2018年中考专题训练直线和圆的位置关系(五篇材料)

时间:2019-05-14 11:00:38下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018年中考专题训练直线和圆的位置关系》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018年中考专题训练直线和圆的位置关系》。

第一篇:2018年中考专题训练直线和圆的位置关系

2014年中考专题训练直线和圆的位置关系

一、选择题(每题4分,共40分)

1.如图,P是⊙O外一点,PA是⊙O的切线,PO=26cm,PA=24cm,则⊙O的周长为()A.18πcm

B.16πcm

C.20πcm

D.24πcm

2.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°

B.50°

C.65°

D.75°

3.如图所示,⊙O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.50° B.40° C.60° D.70°

第1题

第2题

第3题

4. Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径作圆,若圆C与直线AB相切,则r的值为()A.2cm

B.2.4cm

C.3cm

D.4cm 5.如图,△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是()A.相交 B.相切 C.相离 D.无法确定

第5题

第6题

第7题

6.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为()A.B.

C.6

D.

7.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()

8.如图,AB为⊙O的直径,C为⊙O外一点,过点C作的⊙O切线,切点为B,连结AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是()

第8题

第9题

第10题

9.如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于()A.15°

B.20°

C.30°

D.70°

10.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值是()A.90°

B.60°

C.45°

D.30°

二、填空题(每题6分,共30分)

11.如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=

°.

第11题

第12题

第13题

12.如图,PA是⊙O的切线,A为切点,B是⊙O上一点,BC⊥AP于点C,且OB=BP=6,则BC=

. 13.如图,AB是⊙O的直径,点D在⊙O上,∠BAD=35°,过点D作⊙O的切线交AB的延长线于点C,则∠C=

° 14.如图,在△ABC中,AB=2,AC=,以A为圆心,1为半径的圆与边BC相切,则∠BAC的度数是

°

第14题

第15题

15.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=

°

三、解答题(每题8分,共80分)

16.如图,⊙O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A(1)求证:BC为⊙O的切线;(2)求∠B的度数.

17.已知AB是⊙O的直径,直线BC与⊙O相切于点B,∠ABC的平分线BD交⊙O于点D,AD的延长线交BC于点C.

(1)求∠BAC的度数;(2)求证:AD=CD.

18.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠B=60°.

(1)求∠ADC的度数;

(2)求证:AE是⊙O的切线. 19.如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为BC的中点.(1)求证:AB=BC;

(2)求证:四边形BOCD是菱形.

20.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.

(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.

21.已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D.(Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;(Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.

22.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O与点D,过点D的切线分别交AB、AC的延长线与点E、F.(1)求证:AF⊥EF.

(2)小强同学通过探究发现:AF+CF=AB,请你帮忙小强同学证明这一结论.

23.如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.(1)求证:CD是⊙O的切线;(2)若半径OB=2,求AD的长.

24.在Rt△ACB中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交与点D,E,且∠CBD=∠A.

(1)判断直线BD与⊙O的位置关系,并证明你的结论.(2)若AD:AO=6:5,BC=3,求BD的长.

25.如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O的切线;(2)求点B的坐标.

第二篇:直线和圆的位置关系复习学案

港 中 数 学 网

直线和圆的位置关系

知识点:

直线和圆的位置关系、切线的判定和性质、三角形的内切圆、切线长定理、弦切角的定理、相交弦、切割线定理

课标要求:

1.掌握直线和圆的位置关系的性质和判定;

2.掌握判定直线和圆相切的三种方法并能应用它们解决有关问题:(1)直线和圆有唯一公共点;(2)d=R;(3)切线的判定定理(应用判定定理是满足一是过半径外端,二是与这半径垂直的二个条件才可判定是圆的切线)

3.掌握圆的切线性质并能综合运用切线判定定理和性质定理解决有关问题:(1)切线与圆只有一个公共点;(2)圆心到切线距离等于半径;(3)圆的切线垂直于过切点的半径;(4)经过圆心且垂直于切线的直线必过切点;(5)经过切点且垂直于切线的直线必过圆心;(6)切线长定理;(7)弦切角定理及其推论。

4,掌握三角形外切圆及圆外切四边形的性质及应用;

5.注意:(1)当已知圆的切线时,切点的位置一般是确定的,在写条件时应说明直线和圆相切于哪一点,辅助线是作出过确定的半径;当证明直线是圆的切线时,如果已知直线过圆上某一点则可作出这一点的半径证明直线垂直于该半径;即为“连半径证垂直得切线”;若已知条件中未明确给出直线和圆有公共点时,则应过圆心作直线的垂线,证明圆心到直线的距离等于半径,即为:“作垂直证半径得切线”。(2)见到切线要想到它垂直于过切点的半径;若过切点有垂线则必过圆心;过切点有弦,则想到弦切角定理,想到圆心角、圆周角性质,可再联想同圆或等圆弧弦弦心距等的性质应用。(3)任意三角形有且只有一个内切圆,圆心为这个三角形内角平分线的交点。

考查重点与常用题型:

1.判断基求概念,基本定理等的证误。在中考题中常以选择填空的形式考查形式对基本概念基求定理的正确理解,如:已知命题:(1)三点确定一个圆;(2)垂直于半径的直线是圆的切线;(3)对角线垂直且相等的四边形是正万形;(4)正多边形都是中心对称图形;(5)对角线相等的梯形是等腰梯形,其中错误的命题有()

(A)2个(B)3个(C)4个(D)5个

2.证明直线是圆的切线。证明直线是圆的切线在各省市中考题中多见,重点考查切线的判断定理及其它圆的一些知识。证明直线是圆的切线可通过两种途径证明。

3.论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。此种结论的证明重点考查了金等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识。

考点训练:

1.如图⊙O切AC于B,AB=OB=3,BC=3,则∠AOC的度数为()

(A)90 °(B)105°(C)75°(D)60°

2.O是⊿ABC的内心,∠BOC为130°,则∠A的度数为()

(A)130°(B)60°(C)70°(D)80°

3.下列图形中一定有内切圆的四边形是()

(A)梯形(B)菱形(C)矩形(D)平行四边形

4.PA、PB分别切⊙O于A、B,∠APB=60°,PA=10,则⊙O半径长为()

10(A 3(B)5(C)10 3(D)335.圆外切等腰梯形的腰长为a,则梯形的中位线长为

6.如图⊿ABC中,∠C=90°,⊙O分别切AB、BC、AC于D、E、F,AD=5cm,BD=3cm,则⊿ABC的面积为

7.如图,MF切⊙O于D,弦AB∥CD,弦AD∥BF,BF交⊙O于E,CDAB80,则∠ADM 40,mm

=°,∠AGB=°,∠BAE=°。

8.PA、PB分别切⊙O于A、B,AB=12,PA=313,则四边形OAPB的面积为

29.如图,AB是⊙O直径,EF切⊙O于C,AD⊥EF于D,求证:AC=AD·AB。

10.如图,AB是⊙O的弦,AB=12,PA切⊙O于A,PO⊥AB于C,PO=13,求PA的长。

解题指导:

1. 如图⊿ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线。

2. 如图,AB是⊙O直径,DE切⊙O于C,AD⊥DE,BE⊥DE,求证:以C为圆心,CD为半径的圆C和AB相切。

3. 如图,梯形ABCD中,AD∥BC,AB=CD,⊙O分另与AB、BC、CD、AD相切于E、F、G、H,求证:⊙O直径是AD,BC的比例中项。

4. 已知:AB是⊙O的直径,AC和BD都是⊙O切线,CD切⊙O于E,EF⊥AB,分别交AB,AD

于E、G,求证:EG=FG。

独立训练:

1. 已知点M到直线L的距离是3cm,若⊙M与L相切。则⊙M的直径是;若⊙

M的半径是3.5cm,则⊙M与L的位置关系是;若⊙M的直径是5cm,则⊙M与L的位置是。

2. RtΔABC中,∠C=90°,AC=6,BC=8,则斜边上的高线等于;若以C为圆心作

与AB相切的圆,则该圆的半径为r=;若以C为圆心,以5为半径作圆,则该圆与AB的位置关系是。

3. 设⊙O的半径为r,点⊙O到直线L的距离是d,若⊙O与L至少有一个公共点,则r与d

之间关系是。

4. 已知⊙O的直径是15 cm,若直线L与圆心的距离分别是①15 cm;②③7.5 cm;③5 cm

那么直线与圆的位置关系分别是;。

5. 已知:等腰梯形ABCD外切于为⊙O,AD∥BC,若AD=4,BC=6,AB=5,则⊙O的半径的长为。

6. 已知:PA、PB切⊙O于A、B,C是弧AB上一点,过点C的切线DE交PA于D,交PB于E,ΔPDE 周长为。

7. 已知:PB是⊙O的切线,B为切点,OP交⊙O于点A,BC⊥OP,垂足为C,OA=6 cm,OP

=8 cm,则AC的长为cm。

28. 已知:ΔABC内接于⊙O,P、B、C在一直线上,且PA=PB•PC,求证:PA是⊙O的切线。

9. 已知:PC切⊙O于C,割线PAB过圆心O,且∠P =40°,求∠ ACP度数。已知:过⊙O一点P,作⊙O切线PC,切点C,PO交⊙O于B,PO延长线交⊙O于A,CD⊥

AB,垂足为D,求证:(1)∠DCB=∠PCB(2)CD:BD=PA:CP

第三篇:《直线和圆的位置关系》的教学设计

《直线和圆的位置关系》的教学设计

安岳县八庙乡初级中学 邓德权

一、素质教育目标 ㈠知识教学点

⒈使学生理解直线和圆的位置关系。

⒉初步掌握直线和圆的位置关系的数量关系定理及其运用。㈡能力训练点

⒈通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。⒉在7.1节我们曾学习了“点和圆”的位置关系。

⑴点P在⊙O上 OP=r ⑵点P在⊙O内OP<r ⑶点P在⊙O外OP>r 初步培养学生能将这个点和圆的位置关系和点到圆心的距离的数量关系互相对应的理论迁移到直线和圆的位置关系上来。

㈢德育渗透点

在用运动的观点揭示直线和圆的位置关系的过程中向学生渗透,世界上的一切事物都是变化着的,并且在变化的过程中在一定的条件下是可以相互转化的。

二、教学重点、难点和疑点

—1—

⒈重点:使学生正确理解直线和圆的位置关系,特别是直线和圆相切的关系,是以后学习中经常用到的一种关系。

⒉难点:直线和圆的位置关系与圆心到直线的距离和圆的关径大小关系的对应,它既可做为各种位置关系的判定,又可作为性质,学生不太容易理解。

⒊疑点:为什么能用圆心到直线的距离九圆的关径大小关系判断直线和圆的位置关系?为解决这一疑点,必须通过图形的演示,使学生理解直线和圆的位置关系必转化成圆心到直线的距离和圆的关径的大小关系来实现的。

三、教学过程 ㈠情境感知

⒈欣赏网页flash动画,《海上日出》 提问:动画给你形成了怎样的几何图形的印象?

⒉演示z+z超级画板制作《日出》的简易动画,给学生形成直线和圆的位置关系的印象,像这样平面上给定一条定直线和一个运动着的圆,它们之间虽然存在着若干种不同的位置关系,如果从数学角度,它的若干位置关系能分为几大类?请同学们打开练习本,画一画互相研究一下。

⒊活动:学生动手画,老师巡视。当所有学生都把三种位置关系画出来时,用幻灯机给同学们作演示,并引导由现象到本质的观察,最终老师指导学生从直线和圆的公共点的个数来完成直线和圆的位置关系的定义。

—2—

⒋直线和圆的位置关系的定义。

①直线和圆有两个公共点时,叫做直线和圆相交,直线叫做圆的割线。

②直线和圆有唯一公共点时,叫做直线和圆相切,直线叫圆的切线,唯一的公共点叫做切点。

③直线和圆没有公共点时,叫做直线和圆相离。㈡重点、难点的学习与目标完成过程,⒈利用z+z超级画板的变量动画,改变圆的半径的大小,使直线与圆的位置关系发生改变,并请学生识别,巩固定义。

⒉提问:刚刚的变化,是什么引起直线与圆的位置关系的改变的?除从直线和圆的公共点的个数来判断直线和圆的位置关系外,是否还有其它的判定方法呢?

⒊教师引导学生回忆:怎样判定点和圆的位置关系?学生回答后,提出我们能否在这里套用?

⒋学生小组讨论后,汇总成果。引导学生从点和圆的位置关系去考察,特别是从点到圆心的距离与圆的半径的关系去考察。若该直线ι到圆心O的距离为d,⊙O半径为r,利用z+z的超级画板的变量动画展示,很容易得到所需的结果。

①直线ι和⊙O相交d<r ②直线ι和⊙O相切d=r ③直线ι和⊙O相离d>r —3—

提问:反过来,上述命题成立吗? ㈢尝试练习

⒈练习一:已知圆的直径为12cm,如果直线和圆心的距离为 ⑴ 5.5cm; ⑵ 6cm; ⑶ 8cm 那么直线和圆有几个公共点?为什么?

⒉练习二:已知⊙O的半径为4cm,直线ι上的点A满足OA=4cm,能否判断直线ι和⊙O相切?为什么?

评析:利用“z+z”超级画板演示图形,并指导学生发现。当OA不是圆心到直线的距离时,直线ι和⊙O相交;当OA是圆心到直线的距离时,直线ι是⊙O的切线。

⒊经过以上练习,谈谈你的学习体会。

强调说明定理中是圆心到直线的距离,这是容易出错的地方,要注意!

㈣例题学习(P104)

在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?

⑴ r=2cm ⑵ r=2.4cm ⑶ r=3cm ⒈学生独立思考后,小组交流。

⒉教师引导学生分析:题中所给的Rt△在已知条件下各元素已为定值,以直角顶点C为圆心的圆,随半径的不断变化,将与斜边AB所在的直线产生各种不同的位置关系,帮助学生分析好,d是点C到AB所在直线的距离,也就是直角三角形斜边上的高CD。如何求CD呢?

—4—

⒊学生讨论,并完成解答过程,用幻灯机投影学生成果。

⒋用z+z超级画板的变量动点,验证结果,巩固直线与圆的位置关系的定义.⒌变式训练:若要使⊙C与AB边只有一个公共点,这时⊙C的半径r有什么要求?

学生讨论,并用z+z超级画板的变量动画引导。

(五)话说收获:

为了培养学生阅读教材的习惯,请学生看教材P.103—104,从中总结出本课学习的主要内容有(抽学生回答):

四、作业 P105练习2 P115习题A2、3

—5—

第四篇:直线与圆的位置关系教案

《直线与圆的位置关系》教案

教学目标:

根据学过的直线与圆的位置关系的知识,组织学生对编出的有关题目进行讨论.讨论中引导学生体会

(1)如何从解决过的问题中生发出新问题.(2)新问题的解决方案与原有旧方法之间的联系与区别.通过编解题的过程,使学生基本了解、把握有关直线与圆的位置关系的知识可解决的基本问题,并初步体验数学问题变化、发展的过程,探索其解法.重点及难点:

从学生所编出的具体问题出发,适时适度地引导学生关注问题发展及解决的一般策略.教学过程

一、引入:

1、判断直线与圆的位置关系的基本方法:

(1)圆心到直线的距离

(2)判别式法

2、回顾予留问题:

要求学生由学过知识编出有关直线与圆位置关系的新题目,并考虑下面问题:

(1)为何这样编题.(2)能否解决自编题目.(3)分析解题方法及步骤与已学过的基本方法、步骤的联系与区别.二、探讨过程:

教师引导学生要注重的几个基本问题:

1、位置关系判定方法与求曲线方程问题的结合.2、位置关系判定方法与函数或不等式的结合.3、将圆变为相关曲线.备选题

1、求过点P(-3,-2)且与圆x2+y2+2x-4y+1=0相切的直线方程.备选题

2、已知P(x, y)为圆(x+2)2+y2=1上任意一点,求(1)(2)2x+3y=b的取值范围.备选题

3、实数k取何值时,直线L:y=kx+2k-1与曲线: y=两个公共点;没有公共点.三、小结:

1、问题变化、发展的一些常见方法,如:

(1)变常数为常数,改系数.(2)变曲线整体为部分.有一个公共点;=m的最大、最小值.(3)变定曲线为动曲线.2、理解与体会解决问题的一般策略,重视“新”与“旧”的联系与区别,并注意哪些可化归为“旧”的方法去解决.自编题目:

下面是四中学生在课堂上自己编的题目,这些题目由学生自己亲自编的或是自学中从课外书上找来的题目,这些题目都与本节课内容有关.①已知圆方程为(x-a)2+(y-b)2=r2,P(x0, y0)是圆外一点,求过P点的圆的两切线的夹角如何计算?

②P(x0, y0)是圆x2+(y-1)2=1上一点,求x0+y0+c≥0中c的范围.③圆过A点(4,1),且与y=x相切,求切线方程.④直线x+2y-3=0与x2+y2+x-2ay+a=0相交于A、B两点,且OA⊥OB,求圆方程?

⑤P是x2+y2=25上一点,A(5,5),B(2,4),求|AP|2+|BP|2最小值.⑥圆方程x2+y2=4,直线过点(-3,-1),且与圆相交分得弦长为3∶1,求直线方程.⑦圆方程x2+y2=9,x-y+m=0,弦长为

2,求m.⑧圆O(x-a)2+(y-b)2=r2,P(x0, y0)圆一点,求过P点弦长最短的直线方程?

⑨求y=的最值.圆锥曲线的定义及其应用

[教学内容]

圆锥曲线的定义及其应用。

[教学目标]

通过本课的教学,让学生较深刻地了解三种圆锥的定义是对圆锥曲线本质的刻画,它决定了曲线的形状和几何性质,因此在圆锥曲线的应用中,定义本身就是最重要的性质。

1.利用圆锥曲线的定义,确定点与圆锥曲线位置关系的表达式,体现用二元不等式表示平面区域的研究方法。

2.根据圆锥曲线定义建立焦半径的表达式求解有关问题,培养寻求联系定义的能力。

3.探讨使用圆锥曲线定义,用几何法作出过圆锥曲线上一点的切线,激发学生探索的兴趣。

4.掌握用定义判断圆锥曲线类型及求解与圆锥曲线相关的动点轨迹,提高学生分析、识别曲线,解决问题的综合能力。

[教学重点]

寻找所解问题与圆锥曲线定义的联系。

[教学过程]

一、回顾圆锥曲线定义,确定点、直线(切线)与曲线的位置关系。

1.由定义确定的圆锥曲线标准方程。

2.点与圆锥曲线的位置关系。

3.过圆锥曲线上一点作切线的几何画法。

二、圆锥曲线定义在焦半径、焦点弦等问题中的应用。

例1.设椭圆+=1(a>b>0),F1、F2是其左、右焦点,P(x0, y0)是椭圆上任意一点。

(1)写出|PF1|、|PF2|的表达式,求|PF1|、|PF1|·|PF2|的最大最小值及对应的P点位置。

(2)过F1作不与x轴重合的直线L,判断椭圆上是否存在两个不同的点关于L对称。

(3)P1(x1,y1)、P2(x2,y2)、P3(x3, y3)是椭圆上三点,且x1, x2, x3成等差,求证|PF1|、|PF2|、|PF3|成等差。

(4)若∠F1PF2=2,求证:ΔPF1F2的面积S=btg

(5)当a=2, b=最小值。

时,定点A(1,1),求|PF1|+|PA|的最大最小值及|PA|+2|PF2|的2例2.已知双曲线-=1,F1、F2是其左、右焦点。

(1)设P(x0, y0)是双曲线上一点,求|PF1|、|PF2|的表达式。

(2)设P(x0, y0)在双曲线右支上,求证以|PF1|为直径的圆必与实轴为直径的圆内切。

(3)当b=1时,椭圆求ΔQF1F2的面积。

+y=1 恰与双曲线有共同的焦点,Q是两曲线的一个公共点,2例3.已知AB是过抛物线y=2px(p>0)焦点的弦,A(x1, y1), B(x2, y2)、F为焦点,求证:

(1)以|AB|为直径的圆必与抛物线的准线相切。

(2)|AB|=x1+x2+p

(3)若弦CD长4p, 则CD弦中点到y轴的最小距离为

2(4)+为定值。

(5)当p=2时,|AF|+|BF|=|AF|·|BF|

三、利用定义判断曲线类型,确定动点轨迹。

例4.判断方程=1表示的曲线类型。

例5.以点F(1,0)和直线x=-1为对应的焦点和准线的椭圆,它的一个短轴端点为B,点P是BF的中点,求动点P的轨迹方程。

备用题:双曲线实轴平行x轴,离心率e=,它的左分支经过圆x+y+4x-10y+20=0的2

2圆心M,双曲线左焦点在此圆上,求双曲线右顶点的轨迹方程。

第五篇:直线和圆的位置关系教学反思

直线和圆的位置关系教学反思

直线和圆的位置关系教学反思1

今天,我顺利地上完《直线和圆的位置关系》第一课时。

本节课,我先让学生在课前自行完成教学案中“课前预习与导学”这一部分,情况良好。上课后先信息反馈进行评讲,然后引导学生回忆了点与圆的位置关系及如何用数量关系来判断点与圆的位置关系。接着以《海上日出》图创设情景,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由小“练习”进行应用,最后通过“例题”“课堂检测”去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在小练习之后我及时地进行总结归纳方法,让学生在以后解决实际问题过程中能一下子找到切入点,培养学生解决实际问题的能力。

同时,我也感觉到本节课的教学有不妥之处,主要有以下三点:

1、学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、对于我们学生的情况,初三的教学始终没有摆脱灌输式教学,尽管课上也让学生自主操作、思考,但老师讲的太多,没有给予学生足够的探索、交流的时间,势必会影响到部分学生的思维,限制了学生的发展。所以,我们也要学会该“放手时就放手”,大胆地让学生去思考,也许会有意外的收获。

3、对教材的把握,对学生的实情,在备课时都要考虑。在选题时不仅要照顾到基础薄弱的同学,也要照顾到基础好些的同学,适时选做。对于有些题可以适当地进行变式训练,拓展灵活运用,活跃学生的思维。

总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。

直线和圆的位置关系教学反思2

本节课教学我所面对的传授对象是聋哑学生,根据聋生的特点在学生观察教材123页三幅照片时,我立刻告诉学生你说的对,这就是直线和圆的三种关系:相交、相切和相离。我认为是数学课而不是语文课,数学课只注重学生的观察思维能力,不追求学生的语言表达能力和概括能力。

还有因为手语的手势再多再细也不可能表达出所有的抽象的甚至连丰富的语言都不好表述的东西,因此在讲解数学时,我追求细致,不要想很简单,很明显,而一带而过。因此,教学时我多次强化学生对直线与圆的三种关系的理解,为学生探究点到直线的距离d和圆半径r的大小关系。

然而数学教学时,该细的地方还是要细,这需要教师自己的把握,在学生轻而易举回答出来的问题时,有时要带领学生深入思考,并多问个为什么?比如在本课学生总结出:“圆的切线垂直于过切点的直径”时。养成学生深入思考的好习惯,不要想当然!

直线和圆的位置关系教学反思3

“思之不慎,行而失当”,“学然后知不足,教然后知困。知不足,然后能自反也;知困,然后能自强也。”反思意识人类早就有之。作为教师,在教学中也应适时反思教学过程的得与失。

在《直线和圆的位置关系》一课教学后,感受颇多,现分享如下:

开课时,借助微机展示“圆圆的落日慢慢从海平面升起”的动画,从而展现直线与圆的位置关系。由此引入课题——直线与圆的位置关系,学生比较感兴趣,充分感受生活中的数学知识,体验数学来源于生活。然后提出问题,引导学生大胆猜想,思考,发现三种位置关系,激发学生学习兴趣,营造探索问题的氛围。同时让学生从生活中“找”数学,“想”数学,体会到数学知识无处不在,应用数学无处不有。这也符合“数学教学应从生活经验出发”的新课程标准要求。

在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生用类比的方法来研究直线与圆的位置关系,在研究过程中,采用小组讨论的方法,给予学生足够的探索、交流的时间,培养学生互助、协作的精神,让学生在相互讨论中,集思广益,形成思维互补,从而使概念更清楚,结论更准确。 最后由学生小结这一知识点,我板书在黑板上,培养学生用数学语言归纳问题的能力,同时感受收获知识的快乐。

在新知教授完毕,知识升华这块,我安排了一道实际问题,一辆火车的噪首会不会影向处在与铁路相交的另一条公路旁的学校?如果会影响,影响的时间有多长?新课标下的数学强调人人学有价值的数学,人人学有用的数学,由于此题要学生回到生活中去运用数学知识解决生活中遇到的问题,学生的积极性高涨,都急着讨论解决方案,使乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

一堂课教学下来,也发现有诸多不妥之处,让我认识到自己需要继续努力。归纳主要有以下三点:

1、教师在课堂应当以引导者的身份出现,把课堂和讲台让位于学生,让“教师的教”真正服务于“学生的学”,而我在这一节课中因为一方面担心学生在自主研究知识的形成时会浪费时间,另一方面担心会产生意想不到的或者课前备课时没有考虑到的回答,总是把自己的思想强加给学生,比如学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生只是被动的接受,这样就会对概念的理解不是很深刻。这里可以改为让学生自己下定义,教师适当放手,以师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、有些课堂提问欠合理化、科学化,提问随意性大,缺乏针对性和启发性,导致课堂教学引导不力,问题缺乏精心安排这就使得课堂存在着不少“徒劳的提问”。让课堂时间分配的不太合理。今后应该把一些提问设计再提炼,能达到精而准。

3、在处理课后练习时,做的不够细致,这一环节是对前面探究新知识是否掌握的一个小测试,重在帮助学生掌握方法,而我在讲解练习时,只展示了解题思路,并没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。这里教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识,充分体现”授人以鱼不如授人以渔"。

总之,这是我对自己本节课的一些教学反思,或者说是对新课程理念的浅薄认识。

直线和圆的位置关系教学反思4

本节内容是直线与圆的位置关系的第二节课。需要一个课时。

(1)在教学中,组织学生自主观察、猜想、

证明

并深刻剖析直线是圆的切线的判定条件和直线与圆相切的性质;对重要的结论及时

总结

(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学。

今 后再教学本节课,应删去未能落实的教学设计,如繁杂的证明,多重视展示后进生的思维活动,有效地帮助他们形成良好的思维品质。另外,应加强对学生新建的知 识结构进行有效的跟踪、检测、调查与反馈,加强与学生交流,帮助他们扎实构建完整的知识体系,帮助他们养成观察、猜想、分析、探索、语言表达等思维习惯, 使学生在获得知识的同时,进一步培养相关的思维能力和素质.

新课程理念及新基础教育理念都提倡“把课堂还给学生,让课堂充满生命活力”, 让学生真正“动起来”,动不应当是表面的、外在的,而应当使学生的思维处于活跃状态,积极思考问题,这种内在的、深层的动,更要落实,动静结合,收放适 度,动得有序,动而不乱。课堂教学要的不是热闹场面,而是对问题的深入研究和思考。首先要设计好问题,针对不同意见和问题引导学生展开讨论、辩论,抓住学 生发言中的问题,及时给以矫正。当教师提出问题让学生探索时,学生自己寻找答案时,要放手让学生活动,但要避免学生兴奋过度或活动过量。今后再教学本节课 仍应倡导提高学生的问题意识,以对问题的探究来构筑本节课教学的主题。但是,教师待学生的问题提完后,与学生一道对问题进行归类,找出学生思维和知识的核 心问题,以此组织课堂教学,并相机解决其他问题。仍应放权给学生,给他们想、做、说的机会,让他们讨论、质疑、交流,围绕某一个问题展开辩论。教师应当给 学生时间和权利,让学生充分进行思考,给学生充分表达自己思维的机会。但是,应关注学生的参与程度,有的学生的参与只是一种表面上的行为参与。要看学生的 思维是否活跃,关键是学生所回答的问题、提出的问题,是否建立在一定的思维层次上,是否会引起其他学生的积极思考,还是学生的自我需要。也就是说我们要关 注学生思维的状态与学习互动的状态。

直线和圆的位置关系教学反思5

这是我第一次进入初三进行教学,即紧张又兴奋。经过一个学期的历练,在校领导和组内老教师的无私帮助下我有了一些进步。现以《直线和圆的位置关系》第一课时为例,反思如下。

在初三的教学过程中,我几乎是听一节上一节。而集体备课也给了我很大的帮助。通过集体备课和听课,在《直线和圆的位置关系》这节课中,我首先引导学生回忆了点与圆的位置关系及所对应的点到圆心的距离与圆半径的数量关系。从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

1、在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

2、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了两道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”“公路边的学校会不会受到噪声的影响?”培养学生解决实际问题的能力。由于这两题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。讲得过多,学生被动的接受,思考得不够,对概念的理解不是很深刻。可以改为让学生类比点与圆的位置关系下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2、虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。并在进行下面的解题时体现出来。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,不能想当然,否则会影响学生对知识的消化吸收。

总之,在今后的数学教学中还有很多需要我学习和掌握的东西,希望能和学生们一起共同进步,真正成为一名合格的数学教师。

直线和圆的位置关系教学反思6

《直线与圆的位置关系》是人教版九年级(下)第三章第一节的内容,它和点与圆的位置关系、圆与圆的位置关系同是研究图形之间位置关系的重要内容。下面谈谈自己的做法和体会:

一、重视定义的形成和概括过程:

“直线与圆的位置关系”是由公共点的个数来定义的。定义的教学是在教师引导下,通过学生观察、思考、交流、概括等探究活动亲身经历概念的形成过程,形成新知识的建构。首先引导学生回忆点和圆的位置关系及判定方法,通过对已有研究方法的揭示,增强学生运用迁移方法研究新问题的意识。接着,借助多媒体引导学生观察并思考:在不同的位置关系下,直线和圆的公共点的个数有什么不同?从而引导学生揭示出直线与圆的位置关系与公共点的个数之间存在着对应关系的本质特征。到此,我并没有急于给出定义,而是进一步引导学生在定义的形成上下工夫,又提出两个问题:一是直线与圆有三个或三个以上公共点吗?二是通过刚才的研究,你认为直线和圆的位置关系可分为几种类型呢?分类的标准是什么?定义的教学不只是以直接感知教材为出发点,而是力图还原定义的形成过程,这样既加深了学生对定义本身的理解,又提高学生对定义形成过程中所涉及的思想、方法的认识。而多媒体课件在这里的作用主要是通过“直线动圆不动”“圆动直线不动”“圆心直线不动半径变”三种运动方式的演示,有效创设符合教学内容的情景,把知识的形成过程直观化,提高学生的兴趣,增强学生的参与性。

二、重视定理的发现和总结过程:

本课内容的第二个知识点是运用圆心到直线的距离与半径的大小关系来判定直线与圆的位置关系,并反过来得到直线与圆的位置关系下所具有的数量特征。难点是如何引导学生去发现隐含在图形中的这两个数量并加以比较,为此,我设计了一个问题串,以问题为导向,以探究问题的方式引导学生自学自悟,为学生提供了自主合作探究的舞台,闪现了学生思维创新的火花。

引导1:通过刚才的研究我们知道,利用公共点的个数可以判定直线与圆的位置关系,请同学想一想,能否像判定点与圆的位置关系那样,通过数量关系来判定直线与圆的位置关系?

引导2:点与圆的位置关系的判定运用了哪两个数量之间的关系?直线与圆的位置关系中可以出现哪两个量呢?

引导3:如何用图形来反映半径和圆心到直线的距离这两个量呢?

引导4:如何由数量关系并结合图形判定相应的位置关系呢?

引导5:运用数量关系判定直线与圆的位置关系以及点与圆的位置关系,这两者之间有何区别与联系?

引导6:以上三个判定反过来成立吗?

通过以上问题,学生不仅加深了对判定直线与圆的位置关系的方法的理解,更重要的是使学生学会运用联想、化归、数形结合等思想方法去研究问题,这无疑促进学生在学会数学的过程中顺利地向“会学”的方向发展。而多媒体课件在这里的作用在于把“形”和“数” 的关系及其变化动态呈现在屏幕上,成为学生探索验证的好帮手。

三、尊重学生的主体地位:

教学设计应为学生自主学习,实现知识的建构服务。这节课为学生提供了大量问题情境、活动方式,使学生通过“做一做”“想一想”“练一练”“议一议”充分地实践与探索,不断地归纳与总结,引导学生发现规律、拓展思路。而多媒体的介入,为学生实现“意义建构”创设了更为逼真的“情景”,改善了认知环境,有利于提高课堂效率,有利于学生思维和技能的训练。如“议一议”:(1)已知⊙O半径为4cm,直线l上的点A满足OA=4cm,能否判定直线l和⊙O相切?为什么?

(2)已知⊙O半径为4cm,直线l上的点A满足OA=5cm,能否判定直线l和⊙O相离?为什么?

此题重在强调判定方法中圆心到直线的距离,利用多媒体演示,更直观地说明:(1)中当OA不是圆心到直线的距离时,直线l和⊙O相交;当OA是圆心到直线距离时,直线l是⊙O相切。(2)方法同(1),通过此题练习提高了学生思维的深刻性和批判性。

四、重视规律的揭示和提炼过程:

某个数学知识的教学可以在短期内完成,数学技能也可通过强化训练形成,而掌握学习的规律是一个长期渐进的过程,我认为教师在教学过程中应增强揭示规律的意识,引导学生从学习、研究的过程加以提炼,通过日积月累产生认识的飞跃。因此,在回顾与反思中,我组织学生以小组交流的形式讨论以下问题:一是通过刚才的学习,你对如何研究图形之间的位置关系有什么收获和体会?二是“点与圆的位置关系”与“直线与圆的位置关系” 有哪些联系?通过比较你有何启发?这一设计的做法虽小,作用却大,它使学生的认识上升到一个新的高度。也确保了学生在学会数学的过程中顺利地向“会学”的方向发展。

五、拓宽学习的时间和空间:

课后作业的设计不仅要达到巩固知识的目的,更重要的是有研究性和探索性。本节的课后作业有一道探究价值的题目:在Rt△ABC 中,∠C=Rt∠,AC=8cm,BC=6cm,若要以C为圆心,R为半径画圆,请根据下列条件,求半径R的值或取值范围。 1、AB与圆相离 2、AB与圆相交 3、AB与圆相切。

学生需通过动手动脑来完成,使学生的探索精神由课内延伸到课外。多媒体课件的作用在于通过圆的半径的动态变化,为学生研究直线与圆的位置关系提供思路和分类方法。

总之,通过这节课的教学,力图达到以下三个目标:一是知识目标,就是使学生理解概念,掌握性质和判定并能够利用它们分析问题和解决问题;二是能力目标,培养学生运用迁移、联想、类比、化归、数形结合等数学思想方法发现问题解决问题的能力和创新能力;三是情感目标,通过学生的主动参与,在学会数学的过程中向“会学”的方向发展,培养运动、变化、发展的辨证唯物主义观点。

直线和圆的位置关系教学反思7

新课程指出:学生是学习的主体,是发展的主体。在课堂教学中,教师要将课堂的主动权让给学生,作为教师应以“探究过程,探究方法,探究结果,运用结果”为主线安排教学进程,应高度重视学生的主动参与、亲自研究、动手操作,让学生从中去体验学习知识的过程,引导学生在发现问题、分析问题、解决问题的同时,培养学生的自主学习能力和创新意识。

在《直线和圆的位置关系》这节课中,我首先由生活中的情景——日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。

通过本节课的教学,我认为成功之处有以下几点:

1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。

2.在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

3.新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

同时,我也感觉到本节课的设计有不妥之处,主要有以下三点:

1.学生观察得到直线和圆的三种位置关系后,是由我讲解的三个概念:相交、相切、相离。学生被动的接受,对概念的理解不是很深刻,可以改为让学生下定义,师生共同讨论的形式给学生以思维想象的空间,充分调动学生的积极性,使学生实现自主探究。

2.虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。

3.对“做一做”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解“做一做”时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识。

总之,新课程的课堂教学要让学生作为课堂教学的主体参与到课堂教学过程中来,充分展现自己的个性,施展自己的才华,使学生在参与和体验的过程中真正成为学习的主人,养成勇于探索、敢于实践的个性品质。与此同时,教师还要为学生的学习创造探究的环境,营造探究的氛围,促进探究的`开展,把握探究的深度,评价探究的效果。

直线和圆的位置关系教学反思8

《直线和圆的位置关系的复习》一课的教学,可以说非常成功。教学设计充分体现了新的教学理念,重点突出、层次清楚、构思新颖,整个教学过程教师采用多样化的呈现方式为学生搭建参与探究的平台,高度重视学生的主动参与,有意识地为学生创设了良好的数学交流情境。注意学生的情感与态度,知识与技能的形成和发展,使每个学生都有表现的机会和获得成功的体验。

亮点一:由于本节课综合性强,涉及到的知识面广,对学生的能力水平要求高。教师结合本节课的教学目标,突出重点,突破难点。采用教师启发引导,学生合作交流的方式来组织本节课的教学。注重解题思路分析和方法引导,善于引导学生寻找图形中的数量关系,选用适当的知识和方法正确解答问题。

亮点二:在学习知识的同时,注意数学思想方法的渗透。在教学中,数学知识是一条明线,数学思想方法是一条暗线。崔老师在引导学生学习的同时,教给学生思考方法、学习方法和解决问题的方法,为学生未来发展服务,让学生在脑海里留下数学意识,长期下去,学生将终身受用。

亮点三:板书条理分明,布局合理,文字与图形完美结合,板书设计不仅让学生对直线和圆的位置关系图形的特征一目了然,而且也便于揭示它们之间的区别和联系。体现了板书的形式美和简洁美,真正使板书起到了画龙点睛的作用。

亮点四:充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使题意理解更清楚,结论更准确。

亮点五:教师教态自然,语言清晰,数学语言表述准确,操作演示熟练,提问率高,体现素质教育面向全体学生的要求。

亮点六:教师注意培养学生的自信心,在教学过程的设计上体现了层次性和梯度性。防止学生对一些问题出现畏惧情绪,鼓励学生敢于知难而进,让学生树立战胜困难的勇气和决心。例题的设计,按照由易到难的顺序呈现,关于直线和圆的复习教学中能利用一个图形提出尽可能多的问题,并尽可能的覆盖到圆的大多数知识,尽可能的加强知识间的横纵的联系,尽可能渗透多种数学思想和方法,最大限度的榨取它的利用价值,达到了一线串珠的目的。体现了综合性例题的大容量、大综合的特点,非常有效地达成本节课的教学目标。

直线和圆的位置关系教学反思9

本节课的教学我采用先亮标,亮自学提示及检测题的形式让学生先自学。依据自学检测题检验学生自学结果。然后精讲了切线性质定理及分析两种证明方法。然后结合小黑板练习巩固提高这节知识。

讲课时我改变了原来讲后再练的方式,采用了讲评一个知识点后配基础练习题,巩固此知识点的方法。避免讲后再练,练习与知识的脱节,练习紧跟。精讲知识后,再配以比基础题(巩固基础知识点)层次高的两组练习,让学生先做,采用举手的方式调查学生自己运用知识解决问题的情况。讲前85%的同学都举手做完,还有个别同学做到运用灵活方法解决问题。中午三道作业学生掌握良好。其余学生在我的讲解下也掌握今天的内容,会运用两种方法判断直线和圆的位置关系。知道有切线可连圆心和切点得垂直关系这种基本辅助线。

本节课的教学总的来说很顺利,学生掌握良好,由于课程标准对于本节课要求不高,紧扣标准,走进中招。本节课若能再配合课后检测题,及时精确把握,学生掌握情况会更完美。

重建:讲课前,先亮标,亮自学提示及检测题,以问题形式精讲切线性质定理及证明。配合练习、提高练习,下课前5分钟配简单检测题以便更全面把握学生掌握的情况。

教师的行为直接影响着学生的学习方式,要让学生真正成为学习的主人,积极参与课堂学习活动,因此在教学中让学生想象、观察、动手实践、发现内在的联系并利用类比归纳的方法,探索规律,指导学生合作、研究并尝试用学到的知识解决实际问题。

直线和圆的位置关系教学反思10

这节课,我由生活中的情景——日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

1、由日落引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到数学无处不在,无时不有。

2、在探索直线和圆位置关系所对应的数量关系时,让学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

3、新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

直线和圆的位置关系教学反思11

这节课,我由生活中的情景——日落引入,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生平移直尺,自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:

1。由日落引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到数学无处不在,无时不有。

2。在探索直线和圆位置关系所对应的数量关系时,让学生回顾点和圆的位置关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。

3。新课标下的数学强调人人学有价值的数学,人人学有用的数学,为此,在做一做之后我安排了一道实际问题:“经过两村庄的笔直公路会不会穿越一个圆形的森林公园?”培养学生解决实际问题的能力。由于此题要学生回到生活中去运用数学,学生的积极性高涨,都急着讨论解决方案,是乏味的数学学习变得有滋有味,使学生体会到学数学的重要性,体验“生活中处处用数学”。

下载2018年中考专题训练直线和圆的位置关系(五篇材料)word格式文档
下载2018年中考专题训练直线和圆的位置关系(五篇材料).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《直线和圆的位置关系》教学反思

    “国培计划”初中数学——陈晓峰(江西省宁都五中) 《直线和圆的位置关系》教学反思 节课的教学,我认为成功之处有以下几点: 1.由日落的三张照片(太阳与地平线相离、相切、相交)引入,......

    直线与圆的位置关系教案

    教学目标:1.使学生理解直线和圆的相交、相切、相离的概念。2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。3.培养学生把实际问题转化为数学问题的能力及......

    4.2.1直线与圆的位置关系说课稿(定稿)

    4.2.1直线与圆的位置关系说课稿 各位评委、老师,大家晚上好! 我说课的题目是《直线与圆的位置关系》,我将通过以下五方面对本节课进行解说。分别是教材分析、学情分析、教法分......

    直线与圆的位置关系教学设计

    直线与圆的位置关系(1)教学设计 教学目标: (一) 教学知识点: 1. 了解直线与圆的三种位置关系。 2. 了解圆的切线的概念。 3. 掌握直线与圆位置关系的性质。 (二) 过程目标: 1. 通......

    直线与圆的位置关系教学设计[最终定稿]

    直线与圆的位置关系教学设计 大虹桥乡阳城一中 杨跟上 一:教材: 人教版九年义务教育九年级数学上册 二:学情分析 初三学生已经具备一定的独立思考和探索能力,并能在探索过程......

    直线与圆的位置关系教学设计

    4.2.1 直线与圆的位置关系 一、教学目标 1.知识与技能:(1)理解直线与圆的位置关系; (2)利用点到直线的距离公式求圆心到直线的距离;(3)会判断直线与圆的位置关系。 2.过程与方......

    “直线与圆的位置关系”的教学设计

    “直线与圆的位置关系”的教学设计 一.教材分析: “直线与圆的位置关系”这一内容是九年级数学第24章第2节的教学内容,它既是点与直线的位置关系的延伸与拓展,又是圆与圆的位置......

    直线与圆的位置关系评课稿

    直线与圆的位置关系评课稿 数学课堂教法如何结合现代教育教法理论、结合学生的实际来实施素质教育,优化课堂教法,提高教法效益呢?这是每个老师在今天的课改面前都有的困惑.那么......