了开关电源控制所需的全部功能,广泛用于单端正激双管式、半桥式以及全桥式开关电源。TL494有SO—16和PDIP—16两种封装形式,以适应不同场合的要求。
(1)主要特征
集成了全部的脉冲宽度调制电路。
TL494内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。TL494内置误差放大器。TL494内置5V参考基准电压源。可调整死区时间。
TL494内置功率晶体管,可提供500mA的驱动能力。有推或拉两种输出方式。(2)引脚设置及其功能
TL494的内部电路由基准电压产生电路、振荡器、死区时间比较器、误差放大器(两个)、PWM比较器以及输出电路等组成,各引脚功能见表1。
表1 TL494引脚功能表
引脚号 引脚功能 1、2 误差放大器I的同相和反相输入端 3 相位校正和增益控制端 间歇期调整,其上加0-3.3V电压时,可使截止时间从2%线性变化到100%;死区时间控制,输入直流电压为0-4V,控制TL494输出脉冲的占空比为0.45-0。在此基础上,占空比还受反馈信号控制,四脚还常用作软启动控制端,使输出脉冲宽度由零逐渐达到设计值。5、6 分别用于外接振荡电容Ct和振荡电阻Rt,产生锯齿波电压并送至PWM比较器,振荡频率Fosc1,定时电阻取值在1KΩ以上
CtRt7 接地端 8、9、10、11 分别为TL494内部两个末级输出三极管的集电极和发射极 12
电源供电端 输出控制端,当该端电压为零时,用于驱动单端电路。该端接地时为并联单端 输出方式,接14脚时为推挽输出方式 15、16
5V基准电压输出端,最大输出电流为10mA
误差放大器II的反相和同相输入端
(3)工作原理
TL494是一个固定频率PWM控制电路,其内部结构如图4所示。TL494适用于设计所有的单端或双端开关电源电路,其主要性能如下:
图4 TL494内部结构图
·输入电源电压为7~40V,可用稳压电源作为输入电源,从而使辅助电源简化。TL494 末级的两只三极管在7~40V范围工作时,最大输出电流可达250mA。因此,其带负载能力较强,即可按推挽方式工作,也可将两路输出并联工作,小功率时可直接驱动。
·内部有5V参考电压,使用方便,当参考电压短路时,有保护功能,控制很方便。·内部有一对误差放大器,可做反馈放大及保护功能,控制非常方便。
·在高频开关电源中,输出方波必须对称,在其他一些应用中又需要方波人为不对称,即需控制方波的占空比。通过对TL494的4脚控制,即可调节占空比,还可作输出软启动保护用。
·可以选择单端、并联及交替三种输出方式。
TL494的1脚及2脚为误差放大器的输入端。由TL494芯片构成电压反馈电路时,1、2脚上通过电阻从内部5V基准电压上取分压,作为1脚比较的基准。3脚用于补偿校正,为PWM比较器的输入端,接入电阻和电容后可以抑制振荡,4脚为死区时间控制端,加在4脚上的电压越高,死区宽度越大。当4脚接地时,死区宽度为零,即全输出;当其接5V电压时;死区宽度最大,无输出脉冲。利用此特点,在4脚和14脚之间接一个电容,可达到输出软启动的目的,还可以供短路保护用。5脚及6脚接振荡器的接地电容、电阻。
TL494内置线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:
Fosc
1(1)CtRt输出脉冲的宽度是通过电容Ct上的正极性锯齿波电压与另外两个控制信号进行比较而实现的。三极管VT1和VT2受控于或非门。当双稳态触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号时才会被选通。当控制信号增大时,输出脉冲的宽度将减小。
控制信号由集成电路外部输入,其中一条送至死区时间比较器,另一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%。当输出端接地时,最大输出占空比为96%,当输出端接参考电平时,占空比为48%。在死区时间控制端上接固定电压(在0~3.3V之间)时,即能在输出脉冲上产生附加的死区时间。
PWM比较器为误差放大器调节输出脉冲宽度提供了一个手段:当反馈电压从0.5V变为3.5V时,输出的脉冲宽度由被死区确定的最大导通百分比时间下降到零。两个误差放大器具有从-0.3V到Ucc-2.0V的共模输入范围,这可从电源的输出电压和电流中察觉到。误差放大器的输出端常处于高电平,它与PWM比较器反相输入端进行“或”运算。正是由于这种电路结构,误差放大器只需最小的输出即可支配控制回路。
当Ct放电时,一个正脉冲将出现在死区时间比较器的输出端,受脉冲约束的双稳态触发器进行计时,同时停止VT1和VT2的工作。若输出控制端连接到参考电压上,那么调制脉冲交替送至两个三极管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且占空比小于50%时,则输出驱动信号可分别从VT1和VT2中取得。输出变压器为一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更大的驱动电流输出时,可将VT1和VT2并联使用,这时需将输出模式控制端接地,以关闭双稳态触发器。在这种状态下,输出脉冲的频率将等于振荡器的频率。
TL494内置一个5V的基准电压产生电路,使用外置偏置电压时,可提供高达10mA的负载电流。在典型的0℃~70℃温度范围和50 mV电压的温漂条件下,该基准电压产生电路能提供±5%的精度。
2.2.2场效应管
场效应管是一种适应开关电源小型化、高效率化和高可靠性要求的理想器件。它是利用电场效应来控制其电流大小的半导体器件[3]。其代表符号如图5。这种器件不仅兼有开关速度快、无存储时间、体积小、重量轻、耗电省、寿命长等特点,而且还有输入阻抗高、噪声低、热稳定性好、抗辐射能力强和制造工艺简单等优点,因此大大的扩展了它的应用范围,特别是在大规模和超大规模集成电路中得到了广泛的应用。MOSFET开关较快而无存储时间,故在较高工作频率下开关损耗较小,另外所需的开关驱动功率小,降低了电路的复杂性。本设计采用的是N沟道增强型MOSFET。只有在正的漏极电源的作用下,在栅源之间加上正向电压(栅极接正,源极接负),才能使该场效应管导通。当Vgs>0时才有可能有电流即漏极电流产生。即当Vgs0时MOS管才导通。
图5 MOSFET代表符号图
2.2.3三极管
本设计选用了两种三极管,因为电路中有50KHz和50Hz两个频率,用于50KHz电路的三极管选择为8550型[4],而用于50Hz低频的三极管选择为KSP44型。三极管的工作状态有截止、放大、饱和三种。此设计电路中主要运用三极管的导通截止的开关特性。
2.3各部分支路电路设计及其参数计算 2.3.1 DC/DC变换电路(附工作指示灯)
由DC/AC和整流滤波电路组成[5]。电路结构如图6,VT1和VT2的基极分别接TL494的两个内置晶体管的发射极。中心器件变压器T1,实现电压由12V脉冲电压转变为220V脉冲电压。此脉冲电压经过整流滤波电路变成220V高压直流电压。变压器T1的工作频率选为50KHz左右[4],因此T1可选用EI33型的高频铁氧体磁心变压器,变压器的
匝数比为12220005,变压器选择为E型,可自制。经过实践调制选择初级匝数为10×2,次级匝数为190。10190005即满足变压器匝数比约为0.05。电路正常时,TL494的两个内置晶体管交替导通,导致图中晶体管VT1、VT2的基极也因此而交替导通,VT3和VT4 交替导通。因为变压器选择为E型,这样使变压器工作在推挽状态,VT3和VT4以频率为50KHz交替导通,使变压器的初级输入端有50KHz的交流电。当VT1导通时,场效应管VT3因为栅极无正偏压而截止,而此时VT2截止,导致场效应管VT4栅极有正偏压而导通。当VT1导通时,VT2截止,场效应管VT3因为栅极无正偏压而截止,而此时VT2截止,导致场效应管VT4栅极有正偏压而导通。且交替导通时其峰值电压为12V,即产生了12V/50KHz的交流电。当电路工作不正常时,TL494输出控制端为低电平时,TL494的两个内置晶体管的集电极(8脚和9脚)有12V正偏压,基极为高电平,导致两晶体管同时导通。VT1和VT2因为基极都为高电平而饱和导通,而场效应管VT3、VT4将因栅极无正偏压都处于截止状态,逆变电源停止工作,LED指示灯熄灭。极性电容C1滤去12V直流中的交流成分,降低输入干扰。滤波电容C1可取为2200μF。R1、R2、R3起限流作用,取值为4.7KΩ。整流滤波电路由四只整流二极管和一个滤波电容组成。四只整流二极管D1~D4接成电桥的形式,称单相桥式整流电路[2]。在桥式整流电路中,电容C2滤去了电路中的交流成分,由模拟电路直流稳压电源的电容滤波电路[2]知:
dRC3~5T
1(2)
2当f=50KHz时,1,R=116KΩ时,R为后继负载电阻,则C4.31010F。根50KHz据电容标称值选择C2为10μF。输出220V高压直流电,供后继逆变电路使用。
图6 直流变换电路图
2.3.2输入过压保护电路
电路结构如图7,由DZ1、电阻R1和电阻R2、电容C1、二极管VD1组成。输出端口接TL494芯片I的同相输入端(第1脚),通过该芯片的误差比较器对其输出进行控制[6],当输入过大电压时,停止逆变电路工作从而使电路得到保护。因为输入电压直接决定了输出电压的值,对输入端电压的保护也是对输出端子间过大电压进行负载保护。VD1、C1、R1组成了保护状态维持电路,只要发生瞬间的输入电压过大现象,就导致稳压管击穿,电路将沿C1和R1支路充电,继续维持同相端的低电平状态,保护电路就会启动并维持一段时间。当C1和R1充电完成,C1和R2支路开始处于放电状态,当C1放电完成时,TL494芯片I的同相输入端由低电平翻转为高电平,导致TL494芯片I的3脚即反馈输入端为高电平状态,进而导致TL494芯片内部的PWM比较器、或门、或非门的输出均发生翻转,TL494芯片内置功率输出级三极管VT1和VT2均转为截止状态。此时将导致直流变换电路的场效应管处于截止状态,直流变换电路停止工作。同时TL494的4脚为高电平状态,4脚为高电平时,将抬高芯片内部死区时间比较器同相输入端的电位,使该比较器的输出为恒定的高电平,由TL494芯片内部结构知,芯片内置三极管截止,从而停止后继电路的工作。稳压管的稳压值一般为输入电压的100%~130%。稳压管DZ1的稳压值决定了该保护电路的启动门限电压值。考虑到汽车行驶过程中电瓶电压的正常值变化幅度大小,通常将稳压管的稳压值选为15V或者16V
较为合适。在此取为15V,稳压管的功率为0.15W。R1取为100KΩ,R2、R3均取为4.7KΩ,C1、C2均取为47μF。
图7 输入过压电路保护图
2.3.3输出过压保护电路
电路结构如图8,当输出电压过高时将导致稳压管DZ1击穿,使TL494芯片II的4脚对地的电压升高,启动TL494芯片II的保护电路,切断输出。VD1、C1、R2组成了保护状态维持电路,R3、R4为保护电阻,用以增大输出阻抗。稳压管的稳压值一般规定为输出电压的130%~150%[7]。后继电路为220V/50Hz输出,其中负载电阻为100KΩ,TL494芯片II的输出脚电压最大为12V,R1为限流电阻可取值为100KΩ,R2为保护电阻可取为16KΩ,根据电路分压知识[8],则R2上的电压为:
UR2220R1R12201611630.34V
(3)
即稳压管的电压取值最大为30.34V,这里稳压管取值为30V。
图8 输出过压电路保护图
2.3.4 DC/AC变换电路
电路结构如图9,该变换电路为全桥桥式电路[6]。其中TL494芯片的8脚和11脚为内置的两个三极管的集电级,且两个内置三极管是交替导通的,变替导通的频率为50Hz。图中8脚和11脚分别接入了上下两部分完全对称的桥式电路,因为两三极管交替工作,工作频率为50Hz,所以选用桥式电路,目的在于得到50Hz交流电。上下两部分电路工作过程完全相同。选其中一部分作为说明。这里将其简化如图10。图中VT0为TL494芯片II的一个内置三极管设为VT00,另一个设为VT01。当VT00导通时,即VT01截止时:VT1的基级没有正偏压,从而使VT1截止,然后VT3的栅极有12V正偏电压,使VT3导通。而VT4因为栅极无正偏压截止,输出220V电压。当VT00截止时,即VT01导通时:VT1基级有12V正偏压,集电极有12V反向电压,从而导通。VT3的栅极无正偏电压,从而使VT3截止。而VT4因为栅极有12V正偏压导通。因为VT3截止,220V电压无法送至输出。但此时下半部分的电路有220V电压输出。因为此时TL494芯片II的另一个内置三极管VT01导通,它的集电极即第11脚使逆变电路I有220V电压输出。原理同上。上下两部分以频率为50Hz而交替导通,从而使电路有220V/50Hz的交流电输出。由于TL494芯片为脉冲调制器,其产生的波形为脉冲波而不是正弦波。VT1、VT2、VT3、VT4、VT5、VT6应选择低频小功率型的。这里VT1和VT2为晶体三极管可选择KSP14型,VT3、VT4、VT5和VT6为场效应管可选择为IRF740型。限流电阻可选择10KΩ、1KΩ、4.7KΩ、3.3KΩ的经典取值。C1、C2和C3均为平滑输出的吸收电容。C1和C2可取为10μF,C3取为0.01μF。
图9 DC/AC转换电路图
图10 简化图
2.3.5 TL494芯片І外围电路
电路结构如图11,包含过热保护电路及振荡电路。15脚为芯片TL494的反相输入端,16为同相输入端,电路正常情况下15脚电压应略高于16脚电压才能保证误差比较器II的输出为低电平,才能使芯片内两个三极管正常工作。因为芯片内置5V基准电压源,负载能力为10mA。所以15脚电压应高于5V。15脚电压计算式为:
U12R2R1R2Rt
(4)
这里Rt为正温度系数热敏电阻,常温阻值可在150~300范围内任选,适当选大写可提高过热保护电路启动的灵敏度。这里取200。R1取36KΩ,R2取39KΩ,则15脚电压为6.22V。符合要求。该脉宽调制器的振荡频率为50KHz,由公式(1)知Fosc1CtRt,图中C2、R3为芯片的振荡元件。C2即为Ct,R3即为Rt。其中Fosc取为50KHz,C2取4700pF,则R3取4.3KΩ。
图11 TL494芯片I外围电路
2.3.6 TL494芯片ІІ外围电路
电路结构如图12,同样15脚为芯片TL494的反相输入端,16脚为同相输入端,电路正常情况下15脚电压应略高于16脚电压才能保证误差比较器II的输出为低电平,才能使芯片内两个三极管正常工作。因为芯片内置5V基准电压源,由图可知15脚的电压为5V,16脚的电压为0V。芯片内置比较器II的输出为低电平。5脚和6脚为振荡器的定时电容和定时电阻接入端。因为要使输出频率为50Hz,由公式Fosc1CtRt
知:当Rt取为220KΩ时,Ct9.09108μF,可取为0.1μF。C1和R2是芯片的振荡元件,即是R2取值为220KΩ,C1取值为0.1μF。芯片的8脚和11脚接逆变电路II,4脚接输入过压保护电路。电容C2取值为47μF,电阻R3取值为10KΩ,当输入过压保护电路启动后,使电容C2对R3放电,使4脚保持为低电平,使TL494芯片II的电路维持一端时间,直到C2放电完毕,则使4 脚为高电平,抬高死区电压,从而使芯片II停止工作。
图12 TL494芯片II外围电路
2.3.7该逆变电源的整机电路原理图(附录A)2.3.8该电路的元件参数表(附录B)
3调试
该逆变电源在接通12V直流电源后,LED指示灯亮,说明电路工作正常。由于该电路设有上电软启动[9]功能,在接通电源后要等7S左右才有220V直流输出。若发生输入电流过大、输出电压过大或者电路工作环境过热的情况均会使LED指示灯变暗,说明逆变电路停止工作。若在接通电源后要等10S左右指示灯还没有点亮,说明逆变电路有问题或者LED灯极性安装反了。该电路的PCB板[10]示意图见附录C。
附录A整机原理图
附录B元件参数表
表2 元件参数表
装配位号 C1 C3 C5 C7 C9 C11 C14 VD1~VD4 VD9~VD11 VD13 DZ1 IC1、IC2 VT1、VT3 VT5、VT8 VT9、VT10 R2 R4 R6 R8~R11 R13 R15 R17、R18 R20 R22 R25 R27
装配参数 22μF/16V 47μF/16V 2200μF/16V 47μF /16V 0.01μF 0.22μF 0.01μF/1000V
1N4148 1N4148 1N4148 15V/0.5W TL494CN 8550 KSP44 IRF740 39K 270 4.7K 4.7K 10K 10K 1K 4.7K 10K 1K
3.3K
装配位号 C2 C4 C6 C8 C10 C12 C13 C15 VD5~VD8 VD12 VD14 DZ2 LED VT2、VT4 VT6、VT7
R1 R3 R5 R7 R12 R14 R16 R19 R21 R23、R24 R26
装配参数 47μF/16V 4700pF 47μF/16V 0.1μF 0.01μF 10μF/400V 10μF/50V 10μF/50V HER306 FR107 FR107 30V/0.5W 绿色Ф3 IRF3205 IRF740 36K 100K 100K 4.3K 470K 220K 4.7K 3.3K 1K 4.7K 16K
续表2
装配位号 DCIN Rt R28、R29
装配参数 12V/DC 150
100K
装配位号 X AC T1--
装配参数 弹片插孔 EI33--
附录C整机PCB板(两面)
参考文献
[1] 周志敏,周纪海,纪爱华.现代开关电源控制电路设计及应用[M].北京:人民邮电出版社,2005:124-147.
[2] 康华光,陈大钦.电子技术基础(模拟部分)(第四版)[M].北京:高等教育出版社,1999:37,51,53-55,57,68-70,168-170,444-470.
[3] 康华光,邹寿彬.电子技术基础(数字部分)(第四版)[M].北京:高等教育出版社,2000:32-33,197-198.
[4] 曾兴雯,刘乃安,陈健.高频电子线路[M].北京:高等教育出版社,2004:95-97. [5] 何希才.新型电子电路应用实例[M].北京:科学出版社,2005:22-26,241-245.
[6] 都永超,朱汉林.无线电(期刊)[J].北京:人民邮电出版社.2005年11月总第518期.48-50. [7] 黄燕.常用电子设备开关电源检修方法[M].北京:科学出版社,2002:30-38,84,94,154. [8] 李瀚荪.电路分析基础(第3版)[M].北京:高等教育出版社,1993:51-55.
[9]《日英汉无线电技术词典》编辑组.日英汉无线电技术词典[Z].北京:国防工业出版社,1971:258,496,761,901.
[10] 夏路易,石宗义.电路原理图与电路板设计教程PROTEL99SE[M].北京:北京希望电子出版社,2002:72-79.
第五篇:4毕业设计(论文)外文文献翻译范文
黄石理工学院毕业设计(论文)外文文献翻译
模糊控制理论
摘自 维基百科 2011年11月20日
概述
模糊逻辑广泛适用于机械控制。这个词本身激发一个一定的怀疑,试探相当于“仓促的逻辑”或“虚假的逻辑”,但“模糊”不是指一个部分缺乏严格性的方法,而这样的事实,即逻辑涉及能处理的概念,不能被表达为“对”或“否”,而是因为“部分真实”。虽然遗传算法和神经网络可以执行一样模糊逻辑在很多情况下,模糊逻辑的优点是解决这个问题的方法,能够被铸造方面接线员能了解,以便他们的经验,可用于设计的控制器。这让它更容易完成机械化已成功由人执行。
历史以及应用
模糊逻辑首先被提出是有Lotfi在加州大学伯克利分校在1965年的一篇论文。他阐述了他的观点在1973年的一篇论文的概念,介绍了语言变量”,在这篇文章中相当于一个变量定义为一个模糊集合。其他研究打乱了,第二次工业应用中,水泥窑建在丹麦,即将到来的在线1975。
模糊系统在很大程度上在美国被忽略了,因为他们更多关注的是人工智能,一个被过分吹嘘的领域,尤其是在1980年中期年代,导致在诚信缺失的商业领域。
然而日本人对这个却没有偏见和忽略,模糊系统引发日立的Seiji Yasunobu和Soji Yasunobu Miyamoto的兴趣。,他于1985年的模拟,证明了模糊控制系统对仙台铁路的控制的优越性。他们的想法是被接受了,并将模糊系统用来控制加速、制动、和停车,当线于1987年开业。
1987年另一项促进模糊系统的兴趣。在一个国际会议在东京的模糊研究那一年,Yamakawa论证<使用模糊控制,通过一系列简单的专用模糊逻辑芯片,在一个“倒立摆“实验。这是一个经典的控制问题,在这一过程中,车辆努力保持杆安装在顶部用铰链正直来回移动。
这次展示给观察者家们留下了深刻的印象,以及后来的实验,他登上一Yamakawa酒杯包含水或甚至一只活老鼠的顶部的钟摆。该系统在两种情况下,保持稳定。Yamakawa最终继续组织自己的fuzzy-systems研究实验室帮助利用自己的专利在田地里的时候。
黄石理工学院毕业设计(论文)外文文献翻译
展示之后,日本工程师开发出了大范围的模糊系统用于工业领域和消费领域的应用。1988年,日本建立了国际模糊工程实验室,建立合作安排48公司进行模糊控制的研究。
松下吸尘器使用微控制器运行模糊算法去控制传感器和调整吸尘力。日立洗衣机用模糊控制器Load-Weight,Fabric-Mix和尘土传感器及自动设定洗涤周期来最佳利用电能、水和洗涤剂。
佳能研制出的一种上相机使用电荷耦合器件(CCD)测量中的图像清晰的六个区域其视野和使用提供的信息来决定是否这个影像在焦点上(清晰)。它也可以追踪变化的速率在镜头运动的重点,以及它的速度以防止控制超调。相机的模糊控制系统采用12输入,6个输入了解解现行清晰所提供的数据和其他6个输入测量CCD镜头的变化率的运动。输出的位置是镜头。模糊控制系统应用13条规则,需要1.1 千字节记忆信息。
另外一个例子是,三菱工业空调设计采用25加热规则和25冷却规则。温度传感器提供输入,输出一个控制逆变器,一个压缩机气阀,风扇电机。和以前的设计相比,新设计的模糊控制器增加五次加热冷却速度,降低能耗24%,增加温度稳定性的一个因素两个,使用较少的传感器。
日本人对模糊逻辑的人情是反映在很广泛的应用范围上,他们一直在研究或实现:例如个性和笔迹识别光学模糊系统,机器人,声控机器人直升飞机。
模糊系统的相关研究工作也在美国和欧洲进行着。美国环境保护署分析了模糊控制节能电动机,美国国家航空和宇宙航行局研究了模糊控制自动太空对接。仿真结果表明,模糊控制系统可大大降低燃料消耗。如波音公司、通用汽车、艾伦-布拉德利、克莱斯勒、伊顿,和漩涡了模糊逻辑用于低功率冰箱、改善汽车变速箱。在1995年美泰克公司推出的一个“聪明” 基于模糊控制器洗碗机,“一站式感应模块”包括热敏电阻器,用来温度测量;电导率传感器,用来测量离子洗涤剂水平存在于洗;分散和浊度传感器用来检测透射光测量失禁的洗涤,以及一个磁致伸缩传感器来读取旋转速率。这个系统确定最优洗周期任何载荷,获得最佳的结果用最少的能源、洗涤剂、和水。
研究和开发还继续模糊应用软件,作为反对固件设计,包括模糊专家系统模糊逻辑与整合神经网络和所谓的自适应遗传软件系统,其最终目的是建立“自主学习”模糊控制系统。
黄石理工学院毕业设计(论文)外文文献翻译
模糊集
输入变量在一个模糊控制系统是集映射到一般由类似的隶属度函数,称为“模糊集”。转换的过程中,一个干脆利落的输入值模糊值称为“模糊化”。
一个控制系统也有各种不同的类型开关或“开关”,连同它的模拟输入输入,而这样的开关输入当然总有一个真实的价值等于要么1或0,但该方案能对付他们,简单的模糊函数,要么发生一个值或另一个。
赋予了“映射输入变量的隶属函数和进入真理价值,单片机然后做出决定为采取何种行动基于一套“规则”,每一组的形式。
在一个例子里,有两个输入变量是“刹车温度”和“速度”,定义为模糊集值。输出变量,“制动压力” ,也定义为一个模糊集,有价值观像“静”、“稍微增大” “略微下降”,等等。
这条规则本身很莫名其妙,因为它看起来好像可以使用,会干扰到与模糊,但要记住,这个决定是基于一套规则。
所有的规则都调用申请,使用模糊隶属度函数和诚实得到输入值,确定结果的规则。这个结果将被映射成一个隶属函数和控制输出变量的真值。
这些结果相结合,给出了具体的(“脆”)的答案,实际的制动压力,一个过程被称为解模糊化,结合了模糊操作规则 “推理“描述”模糊专家系统”。
传统的控制系统是基于数学模型的控制系统,描述了使用一个或更多微分方程确定系统回应其输入。这类系统通常被作为“PID控制器”他们是产品的数十年的发展建设和理论分析,是非常有效的。
如果PID和其他传统的控制系统是如此的先进,何必还要模糊控制吗?它有一些优点。在许多情况下,数学模型的控制过程可能不存在,或太“贵”的认识论的计算机处理能力和内存,与系统的基于经验规则可能更有效。
此外,模糊逻辑都适合低成本实现基于廉价的传感器、低分辨率模拟/数字转换器,或8位单片机芯片one-chip 4比特。这种系统可以很容易地通过增加新的规则升级来提高性能或添加新功能。在许多情况下,模糊控制可以用来改善现有的传统控制器系统通过增加了额外的情报电流控制方法。
模糊控的细节
模糊控制器是很简单的理念上。它们是由一个输入阶段,一个处理阶段,一个输
黄石理工学院毕业设计(论文)外文文献翻译
出阶段。地图传感器输入级或其他输入,比如开关等等,到合适的隶属函数和真理的价值。每一个适当的加工阶段调用规则和产生的结果对每个人来说,然后结合结果的规则。最后,将结果输出阶段相结合的具体控制输出回他的价值。
最常见的形状是三角形的隶属度函数,尽管梯形和贝尔曲线也使用,但其形状通常比数量更重要曲线及其位置。从三人至七人通常是适当的覆盖曲线所需要的范围的一个输入值,或“宇宙的话语“在模糊术语。
作为讨论之前,加工阶段是基于规则的集合的形式逻辑IFThen规则。作为一个例子,解释一个规则,因为如果(温度是“冷”),那么(加热器是“高”)由第一阶表达式冷(x)→高(y)和假设r是一个输入这样冷(r)是假的。然后公式冷(r)→高(t)是适用于任何一个师,因此任何不正确的控制提供了一种给r。很明显,如果我们考虑系统的先例的规则类定义一个分区这样一个自相矛盾的现象不会出现。在任何情况下它有时是不考虑两个变量x和y在一条规则没有某种功能的依赖。严谨的逻辑正当化中给出的模糊控制Hajek的书,被描绘成一个模糊控制理论的基本Hajek逻辑。在2005 Gerla模糊控制逻辑方法,提出了一种基于以下的想法。f模糊函数表示的系统与模糊控制相结合,即:给定输入r,s(y)f(r,y)是模糊集合可能的输出。然后给出一个可能的输出的t,我们把f(r,t)为真理程度的表示。更多的是任何系统的If-Then规则可转化为一个模糊的程序,在这种情况下模糊函数f模糊谓词的解释很好(x,y)在相关的最小模糊Herbrand
模型。以这样一种方式成为一个章模糊控制的模糊逻辑编程。学习过程成为一个问题属于归纳逻辑理论。
黄石理工学院毕业设计(论文)外文文献翻译
Fuzzy Control From Wikipedia November 2011
Overview
Fuzzy logic is widely used in machine control.The term itself inspires a certain skepticism, sounding equivalent to ”half-baked logic“ or ”bogus logic“, but the ”fuzzy“ part does not refer to a lack of rigour in the method, rather to the fact that the logic involved can deal with concepts that cannot be expressed as ”true“ or ”false“ but rather as ”partially true“.Although genetic algorithms and neural networks can perform just as well as fuzzy logic in many cases, fuzzy logic has the advantage that the solution to the problem can be cast in terms that human operators can understand, so that their experience can be used in the design of the controller.This makes it easier to mechanize tasks that are already successfully performed by humans.History and applications
Fuzzy logic was first proposed by Lotfi A.Zadeh of the University of California at Berkeley in a 1965 paper.He elaborated on his ideas in a 1973 paper that introduced the concept of ”linguistic variables“, which in this article equates to a variable defined as a fuzzy set.Other research followed, with the first industrial application, a cement kiln built in Denmark, coming on line in 1975.Fuzzy systems were largely ignored in the U.S.because they were associated with artificial intelligence, a field that periodically oversells itself, especially in the mid-1980s, resulting in a lack of credibility within the commercial domain.The Japanese did not have this prejudice.Interest in fuzzy systems was sparked by Seiji Yasunobu and Soji Miyamoto of Hitachi, who in 1985 provided simulations that demonstrated the superiority of fuzzy control systems for the Sendai railway.Their ideas were adopted, and fuzzy systems were used to control accelerating, braking, and stopping when the line opened in 1987.Another event in 1987 helped promote interest in fuzzy systems.During an international meeting of fuzzy researchers in Tokyo that year, Takeshi Yamakawa demonstrated the use of fuzzy control, through a set of simple dedicated fuzzy logic chips, in an ”inverted pendulum“ experiment.This is a classic control problem, in which a vehicle tries to keep a pole mounted on its top by a hinge upright by moving back and forth.Observers were impressed with this demonstration, as well as later experiments by Yamakawa in which he mounted a wine glass containing water or even a live mouse to the top of the pendulum.The system maintained stability in both cases.Yamakawa eventually went on to organize his own fuzzy-systems research lab to help exploit his patents in the field.Following such demonstrations, Japanese engineers developed a wide range of fuzzy systems for both industrial and consumer applications.In 1988 Japan established
黄石理工学院毕业设计(论文)外文文献翻译
the Laboratory for International Fuzzy Engineering(LIFE), a cooperative arrangement between 48 companies to pursue fuzzy research.Matsushita vacuum cleaners use micro controllers running fuzzy algorithms to interrogate dust sensors and adjust suction power accordingly.Hitachi washing machines use fuzzy controllers to load-weight, fabric-mix, and dirt sensors and automatically set the wash cycle for the best use of power, water, and detergent.Canon developed an autofocusing camera that uses a charge-coupled device(CCD)to measure the clarity of the image in six regions of its field of view and use the information provided to determine if the image is in focus.It also tracks the rate of change of lens movement during focusing, and controls its speed to prevent overshoot.The camera's fuzzy control system uses 12 inputs: 6 to obtain the current clarity data provided by the CCD and 6 to measure the rate of change of lens movement.The output is the position of the lens.The fuzzy control system uses 13 rules and requires 1.1 kilobytes of memory.As another example of a practical system, an industrial air conditioner designed by Mitsubishi uses 25 heating rules and 25 cooling rules.A temperature sensor provides input, with control outputs fed to an inverter, a compressor valve, and a fan motor.Compared to the previous design, the fuzzy controller heats and cools five times faster, reduces power consumption by 24%, increases temperature stability by a factor of two, and uses fewer sensors.The enthusiasm of the Japanese for fuzzy logic is reflected in the wide range of other applications they have investigated or implemented: character and handwriting recognition;optical fuzzy systems;robots, voice-controlled robot helicopters Work on fuzzy systems is also proceeding in the US and Europe.The US Environmental Protection Agency has investigated fuzzy control for energy-efficient motors, and NASA has studied fuzzy control for automated space docking: simulations show that a fuzzy control system can greatly reduce fuel consumption.Firms such as Boeing, General Motors, Allen-Bradley, Chrysler, Eaton, and Whirlpool have worked on fuzzy logic for use in low-power refrigerators, improved automotive transmissions, and energy-efficient electric motors.In 1995 Maytag introduced an ”intelligent“ dishwasher based on a fuzzy controller and a ”one-stop sensing module“ that combines a thermistor, for temperature measurement;a conductivity sensor, to measure detergent level from the ions present in the wash;a turbidity sensor that measures scattered and transmitted light to measure the soiling of the wash;and a magnetostrictive sensor to read spin rate.The system determines the optimum wash cycle for any load to obtain the best results with the least amount of energy, detergent, and water.Research and development is also continuing on fuzzy applications in software, as opposed to firmware, design, including fuzzy expert systems and integration of fuzzy logic with neural-network and so-called adaptive ”genetic“ software systems, with the ultimate goal of building ”self-learning“ fuzzy control systems.黄石理工学院毕业设计(论文)外文文献翻译
Fuzzy sets
The input variables in a fuzzy control system are in general mapped into by sets of membership functions similar to this, known as ”fuzzy sets“.The process of converting a crisp input value to a fuzzy value is called ”fuzzification“.A control system may also have various types of switch, or ”ON-OFF“, inputs along with its analog inputs, and such switch inputs of course will always have a truth value equal to either 1 or 0, but the scheme can deal with them as simplified fuzzy functions that happen to be either one value or another.Given ”mappings“ of input variables into membership functions and truth values, the microcontroller then makes decisions for what action to take based on a set of ”rules“, each of the form.In one example, the two input variables are ”brake temperature“ and ”speed“ that have values defined as fuzzy sets.The output variable, ”brake pressure“, is also defined by a fuzzy set that can have values like ”static“, ”slightly increased“, ”slightly decreased“, and so on.This rule by itself is very puzzling since it looks like it could be used without bothering with fuzzy logic, but remember that the decision is based on a set of rules:
All the rules that apply are invoked, using the membership functions and truth values obtained from the inputs, to determine the result of the rule.This result in turn will be mapped into a membership function and truth value controlling the output variable.These results are combined to give a specific(”crisp“)answer, the actual brake pressure, a procedure known as ”defuzzification“.This combination of fuzzy operations and rule-based ”inference“ describes a ”fuzzy expert system“.Traditional control systems are based on mathematical models in which the control system is described using one or more differential equations that define the system response to its inputs.Such systems are often implemented as ”PID controllers“(proportional-integral-derivative controllers).They are the products of decades of development and theoretical analysis, and are highly effective.If PID and other traditional control systems are so well-developed, why bother with fuzzy control? It has some advantages.In many cases, the mathematical model of the control process may not exist, or may be too ”expensive“ in terms of computer processing power and memory, and a system based on empirical rules may be more effective.Furthermore, fuzzy logic is well suited to low-cost implementations based on cheap sensors, low-resolution analog-to-digital converters, and 4-bit or 8-bit one-chip microcontroller chips.Such systems can be easily upgraded by adding new rules to improve performance or add new features.In many cases, fuzzy control can be used to improve existing traditional controller systems by adding an extra layer of intelligence to the current control method.黄石理工学院毕业设计(论文)外文文献翻译
Fuzzy control in detail
Fuzzy controllers are very simple conceptually.They consist of an input stage, a processing stage, and an output stage.The input stage maps sensor or other inputs, such as switches, thumbwheels, and so on, to the appropriate membership functions and truth values.The processing stage invokes each appropriate rule and generates a result for each, then combines the results of the rules.Finally, the output stage converts the combined result back into a specific control output value.The most common shape of membership functions is triangular, although trapezoidal and bell curves are also used, but the shape is generally less important than the number of curves and their placement.From three to seven curves are generally appropriate to cover the required range of an input value, or the ”universe of discourse“ in fuzzy jargon.As discussed earlier, the processing stage is based on a collection of logic rules in the form of IF-THEN statements, where the IF part is called the ”antecedent“ and the THEN part is called the ”consequent“.This rule uses the truth value of the ”temperature“ input, which is some truth value of ”cold“, to generate a result in the fuzzy set for the ”heater“ output, which is some value of ”high“.This result is used with the results of other rules to finally generate the crisp composite output.Obviously, the greater the truth value of ”cold“, the higher the truth value of ”high“, though this does not necessarily mean that the output itself will be set to ”high“ since this is only one rule among many.In some cases, the membership functions can be modified by ”hedges“ that are equivalent to adjectives.Common hedges include ”about“, ”near“, ”close to“, ”approximately“, ”very“, ”slightly“, ”too“, ”extremely“, and ”somewhat“.These operations may have precise definitions, though the definitions can vary considerably between different implementations.”Very“, for one example, squares membership functions;since the membership values are always less than 1, this narrows the membership function.”Extremely“ cubes the values to give greater narrowing, while ”somewhat“ broadens the function by taking the square root.In practice, the fuzzy rule sets usually have several antecedents that are combined using fuzzy operators, such as AND, OR, and NOT, though again the definitions tend to vary: AND, in one popular definition, simply uses the minimum weight of all the antecedents, while OR uses the maximum value.There is also a NOT operator that subtracts a membership function from 1 to give the ”complementary“ function.There are several ways to define the result of a rule, but one of the most common and simplest is the ”max-min“ inference method, in which the output membership function is given the truth value generated by the premise.Rules can be solved in parallel in hardware, or sequentially in software.The results of all the rules that have fired are ”defuzzified“ to a crisp value by one of several methods.There are dozens in theory, each with various advantages and drawbacks.The ”centroid“ method is very popular, in which the ”center of mass“ of the result provides the crisp value.Another approach is the ”height“ method, which takes the value of the biggest contributor.The centroid method favors the rule with the output of
黄石理工学院毕业设计(论文)外文文献翻译
greatest area, while the height method obviously favors the rule with the greatest output value.The diagram below demonstrates max-min inferring and centroid defuzzification for a system with input variables ”x“, ”y“, and ”z“ and an output variable ”n“.Note that ”mu“ is standard fuzzy-logic nomenclature for ”truth value“:
Fuzzy control system design is based on empirical methods, basically a methodical approach to trial-and-error.The general process is as follows:
1.Document the system's operational specifications and inputs and outputs.2.Document the fuzzy sets for the inputs.3.Document the rule set.4.Determine the defuzzification method.5.Run through test suite to validate system, adjust details as required.6.Complete document and release to production.Logical interpretation of fuzzy control In spite of the appearance there are several difficulties to give a rigorous logical interpretation of the IF-THEN rules.As an example, interpret a rule as IF(temperature is ”cold“)THEN(heater is ”high“)by the first order formula Cold(x)→High(y)and assume that r is an input such that Cold(r)is false.Then the formula Cold(r)→High(t)is true for any t and therefore any t gives a correct control given r.Obviously, if we consider systems of rules in which the class antecedent define a partition such a paradoxical phenomenon does not arise.In any case it is sometimes unsatisfactory to consider two variables x and y in a rule without some kind of functional dependence.A rigorous logical justification of fuzzy control is given in Hájek's book ,where fuzzy control is represented as a theory of Hájek's basic logic.Also in Gerla 2005 a logical approach to fuzzy control is proposed based on the following idea.Denote by f the fuzzy function associated with the fuzzy control system, i.e., given the input r, s(y)= f(r,y)is the fuzzy set of possible outputs.Then given a possible output 't', we interpret f(r,t)as the truth degree of the claim ”t is a good answer given r".More formally, any system of IF-THEN rules can be translate into a fuzzy program in such a way that the fuzzy function f is the interpretation of a vague predicate Good(x,y)in the associated least fuzzy Herbrand model.In such a way fuzzy control becomes a chapter of fuzzy logic programming.The learning process becomes a question belonging to inductive logic theory.