4毕业设计(论文)中英文文献翻译

时间:2019-05-14 17:17:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《4毕业设计(论文)中英文文献翻译》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《4毕业设计(论文)中英文文献翻译》。

第一篇:4毕业设计(论文)中英文文献翻译

湖北理工学院 毕业设计(论文)外文文献翻译

外文文献原稿和译文

Multiple single-chip microcomputer approach to fire detection and monitoring system

A.J.AI-Khalili, MSc, PhD D.AI-Khalili, MSc, PhD M.S.Khassem, MSc

Indexing term : Hazards, Design, Plant condition monitoring Abstract: A complete system for fire detection and alarm monitoring has been proposed for complex plants.The system uses multiple single chip architecture attached to a party line.The control algorithm is based on a two-level hierarchy of decision making, thus the complexity is distributed.A complete circuit diagram is given for the local and the central station with requirements for the software structure.The design is kept in general form such that it can be adapted to a multitude of plant configurations.It is particularly shown how new developments in technology, especially CMOS single chip devices, are incorporated in the system design to reduce the complexity of the overall hardware, e.g.by decomposing the system such that lower levels of hierarchy are able to have some autonomy in decision making, and thus a more complex decision is solved in a simple distributed method.1 Introduction Regulatory requirements for most high risk plants and buildings mandate the installation of fire detection and warning systems for all sensitive areas of the plant or the building.Most fire codes state the requirement for monitoring and control

湖北理工学院 毕业设计(论文)外文文献翻译

specifically related to a type of a plant or building such as chemical plants, petroleum, nuclear plants, residential high-rises etc.A general conclusion of these codes can be specified as the following requirements :(a)The source of all detector signals should be exactly identifiable by the central station(b)An extra path of communication between the central station and all local controllers(c)Direct means of control of alarm and central equipment by the central station(d)Means of communication between the central station and the fire department(e)Availability of emergency power supply.The codes usually also specify the types and frequency of tests for all equipment.A fire detection and alarm system is a combination of devices designed to signal an alarm in case of a fire.The system may also accomplish fan control, fire door hold or release, elevator recall, emergency lighting control and other emergency functions.These additional functions supplement the basic system which consists of detection and alarm devices and central control unit.Technology has an influence on system architecture.When technology changes, the architecture has to be revised to take advantage of these changes.In recent years, VLSI technology has been advancing at an exponential rate.First NMOS and, in the last year or two, CMOS chips have been produced with the same packing density with more gates per chip yet at a lower power consumption than NMOS.Surely this change in technology must affect our design of hardware at both the chip and the system level.At the chip level, single chips are now being produced which are equivalent to board levels of only the previous year or two.These chips have microprocessor, memory in RAM and ROM, IO Ports both serial and parallel, A/D timer, flags and other functions on chip.At the system level, the new chips make new architectures possible.The objective of this paper is to show how technology can influence system architecture in the field of fire control.The new high density single chip microcontrollers are incorporated in the design of a large scale system and yet we obtain a smaller system with a better performance.In terms of fire detection and

湖北理工学院 毕业设计(论文)外文文献翻译

alarm monitoring, this is reflected directly in the local station hardware, because of their remoteness and power supply requirements.A complete local station can be designed around a single CMOS chip with power consumption of a few m W depending on system operation.This approach reduces the cost and complexity of design, implementation and maintenance and provides easily expandable and portable design.This implementation was not possible with old technology.Most of fire detection/monitoring systems available are tailored towards a specific application and lack the use of recent advances in CMOS VLSI technology.In this study, we develop a fire detection/monitoring system which is general in concept, readily implementable in a multitude of applications for early detection of a fire before it becomes critical, for equipment and evacuation of personnel.Here, we propose a central control and distributed control/detection/monitoring with adequate communication, where use is made of single-chip microcontrollers in the local stations, thus improving controllability and observability of the monitoring process.2 Detection and alarm devices A basic fire detection system consists of two parts, detection and annunciation.An automatic detection device, such as a heat, smoke or flame detector, ultraviolet or infrared detectors or flame flicker, is based on detecting the byproduct of a combustion.Smoke detectors, of both ionization and optical types, are the most commonly used detector devices.When a typical detector of this type enters the alarm state its current consumption increases from the pA to the mA range(say, from a mere 15pA in the dormant mode to 60 mA)in the active mode.Inmany detectors the detector output voltage is well defined under various operating conditions, such as those

given in Table 1.The more sensitive the detector, the more susceptible it is to false alarms.In order to control the detector precisely, either of the following methods is used: a coincidence technique

湖北理工学院 毕业设计(论文)外文文献翻译

can be built into the detector, or a filtering technique such that a logic circuit becomes active only if x alarms are detected within a time period T.The detection technique depends greatly on the location and plant being protected;smoke detectors are used for sleeping areas, infrared or ultraviolet radiation are used when flammable liquids are being handled, heat detectors are used for fire suppression or extinguishing systems.In general, life and property protection have different approaches.Alarm devices, apart from the usual audible or visible alarms, may incorporate solid state sound reproduction and emergency voice communication or printers that record time, date, location and other information required by the standard code of practice for fire protection for complex plants.Heaviside [4] has an excellent review of all types of detectors and extinguisher systems.2.1 Control philosophy and division of labour Our control philosophy is implemented hierarchically.Three levels of system hierarchy are implemented, with two levels of decision making.There is no communication between equipment on the same level.Interaction between levels occurs by upwards transfer of information regarding the status of the subsystems and downwards transfer of commands.This is shown in Fig.1 where at level 1 is the central station microcomputer and is the ultimate decision maker(when not in manual mode).At level 2 are the local controllers, which reside in the local stations.At level 3 are the actual detectors and actuators.A manual mode of operation is provided at all levels.Information regarding the status of all detectors is transmitted on a per area basis to the local controllers.Their information is condensed and transmitted upward to the central microcomputer.Transfer of status is always unidirectional and upwards.Transfer of commands is always unidirectional and downwards, with expansion at the local control level.This approach preserves the strict rules of the hierarchy for exact monitoring detection and alarm systems associated with high risk plants.湖北理工学院 毕业设计(论文)外文文献翻译

The classification of the two layers of controls is based upon layers of decision making, with respect to the facts that(a)When the decision time comes, the making and implementation of a decision cannot be postponed(b)The decisions have uncertainty(c)It will isolate local decisions(e.g.locally we might have an alarm although there may be a fault with the system)3 General hardware I :Fig.2 depicts our design in the simplest of forms.The system uses an open party line approach with four conductor cables going in a loop shared by all the remote devices and the control panel.This approach is simple in concept and is economically feasible.However, one major disadvantage is the dependency on a single cable for power and signaling.In cases where reliability is of extreme importance, two or even three cables taking different

湖北理工学院 毕业设计(论文)外文文献翻译

routes throughout the system may be connected in parallel.Fig.3 gives the driver circuitry required to derive an expandable bus.This design takes advantage of recent advances in the single chip microcomputer technology to reduce the interface between the central station and the local stations.湖北理工学院 毕业设计(论文)外文文献翻译

3.1 Central control task

A central unit provides a centralized point to monitor and control the system

湖北理工学院 毕业设计(论文)外文文献翻译

activities.In the system to be described the central control unit serves a fivefold purpose.(i)It receives information from the local stations and operates the alarms and other output devices.(ii)It notifies the operator in case of system malfunction.(iii)It provides an overall system control manual and automatic.(iu)It provides a system test point of local stations and itself.(u)It provides a central point for observation, learning and adaptation.3.2 Local stations The local stations can take local decisions regarding recognition of a risk situation, and act independently on local affairs.In this technique we depend on ‘load-type coordination’, e.g.the lower level units recognize the existence of other decision units on the same level;the central or the top level provides the lower units with a model of the relationship between its action and the response of the system.It is evident that a powerful machine is required at this stage so that all the required functions can be implemented.The availability of the new generation of microchips makes this architecture a feasible solution.A single chip microcomputer was chosen over discrete digital and analogue devices to interface to the field devices and to the central microcomputer.This is the main reason that previously this approach was not feasible.In selecting the microcomputer for the local stations, the criterion was the requirement for a chip which contains the most integration of the analogue and digital ports required for the interface and the utilization of CMOS technology owing to remoteness of the local stations.The choice was the Motorola 68HC11A4, for the following reasons:(a)It is CMOS technology;this reduces power consumption.(b)It has a UART on board;this facilitates serial communication.(e)It has an a/d converter on board;this eliminates an external A/D.(d)It has 4K of ROM, 256 bytes of RAM, 512 bytes of EERROM with 40 1/0 lines and a 16 bit timer;this satisfied all our memory and 1/0 requirements at the local station side.湖北理工学院 毕业设计(论文)外文文献翻译 System implementation The local station: Fig.3 is the block diagram of the circuit used to utilize the MC68HCllA4 as a remote fire detecting circuit while Fig.4 illustrates the same circuit in an expanded form.It can be seen that the single microcontroller can be used to monitor more than one detector, thus reducing system cost.The loop power supply, which is usually between 28 and 26 V, is further regulated by a 5 V 100 mA monolithic low power voltage regulator to supply power to the microcontroller.The onboard oscillator, coupled with an external crystal of 2.4576 MHz, supplies the microcontroller with its timing signal which is divided internally by four to yield a processor frequency of 614.4 kHz, which is an even multiple of the RS 232 [7] baud rate generator.In this Section the term ‘supervised input or output’ will be used to mean that the function in question is monitored for open-and short-circuit conditions in addition to its other normal functions.More information can be found in Reference 9.Main loop

湖北理工学院 毕业设计(论文)外文文献翻译 Conclusion This paper describes the development of a large scale fire detection and alarm system using multi-single chip microcomputers.The architecture used is a two-level hierarchy of decision making.This architecture is made possible by the new CMOS microcontrollers which represent a high packing density at a low power consumption yet are powerful in data processing and thus in decision making.Each local station could make an autonomous decision if the higher level of hierarchy allows it to do so.It has been tried to keep the system design in general format so it can be adapted to varying situations.A prototype of the described system has been built and tested [10].The control part of the central station is implemented with a development card based on MC 68000 microprocessor(MEX 68KECB, by Motorola), which has a built-in

湖北理工学院 毕业设计(论文)外文文献翻译

monitor called Tutor.The application programs were developed using the features provided by this monitor.The local stations’ controllers were designed using the MC 68705R3, single-chip microcontroller.7 References 1 ‘Fire protection guidelines for nuclear power plants’, US NRC Regulatory Guide 1.120 2 BAGCHI, C.N.: ‘A multi-level distributed microprocessor system for a nuclear power plant fire protection system controls, monitoring, and communication’, IEEE Trans., 1982 3 PUCILL, P.M.: ‘Fire hazard protection, detection and monitoring systems’, Sea.Con, 2, Proceedings of Symposium on ADV in offshore and terminal measurement and control systems, Brighton, England, March 1979, pp.353-363 4 HEAVISID, L.: ‘Offshore fire and explosion detection and fixed fire’.Offshore Technological Conference, 12th Annual Proceedings, Houston, Texas, May 1980, pp.509-522 5 CELLENTANI,E.N.,and

HUMPHREY,W.Y.:

‘Coordinated detection/communication approach to fire protection’, Specify: Eng., ‘Motorola Microprocessors Data Manual’(Motorola Semiconductor Products, Austin, Texas, USA)7 Electronic Industries Association : ‘Interface between data terminal equipment and data communication equipment employing serial binary data interchange’(EIA Standard RS-232, Washington, DC, 1969)8 MESAROVIC, M.D., MACKO, D., TAKAHARA, Y.: ‘Theory of hierarchical multilevel systems’(Academic Press, 1970)9 KASSEM, M.: ‘Fire alarm systems’, MSc.thesis, Dept.of Elec.& Comp.Eng., Concordia University, Montreal, Canada, 1985 10 LIE, P., and KOTAMARTI, U.: ‘The design of a fire alarm system using microprocessors’, C481 Project, Dept.of Elec.and Comp.Eng., Concordia University, Montreal, Canada, 1986

湖北理工学院 毕业设计(论文)外文文献翻译

基于单片机的火灾探测和监控系统

A.J.AI-Khalili, MSc, PhD D.AI-Khalili, MSc, PhD M.S.Khassem, MSc

关键词:危险,设计,设备状态监测

摘要:火灾探测及报警监控已成为一个复杂而完整的体系。该系统采用多个单芯片架构到一条主线上。该控制算法是基于两级决策层次,因此分配了复杂性。一个完整的电路原理图,给出了主、分控制器所需的软件的结构要求。设计延续一般形式,这样可以适应于多种系统的配置。尤其显示出新的技术发展,特别是CMOS单芯片器件,在系统设计中的使用,以减少整体硬件的复杂性,例如,通过分解系统,这样的层次较低水平的控制器能够有一些决策自主权,用简单的分布式的方法解决了复杂的决策。

1、引言

大多数高风险地区和建筑物的管理要求安装火灾探测报警系统。多数国家消防规范的要求监测和控制具体的是危险场合或建筑物,如化工厂,石油类,核电厂,住宅高楼等这些场合的一般性质可以指定为下列要求 :

(一)所有探测器信号源信号能被主处理器准确识别。

(二)主从控制器有另外的沟通路径。

(三)检测报警和主控制设备由控制中心控制。

(四)火灾现场和控制中心的通讯。

(五)提供的应急电源。

它也被用来应对特殊情况和进行深被检测。

火灾探测及报警系统是一个旨在信号,在一旦发生火警报警装置的组合。该系统也可实现风扇控制,防火门关闭或释放,电梯锁定,应急照明控制和其他

湖北理工学院 毕业设计(论文)外文文献翻译

紧急任务。这些额外的功能补充由检测和报警装置和中央控制单元组成。

技术对系统结构有很深的影响。当技术的变革,该架构必须修订,以利用这些新的功能变化。近年来,超大规模集成电路技术已经大大进步。第一,NMOS在过去的一年或两年,CMOS芯片以相同的堆积密度拥有更多的门和更低的功耗。当然这种技术的变化必然影响在芯片和系统级我们的硬件设计。在芯片级,单芯片现在正在制作的是只相当于上一年或两年的水平。这些芯片有微处理器,RAM和ROM,IO端口存储器串行和并行,A / D转换定时器,和其他功能的芯片。在系统级,新的芯片做出新的结构成为可能。本文的目的是体现技术如何影响消防控制领域的系统结构。新的高密度的单芯片微控制器纳入一个大系统的设计,但我们可以得到了更好的性能,更小的系统。在火灾探测和报警监控系统中,这是直接反映在分控制站的硬件,因为地处偏远和电源的要求。一个完整的分控制站可以围绕着一个带电源的CMOS芯片设计。这种方法降低了成本和设计复杂性,方便实施和维护,并提供易于扩展和便携式设计。这是旧技术不可能实现的。大部分火灾检测/监测系统提供特定的应用程序,缺乏对CMOS超大规模集成电路技术的应用。在这项研究中,我们开发了火灾检测/监测系统,常规设计,易于执行的早期发现火警。在这里,我们提出一个中央控制和分发控制/检测/充分的沟通,如果使用的单芯片微控制器在分控制站,从而提高可控性和可观性的监测过程。

2、检测和报警装置

一个基本的火灾探测系统由两部分组成,检测和报警。自动检测设备有比如热,烟雾或火焰检测器,紫外线或红外线探测器或火焰闪烁,是基于检测 一个燃烧的副产品。烟雾探测器都电离和光类型,是最常用的检测设备。当这种类型的典型探测器进入报警状态产生的电流信号会从PA变成MA(比如,从单纯的15pA在休眠模式下为60毫安)在主动模式。在许多探测器的检测器输出电压明确在各种运行条件,例如见表1。越是敏感的检测器,它更容易受到虚假警报。为了控制探测器的精确,可使用下列方法:过滤技术,这样的逻辑电路成为活跃仅当x警报的时间内检测周期T。检测技术在很大程度上取决于地点和植物受到保护,烟雾探测器是睡觉的地方,红外线和紫外线辐射探

湖北理工学院 毕业设计(论文)外文文献翻译

测器,检测易燃液体燃烧,热探测器用于灭火和灭火系统。一般来说,生命和财产保护有不同的做法。报警装置,从通常的声响或视觉报警外,还可以采用固态的声音再现和紧急话音通信或打印机,记录时间,日期,地点和其他资料。Heavisid [4] 拥有一支优秀的审查探测器和灭火器的各种制度。

2.1控制理念和分工

我们的理念是实施控制等级。三个层次的系统级的实施,两个级别的决策。之间没有设备,在同一层次的沟通。交互各级之间发生了向上的信息传输有关的子系统和向下状态转移的命令。这是图所示。1,其中第1级是中央控制站,是微机最终(在不手动模式)决策者。第2级是当地控制器,建立在当地的站。第3级是实际检测器和驱动器。在各级提供手操作模式。所有探测器的数据和分处理器是当地控制的基础。他们将信息浓缩,并转交中央处理器。信息传递的地位始终是单向及以上。命令传输是单向的总是向下,并在扩大局部控制的水平。这种方法保留了层次的准确监测检测和严格的规则高风险的核电站警报系统。两个控制层的分类是基于决策层。

(一)在届时的决定,提出和决定的执行情况不能再拖延

(二)决定的不确定性

(三)将隔离当地的决定(例如,我们可能会在当地报警,但有可能有故障系统)

湖北理工学院 毕业设计(论文)外文文献翻译

3、硬件

图.2描绘了我们的设计最简单的形式。这个系统采用四个导体开放的路线,在所有远程共享一个循环电缆设备和控制面板。这种方法简单,经济上可行。但是,一个主要缺点是对一个单一的电力和信号电缆的依赖。在重要环境下,可靠性是极其重要的。固可采用两个甚至三个电缆采取不同的线路连接,可并行连接。图.3是驱动电路必须得一个扩展总线。采用这种设计在单片机技术的最新发展优势减少与中央控制站和地方控制站的接口。

3.1中央控制任务

中央站点提供了一个集中点,以监测和控制系统的活动。在该系统介绍了中央控制单元的目的(一)它得到了分控制站的信息和控制警钟及其他输出设备。

(二)它提示在系统出现故障时的操作。

(三)它提供了一个全面系统的手动和自动控制。

(四),它提供了中央和分站的系统测试点。

(五)它提供了一个中心点观察,学习和适应。

湖北理工学院 毕业设计(论文)外文文献翻译

湖北理工学院 毕业设计(论文)外文文献翻译

3.2 分控制站

分控制站的决定可以控制处理当地的信息。这种技术我们就依靠负载型协调下级单位,承认在同一水平上的其他决定单位的存在;中央或高层提供了一个较低的单位模型之间的行动和系统响应的关系。很明显,一个强大的机器,需要在这个阶段,使所有需要的功能得到有效执行。该芯片的新一代供应使得该体系结构的解决变得可行。

单片机被选中了离散的数字和模拟设备接口,到外地设备和中央微机。这是最主要的原因,以前这种做法是不可行的。该芯片的选择的,包含要求的模拟和数字接口所需的端口和CMOS技术的运用,由于地处偏僻的分控制站最一体化。这个选择是摩托罗拉68HC11A4,理由如下:

(1)它是CMOS技术,这可减少电力消耗。

(2)它有一个UART,这有利于串行通信。

(3)它有一个A / D转换器上,这消除了外部A / D转换

(4)它有一个4K的ROM,256 K内存,512K EERROM字节40个I/O端口的线路和一个16位定时器;符合分控制站所有的内存和1 / 0的要求。

4、系统实施

分控制站:图.3 是用于一个远程火灾报警MC68HCllA4电路框图

检测电路:图.4这是前一个电路的扩展形式。可以看出单片机可用于监控多个探测器,从而降低了系统成本。

回路电源,通常在26到28V之间,通常五伏一百毫安单片低功耗电压调节器供电的微控制器。板载振荡器,是一个2.4576 MHz的外部晶体结合,提供时间信号,它被分为4个内部收益率为614.4千赫,这是一个更多的RS 232 [7]波特率发生器的处理器频率微控制器。

湖北理工学院 毕业设计(论文)外文文献翻译

5、主循环

湖北理工学院 毕业设计(论文)外文文献翻译

6、结论

本文描述了一个大规模的火灾探测及报警系统,使用多的发展,单芯片微型计算机。该架构是采用两个层次的决策层次。这种架构是可以用到的新的CMOS微控制器,低功耗,并在数据处理功能强大的高堆积密度和决策。每个地方控制站可以自主作出的决定如果上级机构,允许它这样做。一般格式化系统设计,因此它可以适应不同的情况。所描述的系统原型已经建成并测试。中央控制站的控制部分是基于MC 68000微处理器(墨西哥68KECB摩托罗拉),它有一个内置的显示器称为导师。该应用程序都是使用这个显示器提供的特性。本地基站控制器的设计采用了MC68705R3单片机。

7、参考文献 ‘Fire protection guidelines for nuclear power plants’, US NRC Regulatory Guide 1.120 2 BAGCHI, C.N.: ‘A multi-level distributed microprocessor system for a nuclear power plant fire protection system controls, monitoring, and communication’, IEEE Trans., 1982 3 PUCILL, P.M.: ‘Fire hazard protection, detection and monitoring systems’, Sea.Con, 2, Proceedings of Symposium on ADV in offshore and terminal measurement and control systems, Brighton, England, March 1979, pp.353-363 4 HEAVISID, L.: ‘Offshore fire and explosion detection and fixed fire’.Offshore Technological Conference, 12th Annual Proceedings,4, Houston, Texas, May 1980, pp.509-522 5 CELLENTANI,E.N.,and

HUMPHREY,W.Y.:

‘Coordinated detection/communication approach to fire protection’, Specif: Eng., 6 ‘Motorola Microprocessors Data Manual’(Motorola Semiconductor Products, Austin, Texas, USA)7 Electronic Industries Association : ‘Interface between data terminal equipment and data communication equipment employing serial binary data interchange’(EIA Standard RS-232, Washington, DC, 1969)8 MESAROVIC, M.D., MACKO, D., TAKAHARA, Y.: ‘Theory of hierarchical

湖北理工学院 毕业设计(论文)外文文献翻译

multilevel systems’(Academic Press, 1970)KASSEM, M.: ‘Fire alarm systems’, MSc.thesis, Dept.of Elec.& Comp.Eng., Concordia University, Montreal, Canada, 1985 10 LIE, P., and KOTAMARTI, U.: ‘The design of a fire alarm system using microprocessors’, C481 Project, Dept.of Elec.and Comp.Eng., Concordia University, Montreal, Canada, 1986

第二篇:4毕业设计(论文)外文文献翻译范文

黄石理工学院毕业设计(论文)外文文献翻译

模糊控制理论

摘自 维基百科 2011年11月20日

概述

模糊逻辑广泛适用于机械控制。这个词本身激发一个一定的怀疑,试探相当于“仓促的逻辑”或“虚假的逻辑”,但“模糊”不是指一个部分缺乏严格性的方法,而这样的事实,即逻辑涉及能处理的概念,不能被表达为“对”或“否”,而是因为“部分真实”。虽然遗传算法和神经网络可以执行一样模糊逻辑在很多情况下,模糊逻辑的优点是解决这个问题的方法,能够被铸造方面接线员能了解,以便他们的经验,可用于设计的控制器。这让它更容易完成机械化已成功由人执行。

历史以及应用

模糊逻辑首先被提出是有Lotfi在加州大学伯克利分校在1965年的一篇论文。他阐述了他的观点在1973年的一篇论文的概念,介绍了语言变量”,在这篇文章中相当于一个变量定义为一个模糊集合。其他研究打乱了,第二次工业应用中,水泥窑建在丹麦,即将到来的在线1975。

模糊系统在很大程度上在美国被忽略了,因为他们更多关注的是人工智能,一个被过分吹嘘的领域,尤其是在1980年中期年代,导致在诚信缺失的商业领域。

然而日本人对这个却没有偏见和忽略,模糊系统引发日立的Seiji Yasunobu和Soji Yasunobu Miyamoto的兴趣。,他于1985年的模拟,证明了模糊控制系统对仙台铁路的控制的优越性。他们的想法是被接受了,并将模糊系统用来控制加速、制动、和停车,当线于1987年开业。

1987年另一项促进模糊系统的兴趣。在一个国际会议在东京的模糊研究那一年,Yamakawa论证<使用模糊控制,通过一系列简单的专用模糊逻辑芯片,在一个“倒立摆“实验。这是一个经典的控制问题,在这一过程中,车辆努力保持杆安装在顶部用铰链正直来回移动。

这次展示给观察者家们留下了深刻的印象,以及后来的实验,他登上一Yamakawa酒杯包含水或甚至一只活老鼠的顶部的钟摆。该系统在两种情况下,保持稳定。Yamakawa最终继续组织自己的fuzzy-systems研究实验室帮助利用自己的专利在田地里的时候。

黄石理工学院毕业设计(论文)外文文献翻译

展示之后,日本工程师开发出了大范围的模糊系统用于工业领域和消费领域的应用。1988年,日本建立了国际模糊工程实验室,建立合作安排48公司进行模糊控制的研究。

松下吸尘器使用微控制器运行模糊算法去控制传感器和调整吸尘力。日立洗衣机用模糊控制器Load-Weight,Fabric-Mix和尘土传感器及自动设定洗涤周期来最佳利用电能、水和洗涤剂。

佳能研制出的一种上相机使用电荷耦合器件(CCD)测量中的图像清晰的六个区域其视野和使用提供的信息来决定是否这个影像在焦点上(清晰)。它也可以追踪变化的速率在镜头运动的重点,以及它的速度以防止控制超调。相机的模糊控制系统采用12输入,6个输入了解解现行清晰所提供的数据和其他6个输入测量CCD镜头的变化率的运动。输出的位置是镜头。模糊控制系统应用13条规则,需要1.1 千字节记忆信息。

另外一个例子是,三菱工业空调设计采用25加热规则和25冷却规则。温度传感器提供输入,输出一个控制逆变器,一个压缩机气阀,风扇电机。和以前的设计相比,新设计的模糊控制器增加五次加热冷却速度,降低能耗24%,增加温度稳定性的一个因素两个,使用较少的传感器。

日本人对模糊逻辑的人情是反映在很广泛的应用范围上,他们一直在研究或实现:例如个性和笔迹识别光学模糊系统,机器人,声控机器人直升飞机。

模糊系统的相关研究工作也在美国和欧洲进行着。美国环境保护署分析了模糊控制节能电动机,美国国家航空和宇宙航行局研究了模糊控制自动太空对接。仿真结果表明,模糊控制系统可大大降低燃料消耗。如波音公司、通用汽车、艾伦-布拉德利、克莱斯勒、伊顿,和漩涡了模糊逻辑用于低功率冰箱、改善汽车变速箱。在1995年美泰克公司推出的一个“聪明” 基于模糊控制器洗碗机,“一站式感应模块”包括热敏电阻器,用来温度测量;电导率传感器,用来测量离子洗涤剂水平存在于洗;分散和浊度传感器用来检测透射光测量失禁的洗涤,以及一个磁致伸缩传感器来读取旋转速率。这个系统确定最优洗周期任何载荷,获得最佳的结果用最少的能源、洗涤剂、和水。

研究和开发还继续模糊应用软件,作为反对固件设计,包括模糊专家系统模糊逻辑与整合神经网络和所谓的自适应遗传软件系统,其最终目的是建立“自主学习”模糊控制系统。

黄石理工学院毕业设计(论文)外文文献翻译

模糊集

输入变量在一个模糊控制系统是集映射到一般由类似的隶属度函数,称为“模糊集”。转换的过程中,一个干脆利落的输入值模糊值称为“模糊化”。

一个控制系统也有各种不同的类型开关或“开关”,连同它的模拟输入输入,而这样的开关输入当然总有一个真实的价值等于要么1或0,但该方案能对付他们,简单的模糊函数,要么发生一个值或另一个。

赋予了“映射输入变量的隶属函数和进入真理价值,单片机然后做出决定为采取何种行动基于一套“规则”,每一组的形式。

在一个例子里,有两个输入变量是“刹车温度”和“速度”,定义为模糊集值。输出变量,“制动压力” ,也定义为一个模糊集,有价值观像“静”、“稍微增大” “略微下降”,等等。

这条规则本身很莫名其妙,因为它看起来好像可以使用,会干扰到与模糊,但要记住,这个决定是基于一套规则。

所有的规则都调用申请,使用模糊隶属度函数和诚实得到输入值,确定结果的规则。这个结果将被映射成一个隶属函数和控制输出变量的真值。

这些结果相结合,给出了具体的(“脆”)的答案,实际的制动压力,一个过程被称为解模糊化,结合了模糊操作规则 “推理“描述”模糊专家系统”。

传统的控制系统是基于数学模型的控制系统,描述了使用一个或更多微分方程确定系统回应其输入。这类系统通常被作为“PID控制器”他们是产品的数十年的发展建设和理论分析,是非常有效的。

如果PID和其他传统的控制系统是如此的先进,何必还要模糊控制吗?它有一些优点。在许多情况下,数学模型的控制过程可能不存在,或太“贵”的认识论的计算机处理能力和内存,与系统的基于经验规则可能更有效。

此外,模糊逻辑都适合低成本实现基于廉价的传感器、低分辨率模拟/数字转换器,或8位单片机芯片one-chip 4比特。这种系统可以很容易地通过增加新的规则升级来提高性能或添加新功能。在许多情况下,模糊控制可以用来改善现有的传统控制器系统通过增加了额外的情报电流控制方法。

模糊控的细节

模糊控制器是很简单的理念上。它们是由一个输入阶段,一个处理阶段,一个输

黄石理工学院毕业设计(论文)外文文献翻译

出阶段。地图传感器输入级或其他输入,比如开关等等,到合适的隶属函数和真理的价值。每一个适当的加工阶段调用规则和产生的结果对每个人来说,然后结合结果的规则。最后,将结果输出阶段相结合的具体控制输出回他的价值。

最常见的形状是三角形的隶属度函数,尽管梯形和贝尔曲线也使用,但其形状通常比数量更重要曲线及其位置。从三人至七人通常是适当的覆盖曲线所需要的范围的一个输入值,或“宇宙的话语“在模糊术语。

作为讨论之前,加工阶段是基于规则的集合的形式逻辑IFThen规则。作为一个例子,解释一个规则,因为如果(温度是“冷”),那么(加热器是“高”)由第一阶表达式冷(x)→高(y)和假设r是一个输入这样冷(r)是假的。然后公式冷(r)→高(t)是适用于任何一个师,因此任何不正确的控制提供了一种给r。很明显,如果我们考虑系统的先例的规则类定义一个分区这样一个自相矛盾的现象不会出现。在任何情况下它有时是不考虑两个变量x和y在一条规则没有某种功能的依赖。严谨的逻辑正当化中给出的模糊控制Hajek的书,被描绘成一个模糊控制理论的基本Hajek逻辑。在2005 Gerla模糊控制逻辑方法,提出了一种基于以下的想法。f模糊函数表示的系统与模糊控制相结合,即:给定输入r,s(y)f(r,y)是模糊集合可能的输出。然后给出一个可能的输出的t,我们把f(r,t)为真理程度的表示。更多的是任何系统的If-Then规则可转化为一个模糊的程序,在这种情况下模糊函数f模糊谓词的解释很好(x,y)在相关的最小模糊Herbrand

模型。以这样一种方式成为一个章模糊控制的模糊逻辑编程。学习过程成为一个问题属于归纳逻辑理论。

黄石理工学院毕业设计(论文)外文文献翻译

Fuzzy Control From Wikipedia November 2011

Overview

Fuzzy logic is widely used in machine control.The term itself inspires a certain skepticism, sounding equivalent to ”half-baked logic“ or ”bogus logic“, but the ”fuzzy“ part does not refer to a lack of rigour in the method, rather to the fact that the logic involved can deal with concepts that cannot be expressed as ”true“ or ”false“ but rather as ”partially true“.Although genetic algorithms and neural networks can perform just as well as fuzzy logic in many cases, fuzzy logic has the advantage that the solution to the problem can be cast in terms that human operators can understand, so that their experience can be used in the design of the controller.This makes it easier to mechanize tasks that are already successfully performed by humans.History and applications

Fuzzy logic was first proposed by Lotfi A.Zadeh of the University of California at Berkeley in a 1965 paper.He elaborated on his ideas in a 1973 paper that introduced the concept of ”linguistic variables“, which in this article equates to a variable defined as a fuzzy set.Other research followed, with the first industrial application, a cement kiln built in Denmark, coming on line in 1975.Fuzzy systems were largely ignored in the U.S.because they were associated with artificial intelligence, a field that periodically oversells itself, especially in the mid-1980s, resulting in a lack of credibility within the commercial domain.The Japanese did not have this prejudice.Interest in fuzzy systems was sparked by Seiji Yasunobu and Soji Miyamoto of Hitachi, who in 1985 provided simulations that demonstrated the superiority of fuzzy control systems for the Sendai railway.Their ideas were adopted, and fuzzy systems were used to control accelerating, braking, and stopping when the line opened in 1987.Another event in 1987 helped promote interest in fuzzy systems.During an international meeting of fuzzy researchers in Tokyo that year, Takeshi Yamakawa demonstrated the use of fuzzy control, through a set of simple dedicated fuzzy logic chips, in an ”inverted pendulum“ experiment.This is a classic control problem, in which a vehicle tries to keep a pole mounted on its top by a hinge upright by moving back and forth.Observers were impressed with this demonstration, as well as later experiments by Yamakawa in which he mounted a wine glass containing water or even a live mouse to the top of the pendulum.The system maintained stability in both cases.Yamakawa eventually went on to organize his own fuzzy-systems research lab to help exploit his patents in the field.Following such demonstrations, Japanese engineers developed a wide range of fuzzy systems for both industrial and consumer applications.In 1988 Japan established

黄石理工学院毕业设计(论文)外文文献翻译

the Laboratory for International Fuzzy Engineering(LIFE), a cooperative arrangement between 48 companies to pursue fuzzy research.Matsushita vacuum cleaners use micro controllers running fuzzy algorithms to interrogate dust sensors and adjust suction power accordingly.Hitachi washing machines use fuzzy controllers to load-weight, fabric-mix, and dirt sensors and automatically set the wash cycle for the best use of power, water, and detergent.Canon developed an autofocusing camera that uses a charge-coupled device(CCD)to measure the clarity of the image in six regions of its field of view and use the information provided to determine if the image is in focus.It also tracks the rate of change of lens movement during focusing, and controls its speed to prevent overshoot.The camera's fuzzy control system uses 12 inputs: 6 to obtain the current clarity data provided by the CCD and 6 to measure the rate of change of lens movement.The output is the position of the lens.The fuzzy control system uses 13 rules and requires 1.1 kilobytes of memory.As another example of a practical system, an industrial air conditioner designed by Mitsubishi uses 25 heating rules and 25 cooling rules.A temperature sensor provides input, with control outputs fed to an inverter, a compressor valve, and a fan motor.Compared to the previous design, the fuzzy controller heats and cools five times faster, reduces power consumption by 24%, increases temperature stability by a factor of two, and uses fewer sensors.The enthusiasm of the Japanese for fuzzy logic is reflected in the wide range of other applications they have investigated or implemented: character and handwriting recognition;optical fuzzy systems;robots, voice-controlled robot helicopters Work on fuzzy systems is also proceeding in the US and Europe.The US Environmental Protection Agency has investigated fuzzy control for energy-efficient motors, and NASA has studied fuzzy control for automated space docking: simulations show that a fuzzy control system can greatly reduce fuel consumption.Firms such as Boeing, General Motors, Allen-Bradley, Chrysler, Eaton, and Whirlpool have worked on fuzzy logic for use in low-power refrigerators, improved automotive transmissions, and energy-efficient electric motors.In 1995 Maytag introduced an ”intelligent“ dishwasher based on a fuzzy controller and a ”one-stop sensing module“ that combines a thermistor, for temperature measurement;a conductivity sensor, to measure detergent level from the ions present in the wash;a turbidity sensor that measures scattered and transmitted light to measure the soiling of the wash;and a magnetostrictive sensor to read spin rate.The system determines the optimum wash cycle for any load to obtain the best results with the least amount of energy, detergent, and water.Research and development is also continuing on fuzzy applications in software, as opposed to firmware, design, including fuzzy expert systems and integration of fuzzy logic with neural-network and so-called adaptive ”genetic“ software systems, with the ultimate goal of building ”self-learning“ fuzzy control systems.黄石理工学院毕业设计(论文)外文文献翻译

Fuzzy sets

The input variables in a fuzzy control system are in general mapped into by sets of membership functions similar to this, known as ”fuzzy sets“.The process of converting a crisp input value to a fuzzy value is called ”fuzzification“.A control system may also have various types of switch, or ”ON-OFF“, inputs along with its analog inputs, and such switch inputs of course will always have a truth value equal to either 1 or 0, but the scheme can deal with them as simplified fuzzy functions that happen to be either one value or another.Given ”mappings“ of input variables into membership functions and truth values, the microcontroller then makes decisions for what action to take based on a set of ”rules“, each of the form.In one example, the two input variables are ”brake temperature“ and ”speed“ that have values defined as fuzzy sets.The output variable, ”brake pressure“, is also defined by a fuzzy set that can have values like ”static“, ”slightly increased“, ”slightly decreased“, and so on.This rule by itself is very puzzling since it looks like it could be used without bothering with fuzzy logic, but remember that the decision is based on a set of rules:

All the rules that apply are invoked, using the membership functions and truth values obtained from the inputs, to determine the result of the rule.This result in turn will be mapped into a membership function and truth value controlling the output variable.These results are combined to give a specific(”crisp“)answer, the actual brake pressure, a procedure known as ”defuzzification“.This combination of fuzzy operations and rule-based ”inference“ describes a ”fuzzy expert system“.Traditional control systems are based on mathematical models in which the control system is described using one or more differential equations that define the system response to its inputs.Such systems are often implemented as ”PID controllers“(proportional-integral-derivative controllers).They are the products of decades of development and theoretical analysis, and are highly effective.If PID and other traditional control systems are so well-developed, why bother with fuzzy control? It has some advantages.In many cases, the mathematical model of the control process may not exist, or may be too ”expensive“ in terms of computer processing power and memory, and a system based on empirical rules may be more effective.Furthermore, fuzzy logic is well suited to low-cost implementations based on cheap sensors, low-resolution analog-to-digital converters, and 4-bit or 8-bit one-chip microcontroller chips.Such systems can be easily upgraded by adding new rules to improve performance or add new features.In many cases, fuzzy control can be used to improve existing traditional controller systems by adding an extra layer of intelligence to the current control method.黄石理工学院毕业设计(论文)外文文献翻译

Fuzzy control in detail

Fuzzy controllers are very simple conceptually.They consist of an input stage, a processing stage, and an output stage.The input stage maps sensor or other inputs, such as switches, thumbwheels, and so on, to the appropriate membership functions and truth values.The processing stage invokes each appropriate rule and generates a result for each, then combines the results of the rules.Finally, the output stage converts the combined result back into a specific control output value.The most common shape of membership functions is triangular, although trapezoidal and bell curves are also used, but the shape is generally less important than the number of curves and their placement.From three to seven curves are generally appropriate to cover the required range of an input value, or the ”universe of discourse“ in fuzzy jargon.As discussed earlier, the processing stage is based on a collection of logic rules in the form of IF-THEN statements, where the IF part is called the ”antecedent“ and the THEN part is called the ”consequent“.This rule uses the truth value of the ”temperature“ input, which is some truth value of ”cold“, to generate a result in the fuzzy set for the ”heater“ output, which is some value of ”high“.This result is used with the results of other rules to finally generate the crisp composite output.Obviously, the greater the truth value of ”cold“, the higher the truth value of ”high“, though this does not necessarily mean that the output itself will be set to ”high“ since this is only one rule among many.In some cases, the membership functions can be modified by ”hedges“ that are equivalent to adjectives.Common hedges include ”about“, ”near“, ”close to“, ”approximately“, ”very“, ”slightly“, ”too“, ”extremely“, and ”somewhat“.These operations may have precise definitions, though the definitions can vary considerably between different implementations.”Very“, for one example, squares membership functions;since the membership values are always less than 1, this narrows the membership function.”Extremely“ cubes the values to give greater narrowing, while ”somewhat“ broadens the function by taking the square root.In practice, the fuzzy rule sets usually have several antecedents that are combined using fuzzy operators, such as AND, OR, and NOT, though again the definitions tend to vary: AND, in one popular definition, simply uses the minimum weight of all the antecedents, while OR uses the maximum value.There is also a NOT operator that subtracts a membership function from 1 to give the ”complementary“ function.There are several ways to define the result of a rule, but one of the most common and simplest is the ”max-min“ inference method, in which the output membership function is given the truth value generated by the premise.Rules can be solved in parallel in hardware, or sequentially in software.The results of all the rules that have fired are ”defuzzified“ to a crisp value by one of several methods.There are dozens in theory, each with various advantages and drawbacks.The ”centroid“ method is very popular, in which the ”center of mass“ of the result provides the crisp value.Another approach is the ”height“ method, which takes the value of the biggest contributor.The centroid method favors the rule with the output of

黄石理工学院毕业设计(论文)外文文献翻译

greatest area, while the height method obviously favors the rule with the greatest output value.The diagram below demonstrates max-min inferring and centroid defuzzification for a system with input variables ”x“, ”y“, and ”z“ and an output variable ”n“.Note that ”mu“ is standard fuzzy-logic nomenclature for ”truth value“:

Fuzzy control system design is based on empirical methods, basically a methodical approach to trial-and-error.The general process is as follows:

1.Document the system's operational specifications and inputs and outputs.2.Document the fuzzy sets for the inputs.3.Document the rule set.4.Determine the defuzzification method.5.Run through test suite to validate system, adjust details as required.6.Complete document and release to production.Logical interpretation of fuzzy control In spite of the appearance there are several difficulties to give a rigorous logical interpretation of the IF-THEN rules.As an example, interpret a rule as IF(temperature is ”cold“)THEN(heater is ”high“)by the first order formula Cold(x)→High(y)and assume that r is an input such that Cold(r)is false.Then the formula Cold(r)→High(t)is true for any t and therefore any t gives a correct control given r.Obviously, if we consider systems of rules in which the class antecedent define a partition such a paradoxical phenomenon does not arise.In any case it is sometimes unsatisfactory to consider two variables x and y in a rule without some kind of functional dependence.A rigorous logical justification of fuzzy control is given in Hájek's book ,where fuzzy control is represented as a theory of Hájek's basic logic.Also in Gerla 2005 a logical approach to fuzzy control is proposed based on the following idea.Denote by f the fuzzy function associated with the fuzzy control system, i.e., given the input r, s(y)= f(r,y)is the fuzzy set of possible outputs.Then given a possible output 't', we interpret f(r,t)as the truth degree of the claim ”t is a good answer given r".More formally, any system of IF-THEN rules can be translate into a fuzzy program in such a way that the fuzzy function f is the interpretation of a vague predicate Good(x,y)in the associated least fuzzy Herbrand model.In such a way fuzzy control becomes a chapter of fuzzy logic programming.The learning process becomes a question belonging to inductive logic theory.

第三篇:毕业设计(论文)外文文献翻译要求

毕业设计(论文)外文文献翻译要求

根据《浙江省教育厅高教处关于对高等学校2004届本专科学生毕业设计(论文)进行抽查的通知》的评审要求,“本科毕业论文要求翻译外文文献2篇以上”。为提高毕业论文(设计)的质量,并与教育厅评审要求相一致,经研究决定,2005届毕业论文(设计)要求翻译2篇外文文献,外文字符不少于1.5万, 每篇外文文献翻译的中文字数一般要求2000-3000左右。

翻译的外文文献应主要选自学术期刊、学术会议的文章、有关著作及其他相关材料,应与毕业论文(设计)主题相关,并作为外文参考文献列入毕业论文(设计)的参考文献。并在每篇中文译文首页用“脚注”形式注明原文作者及出处,中文译文后应附外文原文。中文译文的基本撰写格式为题目采用小三号黑体字居中打印,正文采用宋体五号字,行间距一般为固定值20磅,标准字符间距。

湖州师范学院(求真学院)

毕业设计(论文)外文文献翻译

毕业设计(论文)题目

翻译(1)题目

翻译(2)题目

学院 专业 姓名 班级 学号 指导教师

第四篇:逆变电源毕业设计文献翻译

文献翻译

目 学生姓名 专业班级 学

号 院(系)指导教师 完成时间

逆变器

电子信息工程

电气与信息工程学院

2009年06 月 05日

Inverter 1 Introduction An inverter is an electrical device that converts direct current(DC)to alternating current(AC);the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits.Solid-state inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power.Inverters are commonly used to supply AC power from DC sources such as solar panels or batteries.There are two main types of inverter.The output of a modified sine wave inverter is similar to a square wave output except that the output goes to zero volts for a time before switching positive or negative.It is simple and low cost and is compatible with most electronic devices, except for sensitive or specialized equipment, for example certain laser printers.A pure sine wave inverter produces a nearly perfect sine wave output(<3% total harmonic distortion)that is essentially the same as utility-supplied grid power.Thus it is compatible with all AC electronic devices.This is the type used in grid-tie inverters.Its design is more complex, and costs 5 or 10 times more per unit power The electrical inverter is a high-power electronic oscillator.It is so named because early mechanical AC to DC converters were made to work in reverse, and thus were “inverted”, to convert DC to AC.The inverter performs the opposite function of a rectifier.2 Applications 2.1 DC power source utilization An inverter converts the DC electricity from sources such as batteries, solar panels, or fuel cells to AC electricity.The electricity can be at any required voltage;in particular it can operate AC equipment designed for mains operation, or rectified to produce DC at any desired voltageGrid tie inverters can feed energy back into the distribution network because they produce alternating current with the same wave shape and frequency as supplied by the distribution system.They can also switch off automatically in the event of a blackout.Micro-inverters convert direct current from individual solar panels into alternating current for the electric grid.They are grid tie designs by default.2.2 Uninterruptible power supplies An uninterruptible power supply(UPS)uses batteries and an inverter to supply AC power when main power is not available.When main power is restored, a rectifier supplies DC power to recharge the batteries.2.3 Induction heating Inverters convert low frequency main AC power to a higher frequency for use in induction heating.To do this, AC power is first rectified to provide DC power.The inverter then changes the DC power to high frequency AC power.2.4 HVDC power transmission With HVDC power transmission, AC power is rectified and high voltage DC power is transmitted to another location.At the receiving location, an inverter in a static inverter plant converts the power back to AC.2.5 Variable-frequency drives A variable-frequency drive controls the operating speed of an AC motor by controlling the frequency and voltage of the power supplied to the motor.An inverter provides the controlled power.In most cases, the variable-frequency drive includes a rectifier so that DC power for the inverter can be provided from main AC power.Since an inverter is the key component, variable-frequency drives are sometimes called inverter drives or just inverters.2.6 Electric vehicle drives Adjustable speed motor control inverters are currently used to power the traction motors in some electric and diesel-electric rail vehicles as well as some battery electric vehicles and hybrid electric highway vehicles such as the Toyota Prius and Fisker Karma.Various improvements in inverter technology are being developed specifically for electric vehicle applications.[2] In vehicles with regenerative braking,the inverter also takes power from the motor(now acting as a generator)and stores it in the batteries.2.7 The general case A transformer allows AC power to be converted to any desired voltage, but at the same frequency.Inverters, plus rectifiers for DC, can be designed to convert from any voltage, AC or DC, to any other voltage, also AC or DC, at any desired frequency.The output power can never exceed the input power, but efficiencies can be high, with a small proportion of the power dissipated as waste heat.Circuit description

3.1 Basic designs

In one simple inverter circuit, DC power is connected to a transformer through the centre tap of the primary winding.A switch is rapidly switched back and forth to allow current to flow back to the DC source following two alternate paths through one end of the primary winding and then the other.The alternation of the direction of current in the primary winding of the transformer produces alternating current(AC)in the secondary circuit.The electromechanical version of the switching device includes two stationary contacts and a spring supported moving contact.The spring holds the movable contact against one of the stationary contacts and an electromagnet pulls the movable contact to the opposite stationary contact.The current in the electromagnet is interrupted by the action of the switch so that the switch continually switches rapidly back and forth.This type of electromechanical inverter switch, called a vibrator or buzzer, was once used in vacuum tube automobile radios.A similar mechanism has been used in door bells, buzzers and tattoo guns.As they became available with adequate power ratings, transistors and various other types of semiconductor switches have been incorporated into inverter circuit designs 3.2 Output waveforms The switch in the simple inverter described above, when not coupled to an output transformer, produces a square voltage waveform due to its simple off and on nature as opposed to the sinusoidal waveform that is the usual waveform of an AC power supply.Using Fourier analysis, periodic waveforms are represented as the sum of an infinite series of sine waves.The sine wave that has the same frequency as the original waveform is called the fundamental component.The other sine waves, called harmonics, that are included in the series have frequencies that are integral multiples of the fundamental frequency.The quality of output waveform that is needed from an inverter depends on the characteristics of the connected load.Some loads need a nearly perfect sine wave voltage supply in order to work properly.Other loads may work quite well with a square wave voltage.3.3 Three phase inverters Three-phase inverters are used for variable-frequency drive applications and for high power applications such as HVDC power transmission.A basic three-phase inverter consists of three single-phase inverter switches each connected to one of the three load terminals.For the most basic control scheme, the operation of the three switches is coordinated so that one switch operates at each 60 degree point of the fundamental output waveform.This creates a line-to-line output waveform that has six steps.The six-step waveform has a zero-voltage step between the positive and negative sections of the square-wave such that the harmonics that are multiples of three are eliminated as described above.When carrier-based PWM techniques are applied to six-step waveforms, the basic overall shape, or envelope, of the waveform is retained so that the 3rd harmonic and its multiples are cancelled History 4.1 Early inverters From the late nineteenth century through the middle of the twentieth century, DC-to-AC power conversion was accomplished using rotary converters or motor-generator sets(M-G sets).In the early twentieth century, vacuum tubes and gas filled tubes began to be used as switches in inverter circuits.The most widely used type of tube was the thyratron.The origins of electromechanical inverters explain the source of the term inverter.Early AC-to-DC converters used an induction or synchronous AC motor direct-connected to a generator(dynamo)so that the generator's commutator reversed its connections at exactly the right moments to produce DC.A later development is the synchronous converter, in which the motor and generator windings are combined into one armature, with slip rings at one end and a commutator at the other and only one field frame.The result with either is AC-in, DC-out.With an M-G set, the DC can be considered to be separately generated from the AC;with a synchronous converter, in a certain sense it can be considered to be “mechanically rectified AC”.Given the right auxiliary and control equipment, an M-G set or rotary converter can be “run backwards”, converting DC to AC.Hence an inverter is an inverted converter.4 4.2 Controlled rectifier inverters Since early transistors were not available with sufficient voltage and current ratings for most inverter applications, it was the 1957 introduction of the thyristor or silicon-controlled rectifier(SCR)that initiated the transition to solid state inverter circuits.The commutation requirements of SCRs are a key consideration in SCR circuit designs.SCRs do not turn off or commutate automatically when the gate control signal is shut off.They only turn off when the forward current is reduced to below the minimum holding current, which varies with each kind of SCR, through some external process.For SCRs connected to an AC power source, commutation occurs naturally every time the polarity of the source voltage reverses.SCRs connected to a DC power source usually require a means of forced commutation that forces the current to zero when commutation is required.The least complicated SCR circuits employ natural commutation rather than forced commutation.With the addition of forced commutation circuits, SCRs have been used in the types of inverter circuits described above.In applications where inverters transfer power from a DC power source to an AC power source, it is possible to use AC-to-DC controlled rectifier circuits operating in the inversion mode.In the inversion mode, a controlled rectifier circuit operates as a line commutated inverter.This type of operation can be used in HVDC power transmission systems and in regenerative braking operation of motor control systems.Another type of SCR inverter circuit is the current source input(CSI)inverter.A CSI inverter is the dual of a six-step voltage source inverter.With a current source inverter, the DC power supply is configured as a current source rather than a voltage source.The inverter SCRs are switched in a six-step sequence to direct the current to a three-phase AC load as a stepped current waveform.CSI inverter commutation methods include load commutation and parallel capacitor commutation.With both methods, the input current regulation assists the commutation.With load commutation, the load is a synchronous motor operated at a leading power factor.As they have become available in higher voltage and current ratings, semiconductors such as transistors or IGBTs that can be turned off by means of control signals have become the preferred switching components for use in inverter circuits.5 4.3 Rectifier and inverter pulse numbers Rectifier circuits are often classified by the number of current pulses that flow to the DC side of the rectifier per cycle of AC input voltage.A single-phase half-wave rectifier is a one-pulse circuit and a single-phase full-wave rectifier is a two-pulse circuit.A three-phase half-wave rectifier is a three-pulse circuit and a three-phase full-wave rectifier is a six-pulse circuit。With three-phase rectifiers, two or more rectifiers are sometimes connected in series or parallel to obtain higher voltage or current ratings.The rectifier inputs are supplied from special transformers that provide phase shifted outputs.This has the effect of phase multiplication.Six phases are obtained from two transformers, twelve phases from three transformers and so on.The associated rectifier circuits are 12-pulse rectifiers, 18-pulse rectifiers and so on.When controlled rectifier circuits are operated in the inversion mode, they would be classified by pulse number also.Rectifier circuits that have a higher pulse number have reduced harmonic content in the AC input current and reduced ripple in the DC output voltage.In the inversion mode, circuits that have a higher pulse number have lower harmonic content in the AC output voltage waveform.逆变器 简介

逆变器是一种能将直流电转化为可变的交流电的电子装置,使用适当的变压器、开关以及控制电路可以将转化的交流电调整到任何需要的电压以及频率值。

固定的逆变器没有移动部件,其应用范围极其广泛,从小型计算机开关电源,到大型电力公司高压直流电源应用,运输散货。逆变器通常用于提供从诸如太阳能电池板或电池直流电源转换的交流电源..逆变器有两种主要类型。对修改后正弦波逆变器输出是一个类似方波输出,输出去除了一时间为零伏特,然后才转到正或负。它的电路简单而且成本一般较低,并与大多数电子设备兼容,除了敏感或专用设备,例如某些激光打印机。纯正弦波逆变器产生一个近乎完美的正弦波输出“(<3%的总谐波失真),它本质上与公用事业电网提供的相同。因此它与所有的交流电子设备兼容。这是网逆变器配合使用的类型。它的设计更为复杂,成本5人以上每单位功率。[1]电逆变器是一种高功率电子振荡器的10倍。它是如此命名是因为早期机械AC到DC转换器的工作作了相反,因此是“倒“,转换成直流到交流。变频器的整流执行相反的功能 应用

2.1 直流电源利用率

逆变器将直流电,如电池,太阳能电池板,燃料电池等转换为交流电直流电。转换的交流电可以是任意需要大小的交流电,特别是它可以操作交流设备用于电源操作,或者滤波产生任何需要的直流电压。

配电网络逆变器可以将能量反馈到分配网络,因为他们产生的交流电和分配网络提供的交流电的波形和频率可以是一样的。而且他们也可以自动关断输出当遇到停电事故时。微型逆变器将由个人太阳能电池板产生的直流电转化为交流电并入电网。接从个人的太阳能电池板的电流。它们使用默认的输电网设计。

2.2 不间断电源

不间断电源(UPS)当主电源无法使用时使用电池和逆变器提供交流电源。当主电源恢复时,一个整流器供应直流电源对电池进行充电。

2.3 感应加热

逆变器将低频交流电源转化为更高的频率以用于感应加热使用。要做到这一点,首先交流电源经过滤波提供直流电源。该逆变器,然后更改为高频率的交流电源直流电源。

2.4 高压直流输电

随着高压直流输电,交流电源进行整流和高压直流电源被传输到另一个位置。在接收的位置,在一个静止变流器厂将直流电源转换回交流电

2.5 变频驱动器

一个变频驱动控制器通过控制供应给电机的电源电压和频率来控制交流电机的运行速度。逆变器提供控制信号。在大多数情况下,变频驱动器包括一个整流器,因而提供给逆变器的直流电源可以由交流主电源提供。由于逆变器是关键部件,变频驱动器有时也被称为逆变器驱动器或只是逆变器

2.6 电动汽车驱动

调速电动机控制逆变器是目前用于电力牵引在一些电动和柴油电动轨道车辆以及一些电池电动汽车上的电机,如丰田Prius和菲斯克噶玛混合动力电动汽车高速公路交通工具。在变频技术的各项改善措施正在制定专门针对电动车辆的应用。与更新制动车辆,还需要从变频器的电机(现在作为发电机)和它储存在电池里的电源。

2.7 一般情况下

一个变压器允许交流电源被转换为任何所需的电压,但是却在相同的频率。逆变器,直流加整流器,可以设计成任何转换电压,交流或直流,在任何需要的频率,以任何其他电压,也可以是交流或直流。输出功率不能超过输入功率,但效率可以很高,可以允许作为一部分余热消耗掉功率很小的一部分。电路描述

3.1 基本设计

在一个简单的逆变电路中,直流电源通过初级绕组的中心抽头连接到变压器。开关以极高的频率来回切换,使电流回流在变压器的初级绕组里流过一个方向后再向另一个方向流动。初级绕组里电流方向的变化通过变压器在次级绕组里产生交变电流。

在开关设备机电版本包括两个固定触点和弹簧支撑移动接触点。弹簧持有一个可移动的触体来和固定触点接触,电磁铁拉动可移动的触体到对面的固定的触体。在电磁铁的电流中断的交换机中,使交换开关不断来回迅速切换迅速。这种机动逆变器式开关,称为一个振动器或蜂鸣器,曾经在真空电子管汽车收音机中使用。一个类似的电子装置已用于门铃,蜂鸣器和纹身枪。当开关管有有足够的额定功率,晶体管和半导体开关各种其他类型的的电子开关器件可用已纳入逆变器电路设计。

3.2 输出波形

上述简单的逆变器中的开关,当不耦合到输出变压器时,输出电压波形由于开关管简单的导通或关断产生一个方波电压输出,而不是交流电最常见的正弦波形,它是一个AC电源波形通常由于其简单。利用傅里叶分析,周期性波形表示为一个无穷级数的正弦波的总和。正弦波中和原始波形具有相同的频率的波称为基波。其他频率的正弦波,称为谐波,这是该系列中包括有频率是基波频率的整数倍。

输出波形是从一个逆变器所需的质量取决于逆变器所连接的负载特性。一些载入需要一个近乎完美的正弦波电压供应才能正常工作。其他的负载可能使用方波电压也能工作的很好。

3.3 三相逆变器

三相逆变器是用于变频驱动应用以及诸如高压直流输电高功率传输。一个基本的三相逆变器由三个单相开关每个连接到三个负载接线端子之一的逆变器组成。对于最基本的控制方案,对三个开关运作协调,以便在每一个开关输出波形的基本操作60度点。这将创建一个线到线输出波形有六个步骤。六步之间有一个波形的方波的正面和负面的部分零电压一步,这样的谐波,是三个被淘汰上述倍数。当载波脉冲调宽技术技术应用到六步波形时,在整体上基本形状,或着波形的包络将被保留,以使三次谐波及其倍数被取消 历史

4.1 早期的变频器

从十九世纪晚期到二十世纪中叶直流到交流电源的转换使用旋转逆变器或者发电机组来完成。在二十世纪早期,真空电子管和充气管开始被作为逆变电路开关使用。应用最广的电子管的类型是闸流管。

机动电子逆变器一词解释了学术上逆变器的来源。早期的交流到直流转换器使用的感应或同步交流电动机直接连接到一台发电机(发电机),使发电机的整流子扭转在正确的时间来产生直流电。一个后来的发展是同步转换器,其中电机和发电机绕组组合成一个电枢,一个滑环在电枢一端,整流子在另一端,只有一帧。这样的结果是交流输入,直流输出。随着设置,直流电可以被认为是分开的出现的交流电;具有同步转换器,在一定意义上讲,它可以被认为是“机械纠正交流“。只要有了正确的辅助和控制设备,设置或旋转转换器可“向后跑“,转换直流到交流。因此,逆变器是一个倒置的转换器。4.2 整流逆变器控制

自从1957年初以来晶体管没有足够的电压和额定电流可用于大多数逆变器应用,晶闸管或可控硅整流器的开始到固态逆变器电路过渡。

晶闸管换相的条件是在可控硅电路设计中考虑的关键因素。可控硅不关闭或整流时自动门控制信号被切断。只有当正向电流降至低于最低维持电流,他们才会关闭,通过外部加工,不同类型的晶闸管最低电流也会不同。对于连接到交流电源的可控硅,每一次整流源电压极性都会自然反转。连接到直流电源的可控硅整流通常需要强迫转换,迫使电流为零时,需要换一种途径。最不复杂的电路采用可控硅整流自然代偿,而不是强制。随着附加的代偿电路,可控硅已经用于上述逆变器种类。

在逆变电源将直流电转换为交流电的应用中,它可以使用交流到直流整流控制电路中的反演模式运行。在反转模式,可控整流逆变电路工作作为换一条线。这种类型的操作,可用于高压直流输电系统和再生制动电机控制系统的操作。

另一种类型的可控硅逆变电路是电流源输入的逆变器。电流源输入逆变器是一个双重的六个步骤电压源逆变器。用电流源逆变器,直流电源配置为电流源,而不是一个电压源。可控硅逆变器中切换一个六步序电流指示作为加强电流波形三相交流负载。电流源输入逆变器换相方法包括负载代偿和并联电容器代偿。随着这两种方法,输入电流调节辅助代偿。负载换向,负载是一个同步电动机在运行领先的功率因数。由于他们已能够为更高的电压和额定电流使用,如晶体管或可通过控制信号变成了绝缘栅双极性晶体管的半导体手段已成为首选的开关逆变器电路中使用的组件。

4.3 整流器和逆变器脉冲数

整流电路通常是每周期的交流输入电压流入的直流侧的直流帧数来分类。单相半波整流是一个脉冲电路和单相全波整流是双脉冲电路。一个三相半波整流是三脉冲电路和 三相全波整流是一个六脉冲电路。对于三相整流器,有整流器两个或两个以上,有时串联或并联以获得更高的电压或电流额定值。整流器输入,提供从供应特种变压器移相输出。这具有倍增效应阶段。6个阶段分别从两个变压器,从十二相从三个变压器等。相关的整流电路为12脉冲整流器,18脉冲整流器等。

当控制整流电路中的反向模式时,他们也按输出脉冲数分类。整流电路具有较高的脉冲数减少在交流输入电流,并减少直流输出电压纹波的谐波含量。在反向模式,电路具有较高的脉冲数有较低的交流输出电压波形的谐波含量。

第五篇:逆变电源毕业设计文献翻译

文献翻译

目 学生姓名 专业班级 学

号 院(系)指导教师 完成时间

逆变器

电气工程及其自动化

电气信息工程系 王刚 2012年02 月 21日

Inverter 1 Introduction An inverter is an electrical device that converts direct current(DC)to alternating current(AC);the converted AC can be at any required voltage and frequency with the use of appropriate transformers, switching, and control circuits.Solid-state inverters have no moving parts and are used in a wide range of applications, from small switching power supplies in computers, to large electric utility high-voltage direct current applications that transport bulk power.Inverters are commonly used to supply AC power from DC sources such as solar panels or batteries.There are two main types of inverter.The output of a modified sine wave inverter is similar to a square wave output except that the output goes to zero volts for a time before switching positive or negative.It is simple and low cost and is compatible with most electronic devices, except for sensitive or specialized equipment, for example certain laser printers.A pure sine wave inverter produces a nearly perfect sine wave output(<3% total harmonic distortion)that is essentially the same as utility-supplied grid power.Thus it is compatible with all AC electronic devices.This is the type used in grid-tie inverters.Its design is more complex, and costs 5 or 10 times more per unit power The electrical inverter is a high-power electronic oscillator.It is so named because early mechanical AC to DC converters were made to work in reverse, and thus were “inverted”, to convert DC to AC.The inverter performs the opposite function of a rectifier.2 Applications 2.1 DC power source utilization An inverter converts the DC electricity from sources such as batteries, solar panels, or fuel cells to AC electricity.The electricity can be at any required voltage;in particular it can operate AC equipment designed for mains operation, or rectified to produce DC at any desired voltageGrid tie inverters can feed energy back into the distribution network because they produce alternating current with the same wave shape and frequency as supplied by the distribution system.They can also switch off automatically in the event of a blackout.Micro-inverters convert direct current from individual solar panels into alternating current for the electric grid.They are grid tie designs by default.2.2 Uninterruptible power supplies An uninterruptible power supply(UPS)uses batteries and an inverter to supply AC power when main power is not available.When main power is restored, a rectifier supplies DC power to recharge the batteries.2.3 Induction heating Inverters convert low frequency main AC power to a higher frequency for use in induction heating.To do this, AC power is first rectified to provide DC power.The inverter then changes the DC power to high frequency AC power.2.4 HVDC power transmission With HVDC power transmission, AC power is rectified and high voltage DC power is transmitted to another location.At the receiving location, an inverter in a static inverter plant converts the power back to AC.2.5 Variable-frequency drives A variable-frequency drive controls the operating speed of an AC motor by controlling the frequency and voltage of the power supplied to the motor.An inverter provides the controlled power.In most cases, the variable-frequency drive includes a rectifier so that DC power for the inverter can be provided from main AC power.Since an inverter is the key component, variable-frequency drives are sometimes called inverter drives or just inverters.2.6 Electric vehicle drives Adjustable speed motor control inverters are currently used to power the traction motors in some electric and diesel-electric rail vehicles as well as some battery electric vehicles and hybrid electric highway vehicles such as the Toyota Prius and Fisker Karma.Various improvements in inverter technology are being developed specifically for electric vehicle applications.[2] In vehicles with regenerative braking,the inverter also takes power from the motor(now acting as a generator)and stores it in the batteries.2.7 The general case A transformer allows AC power to be converted to any desired voltage, but at the same frequency.Inverters, plus rectifiers for DC, can be designed to convert from any voltage, AC or DC, to any other voltage, also AC or DC, at any desired frequency.The output power can never exceed the input power, but efficiencies can be high, with a small proportion of the power dissipated as waste heat.Circuit description

3.1 Basic designs

In one simple inverter circuit, DC power is connected to a transformer through the centre tap of the primary winding.A switch is rapidly switched back and forth to allow current to flow back to the DC source following two alternate paths through one end of the primary winding and then the other.The alternation of the direction of current in the primary winding of the transformer produces alternating current(AC)in the secondary circuit.The electromechanical version of the switching device includes two stationary contacts and a spring supported moving contact.The spring holds the movable contact against one of the stationary contacts and an electromagnet pulls the movable contact to the opposite stationary contact.The current in the electromagnet is interrupted by the action of the switch so that the switch continually switches rapidly back and forth.This type of electromechanical inverter switch, called a vibrator or buzzer, was once used in vacuum tube automobile radios.A similar mechanism has been used in door bells, buzzers and tattoo guns.As they became available with adequate power ratings, transistors and various other types of semiconductor switches have been incorporated into inverter circuit designs 3.2 Output waveforms The switch in the simple inverter described above, when not coupled to an output transformer, produces a square voltage waveform due to its simple off and on nature as opposed to the sinusoidal waveform that is the usual waveform of an AC power supply.Using Fourier analysis, periodic waveforms are represented as the sum of an infinite series of sine waves.The sine wave that has the same frequency as the original waveform is called the fundamental component.The other sine waves, called harmonics, that are included in the series have frequencies that are integral multiples of the fundamental frequency.The quality of output waveform that is needed from an inverter depends on the characteristics of the connected load.Some loads need a nearly perfect sine wave voltage supply in order to work properly.Other loads may work quite well with a square wave voltage.3.3 Three phase inverters Three-phase inverters are used for variable-frequency drive applications and for high power applications such as HVDC power transmission.A basic three-phase inverter consists of three single-phase inverter switches each connected to one of the three load terminals.For the most basic control scheme, the operation of the three switches is coordinated so that one switch operates at each 60 degree point of the fundamental output waveform.This creates a line-to-line output waveform that has six steps.The six-step waveform has a zero-voltage step between the positive and negative sections of the square-wave such that the harmonics that are multiples of three are eliminated as described above.When carrier-based PWM techniques are applied to six-step waveforms, the basic overall shape, or envelope, of the waveform is retained so that the 3rd harmonic and its multiples are cancelled History 4.1 Early inverters From the late nineteenth century through the middle of the twentieth century, DC-to-AC power conversion was accomplished using rotary converters or motor-generator sets(M-G sets).In the early twentieth century, vacuum tubes and gas filled tubes began to be used as switches in inverter circuits.The most widely used type of tube was the thyratron.The origins of electromechanical inverters explain the source of the term inverter.Early AC-to-DC converters used an induction or synchronous AC motor direct-connected to a generator(dynamo)so that the generator's commutator reversed its connections at exactly the right moments to produce DC.A later development is the synchronous converter, in which the motor and generator windings are combined into one armature, with slip rings at one end and a commutator at the other and only one field frame.The result with either is AC-in, DC-out.With an M-G set, the DC can be considered to be separately generated from the AC;with a synchronous converter, in a certain sense it can be considered to be “mechanically rectified AC”.Given the right auxiliary and control equipment, an M-G set or rotary converter can be “run backwards”, converting DC to AC.Hence an inverter is an inverted converter.4 4.2 Controlled rectifier inverters Since early transistors were not available with sufficient voltage and current ratings for most inverter applications, it was the 1957 introduction of the thyristor or silicon-controlled rectifier(SCR)that initiated the transition to solid state inverter circuits.The commutation requirements of SCRs are a key consideration in SCR circuit designs.SCRs do not turn off or commutate automatically when the gate control signal is shut off.They only turn off when the forward current is reduced to below the minimum holding current, which varies with each kind of SCR, through some external process.For SCRs connected to an AC power source, commutation occurs naturally every time the polarity of the source voltage reverses.SCRs connected to a DC power source usually require a means of forced commutation that forces the current to zero when commutation is required.The least complicated SCR circuits employ natural commutation rather than forced commutation.With the addition of forced commutation circuits, SCRs have been used in the types of inverter circuits described above.In applications where inverters transfer power from a DC power source to an AC power source, it is possible to use AC-to-DC controlled rectifier circuits operating in the inversion mode.In the inversion mode, a controlled rectifier circuit operates as a line commutated inverter.This type of operation can be used in HVDC power transmission systems and in regenerative braking operation of motor control systems.Another type of SCR inverter circuit is the current source input(CSI)inverter.A CSI inverter is the dual of a six-step voltage source inverter.With a current source inverter, the DC power supply is configured as a current source rather than a voltage source.The inverter SCRs are switched in a six-step sequence to direct the current to a three-phase AC load as a stepped current waveform.CSI inverter commutation methods include load commutation and parallel capacitor commutation.With both methods, the input current regulation assists the commutation.With load commutation, the load is a synchronous motor operated at a leading power factor.As they have become available in higher voltage and current ratings, semiconductors such as transistors or IGBTs that can be turned off by means of control signals have become the preferred switching components for use in inverter circuits.5 4.3 Rectifier and inverter pulse numbers Rectifier circuits are often classified by the number of current pulses that flow to the DC side of the rectifier per cycle of AC input voltage.A single-phase half-wave rectifier is a one-pulse circuit and a single-phase full-wave rectifier is a two-pulse circuit.A three-phase half-wave rectifier is a three-pulse circuit and a three-phase full-wave rectifier is a six-pulse circuit。With three-phase rectifiers, two or more rectifiers are sometimes connected in series or parallel to obtain higher voltage or current ratings.The rectifier inputs are supplied from special transformers that provide phase shifted outputs.This has the effect of phase multiplication.Six phases are obtained from two transformers, twelve phases from three transformers and so on.The associated rectifier circuits are 12-pulse rectifiers, 18-pulse rectifiers and so on.When controlled rectifier circuits are operated in the inversion mode, they would be classified by pulse number also.Rectifier circuits that have a higher pulse number have reduced harmonic content in the AC input current and reduced ripple in the DC output voltage.In the inversion mode, circuits that have a higher pulse number have lower harmonic content in the AC output voltage waveform.逆变器

1引言

逆变器是一种电动装置,转换成直流电(DC),交流电流转换的AC(交流)可以在任何所需的电压和频率使用适当的变压器,开关,控制circuits.Solid状态逆变器有没有移动部件,用于广泛的应用范围从小型计算机开关电源,高压大型电力公司电力,运输散装直接电流应用。逆变器通常用于提供交流电源,直流电源,如太阳能电池板或电池。

逆变器的主要有两种类型。修改后的正弦波逆变器的输出是类似方波输出,输出变为零伏前一段时间切换积极或消极的除外。它是简单,成本低,是大多数电子设备兼容,除敏感或专用设备,例如某些激光打印机。一个纯正弦波逆变器产生一个近乎完美的正弦波输出(<3%的总谐波失真),本质上是相同的公用事业提供电网。因此,它是与所有的交流电的电子设备兼容。这是在电网领带逆变器使用的类型。它的设计更复杂,成本5或10倍以上每单位功率电逆变器是一个高功率的电子振荡器。它这样命名,因为早期的机械AC到DC转换器工作在反向,因而被“倒”,将直流电转换AC.The变频器执行的整流器对面功能。

2应用

2.1直流电源利用率

逆变器从交流电力来源,如电池,太阳能电池板,燃料电池的直流电转换成。电力,可以在任何所需的电压,特别是它可以操作交流电源操作而设计的设备,或纠正,以产生任何所需的voltage Grid领带逆变器的直流送入分销网络的能量,因为它们产生电流交替使用相同的波形和频率分配制度提供。他们还可以关掉一个blackout.Micro逆变器的情况下自动转换成交流电电网的电流直接从当前个别太阳能电池板。默认情况下,他们是格领带设计。

2.2不间断电源

不间断电源(UPS),电池和逆变器,交流电源,主电源不可用时使用。当主电源恢复正常时,整流提供直流电源给电池充电。2.3感应加热

逆变器的低频交流主电源转换到更高频率的感应加热使用。要做到这一点,首先纠正交流电源提供直流电源。逆变器,然后改变高频率的交流电源,直流电源。

2.4高压直流输电

随着高压直流输电,交流电源经过整流和高压直流电源传输到另一个位置。在接收的位置,在静态逆变器厂逆变器转换回交流电源。

2.5变频驱动器

一个变频驱动控制向电动机提供电源的频率和电压控制交流电机的运行速度。逆变器提供控制电源。在大多数情况下,变频驱动,包括整流器,使逆变器的直流电源,可从交流主电源提供。由于逆变器是关键部件,变频驱动,有时被称为逆变器驱动器,或只是逆变器。

2.6电动汽车驱动器

目前使用的权力,在一些电动和柴油交流功率转换完成使用旋转器或马达发电机组(爵套)。在二十世纪初,真空管和充满气体管开始被用于逆变器电路中的开关。最广泛使用的管型晶闸管。

机电逆变器的起源解释源长期变频器。早期的AC至DC转换器采用感应或同步交流电机直接连接到一台发电机(发电机),使发电机的整流子扭转在正确的时刻其连接生产直流。后来的发展是同步的转换器,电机和发电机绕组结合成一个电枢,一端与滑环和整流子在其他只有一个领域的框架。结果要么是交流,直流。与MG组,直流,可考虑将分别从AC生成,同步器,它在一定意义上可以认为是“机械纠正交流”。由于正确的辅助设备和控制设备,MG集或旋转转换,可以“倒着跑”,将直流转换为交流电。因此,逆变器是一个倒置的转换。

4.2可控整流逆变器

自从1957年初年初以来,晶体管不能提供足够的电压和额定电流最逆变器应用,它是1957年的晶闸管或可控硅(SCR)的介绍,开始过渡到固态逆变电路。

可控硅的换相的条件是在可控硅电路设计的关键考虑因素。不要关闭可控硅整流自动门控制信号被切断时。他们只关闭当正向电流降至低于最低维持电流,每一种可控硅变化,通过一些外部进程。对于连接到交流电源的可控硅,整流发生自然每次源??电压极性反转。可控硅直流电源连接到通常需要强迫换,强制要求减刑时电流为零的一种手段。最复杂的可控硅电路采用自然,而不是被迫换减刑。此外被迫换电路,可控硅已被用于在以上所述的逆变器电路的类型。

在逆变器传输到AC电源由直流电源供电的应用程序,它可以使用交流-直流可控整流电路的反演模式经营。在反演模式,可控整流电路整流逆变器行。这种类型的操作,可用于高压直流输电系统和再生制动电机控制系统的操作。

另一种类型的可控硅逆变电路是电流源输入(CSI)逆变器。一个CSI逆变器是一个六步的电压源逆变器的双。用一个电流源逆变器,直流电源作为电流源而非电压源配置。变频器可控硅开关在六步序列直接阶梯电流波形作为一个三相交流负载的电流。沪深逆变器换方法包括整流负载和并联电容器减刑。这两种方法,输入电流调节协助减刑。带整流负载,负载是在领先的功率因数运行的同步电机。因为他们已经成为在更高的额定电压和电流,如可以通过控制信号的晶体管或IGBT的半导体已成为首选开关元件逆变电路使用。

4.3整流器和逆变器的脉冲数

整流电路往往流的每个周期的AC输入电压整流的直流侧电流脉冲的数量分类。单 相半波整流是一个脉冲电路和单相全波整流是两个脉冲的电路。一个三相半波整流是一个三脉冲电路和三相全波整流是一个六脉冲电路。两个或两个以上的整流器三相整流器,有时串联或并联连接以获得更高的电压或额定电流。提供特种变压器提供相移输出整流器的输入。这有相乘法效应。六个阶段是从两个变压器,12个阶段从三变等。12脉冲整流器,18脉冲整流器等相关的整流电路。当可控整流电路的反演模式在运作,他们将分为脉冲数也。整流电路具有较高的脉冲数减少交流输入电流和减少直流输出电压纹波的谐波含量。在反演模式,有较高的脉冲个数的电路,在AC输出电压波形的谐波含量较低。

下载4毕业设计(论文)中英文文献翻译word格式文档
下载4毕业设计(论文)中英文文献翻译.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    出租车计价器毕业设计中英文翻译

    ABSTRACT 1. INTRODUCTION Transporting people in the morning from their homes to their works and back in the afternoon has become a big problem in big cities esp......

    张理想毕业设计中英文翻译

    南京工业大学学士学位(英文资料翻译) 毕业设计(论文)英文翻译 学生姓名: 张 理 想 学 号: P1704070315 所在学院: 浦 江 学 院 专 业: 艺术设计(展示设计) 设计(论文)题目:连 云 港......

    毕业设计(论文)文献综述[推荐五篇]

    重庆理工大学论文文献综述 基于java的网上邮票市场设计与实现 (10903080225 王才松) 摘 要 随着经济与社会的不断发展,人们的生活水平的不断提高,越来越多的人开始享受生活,越来......

    关于现代工业机械手外文文献翻译@中英文翻译@外文翻译

    附录 About Modenr Industrial Manipulayor Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engi......

    机器人外文翻译(文献翻译_中英文翻译)(精选5篇)

    外文翻译 外文资料: Robots First, I explain the background robots, robot technology development. It should be said it is a common scientific and technological dev......

    中英文对照资料外文翻译文献

    中英文对照资料外文翻译文献平设计任何时期平面设计可以参照一些艺术和专业学科侧重于视觉传达和介绍。采用多种方式相结合,创造和符号,图像和语句创建一个代表性的想法和信......

    论文中英文翻译(译文)(模版)

    编号: 桂林电子科技大学信息科技学院毕业设计(论文)外文翻译 (译文)系别:电子工程系 专业:电子信息工程 学生姓名:韦 骏 学号:0852100329 指导教师单位:姓名: 职称:讲 师2012年 6月 5......

    !出租车计价器毕业设计中英文翻译(推荐5篇)

    毕业论文准备 ABSTRACT In this paper, a multi-channel taximeter that is able to deal with more than one passenger simultaneously is proposed. In order to demons......