第一篇:小学奥数年龄问题题库学生版
年龄问题
一、年龄问题变化关系的三个基本规律:
1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量; 3.两个人之间的年龄差不变
二、年龄问题的解题要点是:
1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系. 2.关键:抓住“年龄差”不变. 3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式. 4.陷阱:求过去、现在、将来。年龄问题变化关系的三个基本规律: 1.两人年龄的差是不变的量;
2.两人年龄的倍数关系是变化的量;
【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁?
【巩固】 小英比小明小3岁,今年他们的年龄和是老师年龄的一半,再过15年,他们的年龄和就等于老师的年龄,今年小英的年龄是多少岁?
【巩固】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?
【巩固】 今年小宁9岁,妈妈33岁,那么再过多少年小宁的岁数是妈妈岁数的一半?
【巩固】 6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁.问:母亲今年多少岁?
【例 2】 小航的爸爸比妈妈大4岁,今年小航的父母年龄之和是小航的7倍,3年后小航的父母年龄之和是小航的6倍,那么小航的妈妈今年多少岁?
【巩固】 学而思学校张老师和刘备、张飞、关羽三个学生,现在张老师的年龄刚好是这三个学生的年龄和;9年后,张老师年龄为刘备、张飞两个学生的年龄和;又3年后,张老师年龄为刘备、关羽两个学生的年龄和;再3年后,张老师年龄为张飞、关羽两个学生的年龄和.求现在各人的年龄.
【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁?
【例 3】 小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁?
【巩固】 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?
【巩固】(北京市第四届“迎春杯”决赛)甲、乙、丙三人平均年龄为42岁,若将甲的岁数增加7,乙的岁数扩大2倍,丙的岁数缩小2倍,则三人岁数相等,丙的年龄为多少岁?
【例 4】 姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?
【例 5】 东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东、西西今年的年龄各是多少?
【巩固】 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?
【巩固】 今年彬彬的年龄是表弟年龄的4倍,20年后,彬彬的年龄比表弟的年龄的2倍少l2岁,今年彬彬、表弟各多少岁?
【巩固】 甲现在的年龄是乙过去某一时刻年龄的2倍,那时甲正好是乙现在这样大,当乙到了甲现在的年龄时,甲与乙年龄之和为63,那么现在甲、乙年龄分别是多少岁?
【例 6】 李伟5年前的年龄与张磊8年后的年龄相等,李伟4年后与张磊3年前的年龄和是36岁,李伟和张磊两人今年各多少岁?
【例 7】 甲的年龄比乙的年龄的4倍少3,甲在3年后的年龄等于乙9年后的年龄,问甲、乙现在各几岁?
【例 8】 一天,小慧和刘老师一起谈心,小慧问:“老师,您今年有多少岁啊?”刘老师 回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34 岁了.”那么刘老师今年的年龄是多少岁呢?
【例 9】 父子年龄之和是45岁,再过5年,父亲的年龄正好是儿子的4倍,父子今年各多少岁?
【巩固】 父子年龄之和是60岁,8年前父亲的年龄正好是儿子的3倍,问父子今年各多少岁?
【巩固】 李文今年9岁,爸爸妈妈的年龄和是81岁,问:多少年后他们仨的平均年龄是40岁?
【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁?
【巩固】 王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是
18岁.王老师今年32岁,李老师今年多少岁?
【例 10】 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?
【巩固】 爸爸15年前的年龄相当于儿子12年后的年龄,当爸爸的年龄是儿子的4倍时,爸爸多少岁?
【巩固】(2007年湖北省“创新杯”决赛)小华今年8岁,他和爸爸、妈妈三人年龄之和为81岁.若干年后,三人平均年龄是34岁.到那时,小华的年龄是 岁.
【例 11】 小芬家由小芬和她的父母组成,小芬的父亲比母亲大4岁,今年全家年龄的和是72岁,10年前这一家全家年龄的和是44岁.今年三人各是多少岁?
【巩固】 全家四口人,父亲比母亲大3岁,姐姐比弟弟大2岁.四年前他们全家的年龄和为58岁,而现在是73岁.问:现在各人的年龄是多少?
【巩固】(第三届“走进美妙数学花园)有一家三口,爸爸比妈妈大3岁,他们全家今年的年龄加起来正好是58岁,而5年前他们全家人年龄加起来刚好是45岁.小孩子今年多少岁?
【例 12】(2007年春武汉明心奥数挑战赛)泡泡比毛毛小7岁,再过4年泡泡的年龄将是毛毛年龄的一半,他们今年的年龄总和是 岁。
【巩固】 四个人年龄之和是87岁,最小的一个12岁,他与最大的人年龄之和比另外两个人年龄之和大7岁,那么这四个人中年龄最大的一个年龄是多少?
【巩固】 五位老人的年龄互不相同,其中年龄最大的比年龄最小的大6岁,已知他们的平均年龄为85岁,其中年龄最大的一位老人的年龄是多少岁?
【例 13】 已知祖孙三人,祖父和父亲的年龄差与父亲和孙子的年龄差相同,祖父和孙子年龄之和为82岁,明年祖父年龄恰好等于孙子年龄的5倍.求祖孙三人各多少岁?
【例 14】(第一届祖冲之杯数学邀请赛)甲对乙说:“当我的岁数是你现在的岁数时,你才5岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将50岁.”那么,甲现在()岁,乙现在()岁.
【巩固】 小鲸鱼说:“妈妈,我长到您现在这么大时,您就31岁啦!”鲸鱼妈妈说:“我像你这么大时,你只有1岁.“求小鲸鱼和妈妈现在多少岁?
【巩固】 甲对乙说:“我在你这么大岁数的时候,你的岁数是我今年岁数的一半.”乙对甲说:“我到你这么大岁数的时候,你的岁数是我今年岁数的2倍减7.”问:甲、乙二人现在各多少岁?
10年前父亲的年龄是儿子的7倍,15年后父亲的年龄是儿子的2倍,问现在父子的年龄各是多【例 15】 少?
【巩固】(2008年第七届“小机灵杯”数学竞赛决赛)11年前父亲的年龄是儿子年龄的7倍,14年后父亲的年龄是儿子年龄的2倍,今年父亲 岁,儿子 岁。
【巩固】 今年父亲的年龄是儿子的5倍,15年后,父亲的年龄是儿子年龄的2倍,问:现在父子的年龄各是多少岁?
【巩固】 14年前爸爸的年龄是儿子的5倍,14年后父子二人年龄和是98岁,父子二人今年分别多少岁?
【例 16】(2007年湖北省“创新杯”初赛题改编)现在哥哥的年龄恰好是弟弟年龄的2倍.而9年前哥哥的年龄是弟弟年龄的5倍,则哥哥现在的年龄是 岁.
【巩固】 6年前爸爸的年龄是小玲的6倍,18年后爸爸的年龄是小玲的2倍.问现在父女俩的年龄各是多少岁?
【例 17】(2008年“希望杯”五年级一试试题)
前年,父亲年龄是儿子年龄的4倍;后年,父亲年龄是儿子年龄的3倍.父亲今年 岁.【巩固】 12年前,父亲的年龄是女儿年龄的11倍;今年,父亲的年龄是女儿年龄的3倍,请问多少年后父亲年龄是女儿年龄的2倍
【例 18】(第三届小学“希望杯”全国数学邀请赛)当哥哥的年龄是弟弟现在的年龄时,哥哥的年龄是弟弟年龄的3倍,当弟弟的年龄是哥哥现在的年龄时,他们两人的年龄和是48,弟弟现在多少岁?
【巩固】 哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁.问:哥哥现在多少岁?
【巩固】 哥哥对弟弟说:“当我在你现在的年龄时,你才7岁”.弟弟又对哥哥说:“当我长到你现在的年龄时,你已22岁了”,问哥哥和弟弟现在各多少岁?
【例 19】 甲对乙说:“我在你这么大岁数的时候,你的岁数是我今年岁数的一半.”乙对甲说:“我到你这么大岁数的时候,你的岁数是我今年岁数的2倍减7.”问:甲、乙二人现在各多少岁?
【巩固】 甲现在的年龄是乙过去某一时刻年龄的2倍,那时甲正好是乙现在这样大,当乙到了甲现在的年龄时,甲与乙年龄之和为63,那么现在甲、乙年龄分别是多少岁?
【例 20】(第三届小学《祖冲之杯》数学邀请赛试题)爸爸在过50岁生日时,弟弟说:“等我长到哥哥现在的年龄时,我和哥哥那时的年龄之和等于那时爸爸的年龄”,那么哥哥今年多少岁?
【巩固】 今年父亲的年龄是48岁,哥哥的年龄是弟弟的2倍.当弟弟长到哥哥现在的年龄时,父亲的年龄恰好等于兄弟俩年龄之和.请问:今年哥哥多少岁?
【例 21】 1年前父母的年龄和是兄弟二人年龄和的7倍;4年后,父母的年龄和是兄弟二人年龄和的4倍。已知爸爸比妈妈大2岁,妈妈今年几岁?
【巩固】 梁老师问陈老师有多少子女,她说:“现在我和爱人的年龄和是子女年龄和的6倍;两年前,我们的年龄和是子女年龄和的10倍;六年后,我们的年龄和是子女年龄和的3倍.”问陈老师有多少子女.
【例 22】(北京市“迎春杯”选题)
⑴今年,父亲年龄是女儿年龄的4倍,三年前父女年龄之和是49岁,问父亲现在 岁?女儿现在 岁? ⑵妈妈今年40岁,恰好是小红年龄的4倍; 年后妈妈的年龄是小红的2倍? ⑶陈老师今年34岁,她的学生小光、小亮、小聪的年龄分别是9、10、11岁. 年后,这三个学生年龄的和才同陈老师的年龄相等?
【巩固】 三个人的年龄和是75岁,最大的人比其它两个人的年龄和还要大15岁,最小的人是12岁,问三个人的年龄各是多少?
【例 23】 已知祖孙三人,祖父和父亲年龄的差与父亲和孙子年龄的差相同,祖父和孙子年龄之和为82岁,明年祖父年龄恰好等于孙子年龄的5倍.求祖孙三人各多少岁?
【例 24】 今年,祖父的年龄是小明的年龄的6倍,几年后,祖父的年龄将是小明年龄的5倍,又过几年以后,祖父的年龄将是小明的年龄的4倍,求:祖父今年是多少岁?
【例 25】 爸爸、哥哥、妹妹三人现在的年龄和是64岁.当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁;当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三个人的年龄各是多少岁?
【巩固】甲、乙、丙三人现在的年龄和是50岁,当甲的年龄是乙的年龄的一半时丙26岁,当乙的年龄是丙的年龄的一半时甲5岁.现在甲、乙、丙各几岁?
【巩固】 当王力的年龄像李彤现在这么大时,刘强的年龄比王力和李彤他们现在的年龄之和小7岁.当刘强像王力现在这么大时,王力的年龄是______岁.
3年前姐姐与妹妹的年龄比为5:2,2年后姐姐和妹妹的年龄比为10:7,问姐姐和妹妹的年龄【例 26】
差为
【例 27】(第五届“华杯赛”初赛试题)小明今年的年龄是他出生那年的年份的数字之和.问:他今年(1995年)多少岁?
【巩固】(第五届“华杯赛”初赛试题)小明今年的年龄是他出生那年的年份的数字之和.问:他今年(1995年)多少岁?
【巩固】(第七届“华杯赛”初赛试题)小明爷爷的年龄是一个两位数,将此两位数的数字交换得到的数就是小明爸爸的年龄,又知道他们的年龄的差是小明年龄的4倍,求小明的年龄.
【巩固】 同学们可能知道,歌星、影星一般都不愿意公开自己的年龄。这个小故事说的就是一个记者千方百计要从一个女影星嘴里打听出她的年龄。影星不想说谎,却又不愿意把自己的年龄讲出来,于是就对记者说:“我5年后岁数的5倍,减去我5年前岁数的5倍,正好是我现在的年龄。”记者想了半天,还是没有想出来影星的年龄。同学们开动脑筋想一想,这个影星今年到底多少岁了?
【例 28】(第五届“迎春杯”刊赛试题)有甲、乙、丙三个人,当甲的年龄是乙的2倍时,丙是22岁;当乙的年龄是丙的2倍时,甲是31岁;当甲60岁时,丙是多少岁?
【巩固】 甲、乙、丙、丁四个人的年龄之和是64岁,甲21岁时,乙17岁;今年甲18岁,丙的年龄是丁的3倍.问丁今年的年龄?
【例 29】(2001年小学数学奥林匹克决赛)一位一百多岁的老寿星(2001年时),公元x2年时年龄为x岁,此老寿星2001年是多少
【例 30】 爸爸、哥哥、妹妹三人现在的年龄和是64岁.当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁;当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三个人的年龄各是多少岁?
【巩固】 甲乙丙三人现在岁数的和是113岁,当甲的岁数是乙的岁数的一半时,丙是38岁,当乙的岁数是丙的岁数的一半时,甲是17岁,那么乙现在是多少岁?
【巩固】甲、乙、丙三人现在的年龄和是50岁,当甲的年龄是乙的年龄的一半时丙26岁,当乙的年龄是丙的年龄的一半时甲5岁.现在甲、乙、丙各几岁?
第二篇:奥数 年龄问题
三 年 级
上 学 期
数 学 练习
年龄问题
一、父亲36岁,儿子4岁。几年后父亲年龄是儿子年龄的3倍?
二、现在哥哥25岁,弟弟15岁,几年前哥哥的年龄为弟弟年龄的2倍?
三、女儿8岁,母亲38岁。母亲多少岁时是女儿年龄的3倍?
四、甲对乙说:“现在我的年龄是你的年龄的2倍。”乙对甲说:“我6年后的年龄和你10年前的年龄一样。”甲、乙年龄各是多少?
五、小江14岁,爸爸41岁。几年前时爸爸的年龄比小江年龄大3倍?
六、甲在银行存款4000元,乙在银行存款2000元。两人从银行中取出同样多钱后,甲的存款数是乙存款的5倍。两人各取出多少元?
七、哥哥年龄是弟弟年龄的3倍,但3年前哥哥的年龄等于弟弟3年后的年龄。现在年龄各是几岁? 三 年 级
上 学 期
数 学 练习
八、母亲现在的年龄是儿子年龄的4倍。母亲27岁时生的这个孩子,问母子现在各多少岁?
九、10年前母亲的年龄是女儿的7倍,15年后母亲的年龄是女儿的2倍。现在母女两人的年龄各是多少岁?
十、哥哥与弟弟两人3年后的年龄和是27岁。弟弟今年的年龄等于两人年龄差。问哥哥和弟弟今年各几岁?
十一、今年哥哥、弟弟两人岁数和是50.曾有一年,哥哥的岁数是今年弟弟的岁数,那时哥哥的岁数正好是弟弟当年的岁数的2倍。问哥哥和弟弟今年各多少岁?
十二、父亲与弟弟的年龄和是58岁,父亲比哥哥大23岁,哥哥比弟弟大5岁。问三人的年龄各是多少岁?
十三、四人年龄和是77岁,最小的10岁,他与最大的年龄之和比另外两个人年龄和大7岁。最大的年龄是多少岁? 三 年 级
上 学 期
数 学 练习
十四、姐妹两人,当姐姐像妹妹这么大年龄时,妹妹才9岁;当妹妹像姐姐现在这么大年龄时,姐姐就27岁了。求姐姐和妹妹现在各多少岁?
十五、同学们问王老师年龄。王老师说:“我已过半百。3年前,我的年龄时6的倍数;3年后,我的年龄是5的倍数。”请问王老师现在的年龄是多少岁?
十六、甲比乙小4岁,丙比甲小4岁,丁比丙小4岁,丁的年龄正好是乙的一半。他们各多少岁?
十七、祖孙三人的年龄和正好是100岁。祖父过的年数正好等于孙子过的月数,儿子过的星期数正好等于孙子过的天数。问祖父、儿子、孙子各多少岁?
十八、一个中学生说,我的年龄减去10,再乘以5,恰好等于我的年龄加上10.问这位中学生的年龄多大? 三 年 级
上 学 期
数 学 练习
练习
1、甲、乙两人的年龄和是33岁,四年后,甲比乙大3岁。问甲、乙两人各多少岁?
2、父子的年龄和是64岁,儿子年龄的3倍比父亲的年龄多8岁。求父子两人各多少岁?
3、甲、乙两人年龄和为35岁,乙、丙两人年龄和为45岁。甲、丙两人年龄和为40岁。求甲、乙、丙各多少岁?
4、父亲47岁,儿子21岁。几年前父亲年龄是儿子年龄的3倍?
5、小红11岁时,也有68岁。今年小红考上了大学,爷爷的年龄刚好是小红的4倍。问爷爷今年多大岁数?
6、小明和叔叔今年共40岁,曾有一年叔叔的岁数是今年小明的岁数,那时叔叔的岁数恰好是小明岁数的3倍,叔叔和小明今年各多少岁?
7、妈妈今年32岁,儿子今年6岁,问:在几年后,妈妈的年龄是儿子年龄的3倍?
8、父亲今年45岁,儿子23岁,几年前父亲的岁数是儿子的3倍? 三 年 级
上 学 期
数 学 练习
年龄问题一 三 年 级
上 学 期
数 学 练习
年龄问题二 三 年 级
上 学 期
数 学 练习
年龄问题三
第三篇:小学奥数盈亏问题题库教师版
盈亏问题
知识点说明:
盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.
可以得出盈亏问题的基本关系式:
(盈亏)两次分得之差人数或单位数(盈盈)两次分得之差人数或单位数(亏亏)两次分得之差人数或单位数
物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”.注意1.条件转换 2.关系互换
板块
一、直接计算型盈亏问题
【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?
【解析】 比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729(块),每人相差1块,结果总数就相差9块,所以有少先队员919(人).共有砖:49743(块).
【巩固】 明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?
【巩固】 老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?
【巩固】 有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?
【例 2】(2007年“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多 只.
【详解】 当大猴分5个,小猴分3个时,猴王可留10个.若大、小猴都分4个,猴王能留下20个.也就是说在大猴分5个,小猴分3个后,每只大猴都拿出1个,分给每只小猴1个后,还剩下201010个,所以大猴比小猴多10只.
【巩固】 学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?
【巩固】 幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?
【巩固】 王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?
【巩固】 工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?
【例 3】 某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人? 【解析】 由已知条件
每间5人 少14个床位
每间7人 多4个床位
比较两次分配的方案,可以看出,由于第二种方案比第一种每间多住(75)2人,一共要多出(144)18个床位,根据两种方案每间住的人数的差和床位差,可以求出宿舍间数,然后根据已知条件可求出住宿生人数.
解:(414)(75)=9(间)
591459(人),或79459(人)
【巩固】 学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?
【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?
【巩固】 秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?
板块
二、条件关系转换型盈亏问题
【例 4】 猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?
【解析】 猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11101(条),由盈亏问题公式得,有小猫:818(只),猫妈妈有810888(条)鱼.
【巩固】 学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?
【巩固】 学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?
【巩固】 一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?
【巩固】 实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?
【例 5】 甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?
【例 6】 幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。如全部分给小班的小朋友,每人分到8个,则缺2个。已知大班比小班多3人,问:这筐苹果共有多少个?
【巩固】 幼儿园把一袋糖果分给小朋友.如果分给大班的小朋友,每人5 粒就缺6 粒.如果分给小班的小朋友,每人4 粒就余4 粒.已知大班比小班少2 个小朋友,这袋糖果共有多少粒?
【例 7】 有一些糖,每人分5块则多10块,如果现有人数增加到原有人数的1.5倍,那么每人4块就少两块,这些糖共有多少块?
【解析】 第一次每人分5块,第二次每人分4块,可以认为原有的人每人拿出541块糖分给新增加的人,而新增加的人刚好是原来的一半,这样新增加的人每人可分到2块糖果,这些人每人还差422块,一共差了10212块,所以新增加了1226人,原有6212人.糖果数为:1251070(块).
【巩固】 卧龙自然保护区管理员把一些竹子分给若干只大熊猫,每只大熊猫分5个还多余10棵竹子,如果大熊猫数增加到3倍还少5只,那么每只大熊猫分2棵竹子还缺少8棵竹子,问有大熊猫多少只,竹子多少棵?
【巩固】 体育队将一些羽毛球分给若干个人,每人5个还多余10个羽毛球,如果人数增加到3倍,那么每人分2个羽毛球还缺少8个,问有羽毛球多少个?
【例 8】 王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?
【解析】 因为桔子每人分3个多4个,而苹果是桔子的2倍,因此苹果每人分6个就多8个.又已知苹果每人分7个少5个,所以应有(8+5)÷(6-5)=13(人).苹果个数为13×7-5=86(个).桔子数为 13×3+4=43(个).答:有13个小朋友,86个苹果和43个桔子.【巩固】 学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?
【例 9】 用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深.【例 10】 乐乐有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.乐乐共存了多少钱?
【例 11】 阳光小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?
【巩固】 幸福小学少先队的同学到会议室开会,若每条长椅上坐3人则多出7人,若每条长椅上多坐4人则多出3条长椅.问:到会议室开会的少先队员有多少人?
【巩固】 智康小合唱队的同学到会议室开会,若每条长椅上坐3人则多出9人,若每条长椅上坐4人则多出3人.问:合唱队有多少人?
【巩固】 少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑?
【巩固】 六年级学生出去划船。老师算了一下,如果每船坐6人,那么还剩下22人没船坐。安排时发现有3条船坏了,于是改为每船坐8人,结果还剩下6人没地方坐,请问:一共有多少学生?
【例 12】 学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?
【解析】 每个房间住3人,则多出23人,每个房间住5人,就空出3个房间,这3个房间如果住满人应5(人),由此可见,每一个房间增加532(人).两次安排人数总共相差该是53123153880(人),或者(人),因此,房间总数是:38÷2=19(间),学生总数是:319235195380(人).
【巩固】 学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?
【巩固】 军队分配宿舍,如果每间住3人,则多出20人;如果每间住6人,余下2人可以每人各住一个房间,现在每间住10人,可以空出多少个房间?
【巩固】 猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:一共有多少只小猪,猪妈妈一共带了多少张餐布?
【例 13】 国庆节快到了,学而思学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?
【巩固】 妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人?
【例 14】 四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了 元钱.
【解析】 这笔钱买13千克芒果还差4元,若把这13千克芒果换成奶糖就会多出13226元,所以这笔钱买13千克奶糖会多出26422元.而这笔钱买15千克奶糖会多出2元,所以每千克奶糖的价格为:(222)(1513)10(元).辅导老师共带了10152152元.
【巩固】 小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱?
【巩固】 食堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?
【巩固】 李明的妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋,并且没有剩余的钱.问:李妈妈带了多少钱?
【例 15】 小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校。小强家到学校的路程是多少米?
【解析】 迟到3分钟转化成米数:503150(米),提前2分钟到校转化成米数:602120(米),距离上课时间为:(150120)(6050)27(分钟),家到学校的路程为:50(273)1500(米).
【巩固】 东东从家去学校,如果每分走80米,结果比上课提前6分到校,如果每分走50米,则要迟到3分,那么东东家到学校的路程是______米.
【巩固】 王老师由家里到学校,如果每分钟骑车500米,上课就要迟到3分钟;如果每分钟骑车600米,就可以比上课时间提前2分钟到校.王老师家到学校的路程是多少米?
【巩固】 学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?
【例 16】 “六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等.花球原价1元钱2个,白球原价1元钱3个.因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球?
【解析】 花球原价1元钱2个,白球原价1元钱3个.即花球原价10元钱20个,白球原价10元钱30个.那
5(元)25么,同样买花球和白球各30个,花球要比白球多花102,共需要302303224(元)(元).现在两种球的售价都是2元钱5个,花球和白球各买30个需要(305)2,说明花球和白球各买30个能省下25241(元).现在共省了4元,说明花球和白球各有304120(个)240(个),共买了1202.
【例 17】(2009“数学解题能力展示”中年级组复试题)幼儿园老师买了同样多的巧克力、奶糖和水果糖.她发给每个小朋友2块巧克力,7块奶糖和8块水果糖.发完后清点一下,水果糖还剩15块,而巧克力恰好是奶糖的3倍.那么共有_____________个小朋友.
【解析】 画线段图分析,由题意知:
从奶糖的7份中取2份,那么剩下的5份就和上面的2小段相等.如图:
那么2小段和5份都看成10份量,那么总量就相当于19份量,水果糖中原有的8份就是现在的16份,则剩下的15块水果糖就占有3份,则1份就是5块,给小朋友们分出去的水果糖数量是:16580(块),小朋友的人数是:80810(人).
方法二:由上图知,设发完后奶糖剩下1份,则巧克力剩下3份,而巧克力与奶糖每人分得相差5块,对应剩下的糖相差2份,水果糖与奶糖每人分得相差1块,则对应剩下的糖应相差250.4份,所以水果糖最后应剩下10.40.6份,恰是15块,所以1份对应的是150.625,所以应用盈亏问题共有(2515)(87)10(人).
【例 18】 一盒咖啡中有若干袋,一包方糖中有若干块.小唐喝前两盒咖啡时每袋咖啡都放3块方糖,结果共用了1包方糖和第2包中的24块;小唐喝后三盒咖啡时每袋咖啡都只放1块方糖,最后第3包方糖还剩下36块,那么每盒咖啡有多少袋?
【解析】 小唐喝前2盒咖啡,每袋放3块糖,相当于喝6盒咖啡每袋放1块糖;小唐喝后3盒咖啡,每袋放1块糖,所以喝后3盒用掉的方糖总量是前2盒用掉方糖量的一半.
同时,小唐喝前2盒咖啡一共用掉方糖一包又24块,喝后3盒咖啡用掉方糖一包差12块,因此一包又24块方糖与两包差24块方糖一样多,一包方糖有(2424)(21)48(块).
于是喝前两盒咖啡用掉方糖482472(块),每盒咖啡的袋数为:723212(袋).
【巩固】 巧克力每盒9块,软糖每盒11块,要把这两种糖分发给一些小朋友,每种糖每人一块,由于又来了一位小朋友,软糖就要增加一盒,两种糖分发的盒数就一样多,现在又来了一位小朋友,巧克力还要增加一盒,则最后共有多少个小朋友?
【例 19】 有若干盒卡片分给一些小朋友,如果只分一盒,每人至少可以得到7张;如果每人分8张卡片,则还缺少5张.现在把所有卡片都分完,每人分到60张,而且还多出4张.问:共有多少个小朋友?
【详解】 首先由题意,一盒卡片每人分7张则有剩余,每人分8张则少5张,证明总人数多于5个.
如果一共有7盒卡片,则所有人每人要想分到8756(张)卡片,还缺35张,卡片张数比题中所述要少.
如果一共有9盒卡片,则只要再添上5945(张)卡片,就能使所有人每人分到8972(张),15,不满足总人数多于5个的要求. 12类似地,当卡片总盒数多于9时,都不满足总人数多于5个的要求.
因此卡片一共有8盒,添上5840(张)卡片,就能使所有人每人分到8864(张),所以总人数为:(404)(6460)11(人). 人数为(454)(7260)4(二解)60784,60874,说明卡片的盒数是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8864(张),现在实际每人得到60张,即每人需要退出4张,其中要有4张是每人60张后多下来的,还有40张是我们一开始借来的要还出去,即要退出44张,44411(人),说明有11人.
【例 20】 有若干个苹果和若干个梨.如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨.苹果和梨各有多少个? 【解析】 容易看出这是一道盈亏应用题,但是盈亏总额与两次分配数之差很难找到.原因在于第一种方案是1个苹果“搭配”2个梨,第二种方案是3个苹果“搭配”5个梨.如果将这两种方案统一为1个苹果“搭配”若干个梨,那么问题就好解决了.将原题条件变为“1个苹果搭配2个梨,缺4个梨;1个苹果搭配5/3个梨,多1个梨”,此时盈亏总额为415(个)梨,两次分配数之差为25/31/3(个)梨.所以有苹果(41)(25/3)15(个),有梨152426(个).【巩固】 有若干个苹果和梨,如果按1个苹果配3个梨分一堆,那么苹果分完时,还剩2个梨;如果按半个苹果配2个梨分一堆,那么梨分完时,还剩半个苹果.问梨有多少个?
【例 21】 幼儿园老师给小朋友分糖果.若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块.那么糖果最多有多少块?
【分析】 最后一人分不到9块,那么最多可以分到8块,即若每人分9块,还差1块.根据盈亏计算公式,(110)(98)11(人)人数有,糖果最多有911198(块);最后一人分不到9块,但至少
(810)(98)18(人)可分到一块,即最少是最后一人差8块,根据盈亏计算公式,人数有,糖果最多有9188154(块);所以,这批糖果最多有154块.
【例 22】 幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人,老师给小孩分枣,甲班每个小孩比乙班每个小孩少分3个枣,乙班每个小孩比丙班每个小孩少分5个枣,结果甲班比乙班共多分3个枣,乙班比丙班总共多分5个枣.问:三个班总共分了多少个枣?
(x4)(x8)【解析】 设丙班有x个小孩,那么乙班就有个小孩,甲班有个小孩.
乙班每个小孩比丙班每个小孩少分5个枣,那么x个小孩就少分5x个枣,而乙班比丙班总共多分5个枣,所以多出来的那4个小孩分了(5x5)个枣.
(x4)(3x12)同样的道理,甲班每个小孩比乙班每个小孩少分3个枣,那么个小孩就少分个枣,而甲班比乙班总共多分3个枣,所以多出来的那4个小孩分了3x1233x15个枣.
甲班每个小孩比乙班每个小孩少分3个枣,4个小孩就少3412个枣,因此我们得到:5x53x1512,解得x11.
所以,丙班有11个小朋友,乙班有15个小朋友,甲班有19个小朋友;甲班每人分12个枣,乙班每人分15个枣,丙班每人分20个枣.—共分了121915152011673(个)枣.
【巩固】 有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问第二组有多少人?
【例 23】 “六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等.花球原价1元钱2个,白球原价1元钱3个.因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球?
【解析】 花球原价1元钱2个,白球原价1元钱3个.即花球原价10元钱20个,白球原价10元钱30个.那
5(元)25么,同样买花球和白球各30个,花球要比白球多花102,共需要302303224(元)(元).现在两种球的售价都是2元钱5个,花球和白球各买30个需要(305)2,说明花球和白球各买30个能省下25241(元).现在共省了4元,说明花球和白球各有304120(个)240(个),共买了1202.
【巩固】 有红、黄、绿3种颜色的卡片共有100张,其中红色卡片的两面上分别写有1和2,黄色卡片的两面上分别写着1和3,绿色卡片的两面上分别写着2和3.现在把这些卡片放在桌子上,让每张卡片写有较大数字的那面朝上,经计算,各卡片上所显示的数字之和为234.若把所有卡片正反面翻转一下,各卡片所显示的数字之和则变成123.问黄色卡片有多少张?
【例 24】 四(2)班在这次的班级评比中,获得了“全优班”的称号.为了奖励同学们,班主任刘老师买了一些铅笔和橡皮.刘老师把这些铅笔和橡皮分成一小堆一小堆,以便分给几位优秀学生.如果每堆有1块橡皮2支铅笔,铅笔分完时橡皮还剩5块;如果每堆有3块橡皮和5支铅笔,橡皮分完时还剩5支铅笔.那么,刘老师一共买了多少块橡皮?多少支铅笔? 【解析】 如果增加10支铅笔,则按1块橡皮、2支铅笔正好分完;而按3块橡皮、5支铅笔分,则剩下10+5=15(支)铅笔,但如果按3块橡皮、6支铅笔分,则正好分完,可以分成:15÷(6—5)=15(堆),所以,橡皮数为:15×3=45(块),铅笔数为:15×6—10=80(支).
【巩固】 小白兔和小灰兔各有若干只.如果5只小白兔和3只小灰兔放到一个笼子中,小白兔还多4只,小灰兔恰好放完;如果7只小白兔和3只小灰兔放到一个笼子中,小白兔恰好放完,小灰兔还多12只.那么小白兔和小灰兔共有多少只?
第四篇:小学奥数盈亏问题题库教师版
盈亏问题
知识点说明:
盈亏问题的特点是问题中每一同类量都要出现两种不同的情况.分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),凡研究这一类算法的应用题叫做“盈亏问题”.
可以得出盈亏问题的基本关系式:
(盈亏)两次分得之差人数或单位数(盈盈)两次分得之差人数或单位数(亏亏)两次分得之差人数或单位数
物品数可由其中一种分法和人数求出.也有的问题两次都有余或两次都不足,不管哪种 情况,都是属于按两个数的差求未知数的“盈亏问题”.注意1.条件转换 2.关系互换
板块
一、直接计算型盈亏问题
【例 1】 三年级一班少先队员参加学校搬砖劳动.如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖.这个班少先队有几个人?要搬的砖共有多少块?
【解析】 比较两种搬砖法中各个量之间的关系:每人搬4块,还剩7块砖;每人搬5块,就少2块.这两次搬砖,每人相差541(块).第一种余7块,第二种少2块,那么第二次与第一次总共相差砖数:729(块),每人相差1块,结果总数就相差9块,所以有少先队员919(人).共有砖:49743(块).
【巩固】 明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?
【解析】 “多8元”与“多4元”两者相差844(元),每个人要多出871(元),因此就知道,共有414(人),蛋糕价钱是84824(元).
【巩固】 老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?
【解析】 老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏总和是927(个),两次分配之差是11101(个),由盈亏问题公式得,有小猴子:717(只),老猴子有710979(个)桃子.【巩固】 有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?
【解析】 由题意知:第一种方案:每人发5本多出70本;第二种方案:每人发7本多出10本;两种方案分配结果相差:701060(本),这是因为两次分配中每人所发的本数相差:752(本),相差60本的学生有:60230(人).练习本有:30570220(本)(或30710220).
【例 2】(2007年“走进美妙的数学花园”初赛)猴王带领一群猴子去摘桃.下午收工后,猴王开始分配.若大猴分5个,小猴分3个,猴王可留10个.若大、小猴都分4个,猴王能留下20个.在这群猴子中,大猴(不包括猴王)比小猴多 只.
【详解】 当大猴分5个,小猴分3个时,猴王可留10个.若大、小猴都分4个,猴王能留下20个.也就是
说在大猴分5个,小猴分3个后,每只大猴都拿出1个,分给每只小猴1个后,还剩下201010个,所以大猴比小猴多10只.
【巩固】 学而思学校新买来一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?
【解析】 “差9本”和“差2本”两者相差927(本),每个人要多发1091(本),因此就知道,共有老师717(人),书有710961(本).
【巩固】 幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?
【解析】 由题意知:两次的分配结果相差:241212(块),这是因为第一次与第二次分配中每人相差:,多少人相差12块呢?1234(人),糖果数是:641212(块)(或963(块). 942412)
【巩固】 王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?
【解析】 本题购物的两个方案,第一个方案:买7把差110元,第二个方案:买5把还多30元,从买7把变成买5把,少买了752(把),而钱的差额为:11030140(元),即140元可以买2把小提琴,可见小提琴的单价是每把70元,王老师一共带了707110380(元).【巩固】 工人运青瓷花瓶250个,规定完整运到目的地一个给运费20元,损坏一个倒赔100元.运完这批花瓶后,工人共得4400元,则损坏了多少个?
【解析】 本题中“损坏一个倒赔100元”的意思是运一个完好的花瓶与损坏1个花瓶相差10020120(元),即损1个花瓶不但得不到20元的运费,而且要付出120元.本例可假设250个花瓶都完好,这样可得运费202505000(元).这样比实际多得50004400600(元).
就是因为有损坏的瓶子,损坏1个花瓶相差120元.现共相差600元,从而求出共损坏多少个花瓶.根据以上分析,可得损坏了.(202504400)(10020)5(个)
【例 3】 某校安排学生宿舍,如果每间住5人则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人? 【解析】 由已知条件
每间5人 少14个床位
每间7人 多4个床位
比较两次分配的方案,可以看出,由于第二种方案比第一种每间多住(75)2人,一共要多出(144)18个床位,根据两种方案每间住的人数的差和床位差,可以求出宿舍间数,然后根据已知条件可求出住宿生人数.
解:(414)(75)=9(间)
591459(人),或79459(人)
【巩固】 学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人.已知这些宿舍中共住了168人,那么其中有多少间大宿舍?
【解析】 如果30间都是小宿舍,那么只能住430120(人),而实际上住了168人.大宿舍比小宿舍每间多住642(人),所以大宿舍有.(这是一个鸡兔同笼,放在这里(168120)224(间)做对比)
【巩固】 智康学校三年级精英班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?
【解析】 由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9
粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).【巩固】 秋天到了,小白兔收获了一筐萝卜,它按照计划吃的天数算了一下,如果每天吃4个,要多出48个萝卜;如果每天吃6个,则又少8个萝卜.那么小白兔买回的萝卜有多少个?计划吃多少天?
【解析】 题中告诉我们每天吃4个,多出48个萝卜;每天吃6个,少8个萝卜.观察每天吃的个数与萝卜剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,萝卜从多出48个到少8个,也就是所需的萝卜总数要相差48+8=56(个).从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个萝卜了.吃的天数:(48+8)÷(6-4)=56÷2=28(天),萝卜数:6×28-8=160(个)或 4×28+48=160(个).
板块
二、条件关系转换型盈亏问题
【例 4】 猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?
【解析】 猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是,由盈亏问题公式得,有小猫:818(只),猫妈妈有810888(条)鱼. 11101(条)
【巩固】 学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?
【解析】 第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是:(个),由盈亏问题公式得,参与分玩具的同学有:919(人),有小玩具9327(个). 431
【巩固】 学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,学而思小学一共有多少个班?买来多少个足球?
【解析】 第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是422(个),由盈亏问题公式得,朝阳小学有:66233(个)班,买来足球33266(个).【巩固】 一位老师给学生分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位学生?共多少粒糖果?
【解析】 第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是541(粒),由盈亏问题公式得,参与分糖的同学有:919(人),有糖果9545(粒).
【巩固】 实验小学学生乘车去春游,如果每辆车坐60人,则有15人上不了车;如果每辆车多坐5人,恰好多出一辆车.问一共有几辆车,多少个学生?
【解析】 没辆车坐60人,则多余15人,每辆车坐60+5=65人,则多出一辆车,也就是差65人.因此车辆数目为:(65+15)÷5=80÷5=16(辆).学生人数为:60×(16-1)+15=60×15+15=900+15=915(人).【例 5】 甲、乙两人各买了相同数量的信封与相同数量的信纸,甲每封信用2 张信纸,乙每封信用3 张信纸,一段时间后,甲用完了所有的信封还剩下20 张信纸,乙用完所有信纸还剩下10 个信封,则他们每人各买了多少张信纸?
【解析】 由题意,如果乙用完所有的信封,那么缺30 张信纸.这是盈亏问题,盈亏总额为(20+30)张信纸,两次分配的差为(3-2)张信纸,所以有信封(20+30)÷(3-2)=50(个),有信纸2×50+20
=120(张).
【例 6】 幼儿园将一筐苹果分给小朋友,如果全部分给大班的小朋友,每人分5个,则余下10个。如全部分给小班的小朋友,每人分到8个,则缺2个。已知大班比小班多3人,问:这筐苹果共有多少个?
【解析】 先把大班人数和小班人数转化为一样。大班减少3人,则苹果又收回3515个苹果,人数一样,根据盈亏问题公式,小班人数为:(15102)(85)9人,苹果总数是89270个。
【巩固】 幼儿园把一袋糖果分给小朋友.如果分给大班的小朋友,每人5 粒就缺6 粒.如果分给小班的小朋友,每人4 粒就余4 粒.已知大班比小班少2 个小朋友,这袋糖果共有多少粒?
【解析】 如果大班增加2 个小朋友,大、小班人数就相等了,变为“每人5 粒缺16 粒,每人4 粒多4 粒” 的盈亏问题.小班有(16+4)÷(5-4)=20(人).这袋糖果有4×20+4=84(粒).
【例 7】 有一些糖,每人分5块则多10块,如果现有人数增加到原有人数的1.5倍,那么每人4块就少两块,这些糖共有多少块?
【解析】 第一次每人分5块,第二次每人分4块,可以认为原有的人每人拿出541块糖分给新增加的人,而新增加的人刚好是原来的一半,这样新增加的人每人可分到2块糖果,这些人每人还差422块,一共差了10212块,所以新增加了1226人,原有6212人.糖果数为:1251070(块).
【巩固】 卧龙自然保护区管理员把一些竹子分给若干只大熊猫,每只大熊猫分5个还多余10棵竹子,如果大熊猫数增加到3倍还少5只,那么每只大熊猫分2棵竹子还缺少8棵竹子,问有大熊猫多少只,竹子多少棵?
【解析】 使同学们感到困难的是条件“3倍还少5只大熊猫”.先要转化这一条件,假设还有 10棵竹子,1025,就可以多有 5个大熊猫,把“少5只大熊猫”这一条件暂时搁置一边,只考虑3倍大熊猫数,也相当于按原大熊猫数每只大熊猫给236(棵)竹子,每只大熊猫给5棵与给6棵,总数相差1010828(只),竹子总数是28(棵),所以原有大熊猫数28(65)(棵). 52810150【巩固】 体育队将一些羽毛球分给若干个人,每人5个还多余10个羽毛球,如果人数增加到3倍,那么每人分2个羽毛球还缺少8个,问有羽毛球多少个?
【解析】 考虑人数增加3倍后,相当于按原人数每人给2×3=6(个),每人给5个与给6个,总数相差10+8=18(个),所以原有人数 18÷(6-5)=18(人),乒乓球总数是 5×18+10=100(个).
【例 8】 王老师给小朋友分苹果和桔子,苹果数是桔子数的2倍.桔子每人分3个,多4个;苹果每人分7个,少5个.问有多少个小朋友?多少个苹果和桔子?
【解析】 因为桔子每人分3个多4个,而苹果是桔子的2倍,因此苹果每人分6个就多8个.又已知苹果每人分7个少5个,所以应有(8+5)÷(6-5)=13(人).苹果个数为13×7-5=86(个).桔子数为 13×3+4=43(个).答:有13个小朋友,86个苹果和43个桔子.【巩固】 学而思学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?
【解析】 因为羽毛球拍是乒乓球拍的2倍,如果每次分羽毛球拍5×2=10(副),最后应余下15×2=30(副),因为14-5×2=4(副),分到最后还差30副,所以比每次分10副总共差30+30=60(副),所以有小组:60÷4=15(组),乒乓球拍有:5×15+15=90(副),羽毛球拍90×2=180(副).【例 9】 用一根长绳测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米.求绳子长度和井深.【解析】 井的深度为:(5×2+4×3)÷(3-2)=22÷1=22(米).绳子长度为:(22+5)×2=27×2=54(米),或者(22-4)×3=18×3=54(米).【例 10】 乐乐有一个储蓄筒,存放的都是硬币,其中2分币比5分币多22个;按钱数算,5分币却比2分币多4角;另外,还有36个1分币.乐乐共存了多少钱?
【解析】 假设去掉22个2分币,那么按钱数算,5分币比2分币多8角4分,一个5分币比一个2分币多3分,所以5分币有: 84;2分币有:282250(个).(52)28(个)所以乐乐共存钱:52825013614010036276(分).
【例 11】 阳光小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?
【解析】 每车多坐5人,实际是每车可坐56570(人),恰好多余了一辆车,也就是还差一辆汽车的人,即70人.因而原问题转化为:如果每车坐65人,则多出5人无车乘坐;如果每车坐70人,还少70人,求有多少人和多少辆车?车数是(5565)515(辆),人数是65155980(人)或(565)(151)980(人).
【巩固】 幸福小学少先队的同学到会议室开会,若每条长椅上坐3人则多出7人,若每条长椅上多坐4人则多出3条长椅.问:到会议室开会的少先队员有多少人?
【解析】 第二个条件可转化为:“每条长椅上坐7个人,则少21个人”,“多7人”与“少21人”两者相差72128(人),每条长椅要多坐734(人),因此就知道,共有2847(条)长椅,人数是73728(人).
【巩固】 智康小合唱队的同学到会议室开会,若每条长椅上坐3人则多出9人,若每条长椅上坐4人则多出3人.问:合唱队有多少人?
【解析】 “多9人”与“多3人”两者相差9-3=6(人),每条长椅要多座 4-3=1(人),因此就知道,共有6÷1=6(条)长椅,人数是6×3+9=27(人).
【巩固】 少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。请问,共有多少名少先队员?共挖了多少树坑?
【解析】 这是一个典型的盈亏问题,关键在于要将第二句话“如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑”统一一下。即:应该统一成每人挖6个树坑,形成统一的标准。那么它就相当于每人挖6个树坑,就要差(6-4)*2=4个树坑。这样,盈亏总数就是3+4=7,所以,有少先队员7/(6-5)=7名,共挖了5*7+3=38个坑。盈亏总数等于3+(6-4)*2=7,少先队员有7/(6-5)=7名,共挖了5*7+3=38个树坑。
【巩固】 六年级学生出去划船。老师算了一下,如果每船坐6人,那么还剩下22人没船坐。安排时发现有3条船坏了,于是改为每船坐8人,结果还剩下6人没地方坐,请问:一共有多少学生? 【解析】 如果3条船没有坏,每船坐8人,那么多余了83618个座位。根据盈亏问题公式,有船(1822)(86)20条,学生人数为20622142人。
【例 12】 学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?
【解析】 每个房间住3人,则多出23人,每个房间住5人,就空出3个房间,这3个房间如果住满人应
该是5315(人),由此可见,每一个房间增加532(人).两次安排人数总共相差(人),因此,房间总数是:38÷2=19(间),学生总数是:3192323153880(人),或者5195380(人).
【巩固】 学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间.问宿舍有多少间?新生有多少人?
【解析】 每个房间住3人,则多出22人,每个房间多住5人,意味着就是每个房间住8个人,则空出1个房间,这1个房间如果住满人应该是188(人),由此可见,每一个房间增加835(人).两次安排人数总共相差22830(人),因此,房间总数是:3056(间),学生总数是:362240(人).
【巩固】 军队分配宿舍,如果每间住3人,则多出20人;如果每间住6人,余下2人可以每人各住一个房间,现在每间住10人,可以空出多少个房间?
【解析】 每间住6人,余下2人可以每人各住一个房间,说明多出两个房间,同时多出两个人,即两次分配方案人数相差2062230(人),每间房间相差:633(人),所以共有房间:30310(间),一共有:3102050(人),即可以空出1050105(间)房间.
【巩固】 猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:一共有多少只小猪,猪妈妈一共带了多少张餐布?
【解析】 每张餐布周围多坐一只小猪就是坐5只小猪,余出4个空位子就是少4只小猪,所以原问题可以转化为:如果每张餐布周围坐4只小猪,则多出6只没处坐;如果每张餐布周围坐5只,还少4只,求有多少只小猪多少张餐布?所以餐布数是:(6+4)÷1=10(张),有小猪:10×4+6=46(只).【例 13】 国庆节快到了,学而思学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?
【解析】 这是一道有难度的盈亏问题,主要难在对第二个已知条件的理解上:如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完,这组条件中包含着两种摆花盆的情况——2人各摆4盆,其余的人各摆6盆.如果我们把它统一成一种情况,让每人都摆6盆,那么,就可以多摆(64)24(盆).因此,原问题就转化为:如果每人各摆5盆花,还有3盆没人摆;如果每人摆6盆花,还缺4盆.问有多少少先队员,一共摆多少花盆? 人数: [3(64)2](65)7(人),盆数:57338(盆)或67438(盆).
【巩固】 妈妈买来一篮橘子分给全家人,如果其中两人分4个,其余人每人分2个,则多出4个;如果其中一人分6个,其余人每人分4个,则缺少12个,妈妈买来橘子多少个?全家共有多少人? 【解析】 由“其中两人分4个,其余每人分2个,则多出4个”转化为全家每人都分2个,这分4个的两人每人都拿出2个,共拿出4个,结果就多了448个;由“一人分6个,其余每人分4个,则缺少12个”转化为全家每人都分4个,分6个的人拿出2个,结果就少了12210个,转变成了盈亏问题的一般类型,则:
全家的人数:[422(122)](42)1829(人)
橘子的个数:29826(个)
【例 14】 四⑵班举行“六一”联欢晚会,辅导员老师带着一笔钱去买糖果.如果买芒果13千克,还差4元;如果买奶糖15千克,则还剩2元.已知每千克芒果比奶糖贵2元,那么,辅导员老师带了 元钱.
【解析】 这笔钱买13千克芒果还差4元,若把这13千克芒果换成奶糖就会多出13226元,所以这笔钱
买13千克奶糖会多出26422元.而这笔钱买15千克奶糖会多出2元,所以每千克奶糖的价格为:(222)(1513)10(元).辅导老师共带了10152152元.
【巩固】 小明妈妈带着一笔钱去买肉,若买10千克牛肉则还差6元,若买12千克猪肉则还剩4元.已知每千克牛肉比猪肉贵3元,问:小明妈妈带了多少钱?
【解析】 因为“每千克牛肉比猪肉贵3元”,所以同样买10千克猪肉的话,就剩了3×10-6=24(元),这样化成普通的盈亏问题,猪肉的价钱是:(24-4)÷(12-10)=10(元),所以小明妈妈带的钱数是:12×10+4=124(元).
【巩固】 食堂采购员小李到集贸市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元.已知牛肉、猪肉每千克差价8角.问牛肉、猪肉各多少钱一千克?
【解析】 这里有两种肉,思考起来比较困难,能否化为一种肉的问题呢?仔细分析一下已知条件,买牛肉18千克差4元,而买猪肉20千克还多2元,说明牛肉贵一些.每千克贵8角,如果18千克牛肉换成18千克猪肉,就要少花8×18=144(角)=14元4角.这样就会多出 14元4角-4元=10元4角.因此问题就可变为:“小李买猪肉18千克多余10元4角,买20千克多余2元,求猪肉单价和钱数.”虽然两次都是盈余,仍属盈亏问题,不过猪肉单价=两次钱的差÷两次千克量差.解 由已知条件知牛肉比猪肉贵,每千克贵8角.18千克牛肉比18千克猪肉贵 8×18=144(角)=14元4角.因此小李若买18千克猪肉就会多余14元4角-4元=10元4角.由已知小李买20干克猪肉多余2元,所以猪肉每千克价格为(104-20)÷(20-18)=84÷2=42(角)=4元2角.所以牛肉每千克价格为:4元2角+8角=5元.小李带的钱为:4.2×20+2=86(元).【巩固】 李明的妈妈去超市买洗衣粉,雕牌和碧浪的单价分别为8元和10元,李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋,并且没有剩余的钱.问:李妈妈带了多少钱?
【解析】(法1)“李妈妈带的钱买雕牌洗衣粉比买碧浪洗衣粉可多买3袋”,这三袋洗衣粉多花8×3=24(元),又因为花的钱总数一样多,所以在买碧浪洗衣粉的时候要把这些钱补上,而碧浪比雕牌每袋贵2元,所以要买碧浪洗衣粉袋数24÷2=12(件).这样李妈妈带的钱数是10×12=120(元).(法2)如果买雕牌与碧浪洗衣粉数量一样多,则买雕牌洗衣粉以后还剩3×8=24(元),根据普通的盈亏问题解法,买碧浪洗衣粉的数量是:24÷(10-8)=24÷2=12(件),所以李妈妈带的钱数是:12×10=120(元).
【例 15】 小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校。小强家到学校的路程是多少米?
【解析】 迟到3分钟转化成米数:503150(米),提前2分钟到校转化成米数:602120(米),距离上课时间为:(150120)(6050)27(分钟),家到学校的路程为:50(273)1500(米).
【巩固】 东东从家去学校,如果每分走80米,结果比上课提前6分到校,如果每分走50米,则要迟到3分,那么东东家到学校的路程是______米.
【解析】 这道题看似行程问题,实质却可以用盈亏问题来解.先求出东东从家到学校路上要用多长时间,根据已知,(806503)(8050)(分钟),然后可求东东家离校的路程为:6303021(米). 80(216)1200
【巩固】 王老师由家里到学校,如果每分钟骑车500米,上课就要迟到3分钟;如果每分钟骑车600米,就可以比上课时间提前2分钟到校.王老师家到学校的路程是多少米?
【解析】 迟到3分钟转化成米数:500×3=1500(米),提前两分钟到校转化成米数:600×2=1200(米)王老师家到学校需要(1500+1200)÷(60-50)=270(分钟),王老师家到学校的路程:500×
(270+3)=136500(米)
【巩固】 学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?
【解析】 小明每分钟走60米,可提早10分钟到校,即到校后还可多走60×10=600(米);如果每分钟走50米,可提早8分钟到校,即到校后还可多走50×8=400(米),第一种情况比第二种情况每分钟多走60-50=10(米),就可以多走600-400=200(米),从而可以求出小明由家到校所需时间.
(1)10分种走多少米?60×10=600(米),(2)8分种走多少米?50×8=400(米),(3)需要时间:(600-400)÷(60-50)=20(分钟),所以小明7时40分离家刚好8时到校.(4)由家到校的路程: 60×(20-10)=600(米)或:50×(20-8)=600(米).
【例 16】 “六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等.花球原价1元钱2个,白球原价1元钱3个.因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球?
【解析】 花球原价1元钱2个,白球原价1元钱3个.即花球原价10元钱20个,白球原价10元钱30个.那么,同样买花球和白球各30个,花球要比白球多花102,共需要3023035(元)25(元).现在两种球的售价都是2元钱5个,花球和白球各买30个需要(305)2,224(元)说明花球和白球各买30个能省下25241(元).现在共省了4元,说明花球和白球各有,共买了1202. 304120(个)240(个)
【例 17】(2009“数学解题能力展示”中年级组复试题)幼儿园老师买了同样多的巧克力、奶糖和水果糖.她发给每个小朋友2块巧克力,7块奶糖和8块水果糖.发完后清点一下,水果糖还剩15块,而巧克力恰好是奶糖的3倍.那么共有_____________个小朋友.
【解析】 画线段图分析,由题意知:
从奶糖的7份中取2份,那么剩下的5份就和上面的2小段相等.如图:
那么2小段和5份都看成10份量,那么总量就相当于19份量,水果糖中原有的8份就是现在的16份,则剩下的15块水果糖就占有3份,则1份就是5块,给小朋友们分出去的水果糖数量是:,小朋友的人数是:80810(人). 16580(块)方法二:由上图知,设发完后奶糖剩下1份,则巧克力剩下3份,而巧克力与奶糖每人分得相差5块,对应剩下的糖相差2份,水果糖与奶糖每人分得相差1块,则对应剩下的糖应相差250.4份,所以水果糖最后应剩下10.40.6份,恰是15块,所以1份对应的是150.625,所以应用盈亏问题共有(2515)(87)10(人).
【例 18】 一盒咖啡中有若干袋,一包方糖中有若干块.小唐喝前两盒咖啡时每袋咖啡都放3块方糖,结果共用了1包方糖和第2包中的24块;小唐喝后三盒咖啡时每袋咖啡都只放1块方糖,最后第3包方糖还剩下36块,那么每盒咖啡有多少袋?
【解析】 小唐喝前2盒咖啡,每袋放3块糖,相当于喝6盒咖啡每袋放1块糖;小唐喝后3盒咖啡,每袋放1块糖,所以喝后3盒用掉的方糖总量是前2盒用掉方糖量的一半.
同时,小唐喝前2盒咖啡一共用掉方糖一包又24块,喝后3盒咖啡用掉方糖一包差12块,因此一包又24块方糖与两包差24块方糖一样多,一包方糖有(2424)(21)48(块).
于是喝前两盒咖啡用掉方糖482472(块),每盒咖啡的袋数为:723212(袋).
【巩固】 巧克力每盒9块,软糖每盒11块,要把这两种糖分发给一些小朋友,每种糖每人一块,由于又来了一位小朋友,软糖就要增加一盒,两种糖分发的盒数就一样多,现在又来了一位小朋友,巧克力还要增加一盒,则最后共有多少个小朋友?
【解析】 新来了一位小朋友,就要增加一盒软糖,说明在此之前,软糖应该是刚好分完几整盒,所以原来的小朋友人数是11的倍数.增加了第二位小朋友之后,巧克力糖也要再来一盒了,说明原有的小朋友分几整盒巧克力糖之后还剩下一块,也就是说,原有的小朋友人数是9的倍数减1.符合这两个条件的最小的数是44,而且它刚好满足原有的巧克力比软糖多一盒的条件,所以原有44个小朋友,最后有46个小朋友.
【例 19】 有若干盒卡片分给一些小朋友,如果只分一盒,每人至少可以得到7张;如果每人分8张卡片,则还缺少5张.现在把所有卡片都分完,每人分到60张,而且还多出4张.问:共有多少个小朋友?
【详解】 首先由题意,一盒卡片每人分7张则有剩余,每人分8张则少5张,证明总人数多于5个.
如果一共有7盒卡片,则所有人每人要想分到8756(张)卡片,还缺35张,卡片张数比题中所述要少.
如果一共有9盒卡片,则只要再添上5945(张)卡片,就能使所有人每人分到8972(张),人数为(454)(7260)415,不满足总人数多于5个的要求. 12类似地,当卡片总盒数多于9时,都不满足总人数多于5个的要求.
因此卡片一共有8盒,添上5840(张)卡片,就能使所有人每人分到8864(张),所以总人数为:(404)(6460)11(人).(二解)60784,60874,说明卡片的盒数是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8864(张),现在实际每人得到60张,即每人需要退出4张,其中要有4张是每人60张后多下来的,还有40张是我们一开始借来的要还出去,即要退出44张,44411(人),说明有11人.
【例 20】 有若干个苹果和若干个梨.如果按每1个苹果配2个梨分堆,那么梨分完时还剩2个苹果;如果按每3个苹果配5个梨分堆,那么苹果分完时还剩1个梨.苹果和梨各有多少个? 【解析】 容易看出这是一道盈亏应用题,但是盈亏总额与两次分配数之差很难找到.原因在于第一种方案是1个苹果“搭配”2个梨,第二种方案是3个苹果“搭配”5个梨.如果将这两种方案统一为1个苹果“搭配”若干个梨,那么问题就好解决了.将原题条件变为“1个苹果搭配2个梨,缺4个梨;1个苹果搭配5/3个梨,多1个梨”,此时盈亏总额为415(个)梨,两次分配数之差为25/31/3(个)梨.所以有苹果(41)(25/3)15(个),有梨152426(个).【巩固】 有若干个苹果和梨,如果按1个苹果配3个梨分一堆,那么苹果分完时,还剩2个梨;如果按半个苹果配2个梨分一堆,那么梨分完时,还剩半个苹果.问梨有多少个?
【解析】 1个苹果配3个梨,多2个梨;半个苹果配2个梨,即1个苹果配4个梨,剩半个苹果,即少2个梨.苹果有(2+2)÷(4-3)=4(个),梨有 3×4+2=14(个).【例 21】 幼儿园老师给小朋友分糖果.若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块.那么糖果最多有多少块?
【分析】 最后一人分不到9块,那么最多可以分到8块,即若每人分9块,还差1块.根据盈亏计算公式,人数有,糖果最多有911198(块);最后一人分不到9块,但至少(110)(98)11(人)可分到一块,即最少是最后一人差8块,根据盈亏计算公式,人数有,(810)(98)18(人)糖果最多有9188154(块);所以,这批糖果最多有154块.
【例 22】 幼儿园有三个班,甲班比乙班多4人,乙班比丙班多4人,老师给小孩分枣,甲班每个小孩比乙班每个小孩少分3个枣,乙班每个小孩比丙班每个小孩少分5个枣,结果甲班比乙班共多分3个枣,乙班比丙班总共多分5个枣.问:三个班总共分了多少个枣?
【解析】 设丙班有x个小孩,那么乙班就有个小孩,甲班有个小孩.(x4)(x8)乙班每个小孩比丙班每个小孩少分5个枣,那么x个小孩就少分5x个枣,而乙班比丙班总共多分
个枣. 5个枣,所以多出来的那4个小孩分了(5x5)同样的道理,甲班每个小孩比乙班每个小孩少分3个枣,那么个小孩就少分个枣,(x4)(3x12)而甲班比乙班总共多分3个枣,所以多出来的那4个小孩分了3x1233x15个枣.
甲班每个小孩比乙班每个小孩少分3个枣,4个小孩就少3412个枣,因此我们得到:5x53x1512,解得x11.
所以,丙班有11个小朋友,乙班有15个小朋友,甲班有19个小朋友;甲班每人分12个枣,乙班每人分15个枣,丙班每人分20个枣.—共分了121915152011673(个)枣.
【巩固】 有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问第二组有多少人?
【解析】 如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.说明第一组人数少于,多于48593,即9人;如果把书全分给第二组,那么每人3本,有剩余;48412(人)每人4本,书不够.说明第二组人数少于48316(人),多于48412(人);因为已知第二组比第一组多5人,所以,第一组只能是10人,第二组15人.
【例 23】 “六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等.花球原价1元钱2个,白球原价1元钱3个.因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球?
【解析】 花球原价1元钱2个,白球原价1元钱3个.即花球原价10元钱20个,白球原价10元钱30个.那么,同样买花球和白球各30个,花球要比白球多花102,共需要3023035(元)25(元).现在两种球的售价都是2元钱5个,花球和白球各买30个需要(305)2,224(元)说明花球和白球各买30个能省下25241(元).现在共省了4元,说明花球和白球各有,共买了1202. 304120(个)240(个)
【巩固】 有红、黄、绿3种颜色的卡片共有100张,其中红色卡片的两面上分别写有1和2,黄色卡片的两面上分别写着1和3,绿色卡片的两面上分别写着2和3.现在把这些卡片放在桌子上,让每张卡片写有较大数字的那面朝上,经计算,各卡片上所显示的数字之和为234.若把所有卡片正反面翻转一下,各卡片所显示的数字之和则变成123.问黄色卡片有多少张?
【解析】 开始的时候,黄色和绿色的卡片上都是3,红色卡片上是2.如果全部是红色卡片,那么数字之和为:2100200,比实际的少:23420034.每增加一张黄色或绿色卡片,那么数字就会增加:321.那么,黄色和绿色卡片之和:34134(张),红色卡片有:1003466(张). 翻转过来后,红色和黄色卡片上都是1,绿色卡片上是2.红色卡片有66张,剩下的绿色和黄色卡片上的数字之和为:12316657.如果34张卡片都是黄色的,那么这34张卡片上的数字之和为:比实际的少:每增加一张绿色卡片,数字之和就会增加:13434,573423.211,所以,绿色卡片有:23123(张),黄色卡片有:342311(张).
【例 24】 四(2)班在这次的班级评比中,获得了“全优班”的称号.为了奖励同学们,班主任刘老师买了一些铅笔和橡皮.刘老师把这些铅笔和橡皮分成一小堆一小堆,以便分给几位优秀学生.如果每堆有1块橡皮2支铅笔,铅笔分完时橡皮还剩5块;如果每堆有3块橡皮和5支铅笔,橡皮分完时还剩5支铅笔.那么,刘老师一共买了多少块橡皮?多少支铅笔? 【解析】 如果增加10支铅笔,则按1块橡皮、2支铅笔正好分完;而按3块橡皮、5支铅笔分,则剩下10+5=15(支)铅笔,但如果按3块橡皮、6支铅笔分,则正好分完,可以分成:15÷(6—5)=15(堆),所以,橡皮数为:15×3=45(块),铅笔数为:15×6—10=80(支).
【巩固】 小白兔和小灰兔各有若干只.如果5只小白兔和3只小灰兔放到一个笼子中,小白兔还多4只,小灰兔恰好放完;如果7只小白兔和3只小灰兔放到一个笼子中,小白兔恰好放完,小灰兔还多12只.那么小白兔和小灰兔共有多少只?
【解析】 “7只小白兔和3只小灰兔装一个笼子,小白兔恰好装完,小灰兔还多12只”说明小白兔少了12÷3×7=28(只),这样原来笼子数有:(28+4)÷(7-5)=16(个),所以小白兔有16×5+4=84(只),小灰兔有16×3=48(只),合起来有84+48=132(只).
第五篇:小学三年级奥数下册年龄问题教案
小学三年级奥数下册年龄问题教案
发布:佚名 时间:2009-9-25 15:38:00 来源:京翰教育中心 录入:杨 人气:7960
【文字:大 小】
年龄问题
年龄问题是小学数学中常见的一类问题.例如:已知两个人或若干个人的年龄,求他们年龄之间的某种数量关系等等.年龄问题又往往是和倍、差倍、和差等问题的综合.它有一定的难度,因此解题时需抓住其特点。
年龄问题的主要特点是:大小年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住差不变这个特点,再根据大小年龄之间的倍数关系与年龄之和等条件,解答这类应用题。
解答年龄问题的一般方法是:
几年后年龄=大小年龄差÷倍数差-小年龄,几年前年龄=小年龄-大小年龄差÷倍数差。
例1 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?
分析 五年后,爸比妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”的和差问题。
解:①爸爸年龄:(72+6)÷2=39(岁)
②妈妈的年龄:39-6=33(岁)
答:爸爸的年龄是39岁,妈妈的年龄是33岁。
例2 在一个家庭里,现在所有成员的年龄加在一起是73岁.家庭成员中有父亲、母亲、一个女儿和一个儿子.父亲比母亲大3岁,女儿比儿子大2岁.四年前家庭里所有的人的年龄总和是58岁.现在家里的每个成员各是多少岁?
分析 根据四年前家庭里所有的人的年龄总和是58岁,可以求出到现在每个人长4岁以后的实际年龄和是58+4×4=74(岁)。
但现在实际的年龄总和只有73岁,可见家庭成员中最小的一个儿子今年只有3岁.女儿比儿子大2岁,女儿是3+2=5(岁).现在父母的年龄和是73-3-5=65(岁).又知父母年龄差是3岁,可以求出父母现在的年龄。
解:①从四年前到现在全家人的年龄和应为:
58+4×4=74(岁)
②儿子现在几岁? 4-(74-73)=3(岁)
③女儿现在几岁?3+2=5(岁)
④父亲现在年龄:(73-3-5+3)÷2=34(岁)
⑤母亲现在年龄: 34-3=31(岁)
答:父亲现在34岁,母亲31岁,女儿5岁,儿子3岁。
例3 父亲现年50岁,女儿现年14岁.问:几年前父亲年龄是女儿的5倍?
分析 父女年龄差是50-14=36(岁).不论是几年前还是几年后,这个差是不变的.当父亲的年龄恰好是女儿年龄的5倍时,父亲仍比女儿大36岁.这36岁是父亲比女儿多的5-1=4(倍)所对应的年龄。
解:(50-14)÷(5-1)=9(岁)
当时女儿9岁,14-9=5(年),也就是5年前。
答:5年前,父亲年龄是女儿的5倍.例4 6年前,母亲的年龄是儿子的5倍.6年后母子年龄和是78岁.问:母亲今年多少岁?
分析 6年后母子年龄和是78岁,可以求出母子今年年龄和是 78-6×2=66(岁).6年前母子年龄和是 66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄。
解:①母子今年年龄和: 78-6× 2=66(岁)
②母子6年前年龄和: 66-6×2=54(岁)
③母亲6年前的年龄:54÷(5+1)×5=45(岁)
④母亲今年的年龄:45+6=51(岁)
答:母亲今年是51岁。
例5 10年前吴昊的年龄是他儿子年龄的7倍.15年后,吴昊的年龄是他儿子的2倍.现在父子俩人的年龄各是多少岁?
分析 根据15年后吴昊的年龄是他儿子年龄的2倍,得出父子年龄差等于儿子当时的年龄.因此年龄差等于10年前儿子的年龄加上25岁。
10年前吴昊的年龄是他儿子年龄的7倍,父子年龄差相当于儿子当时年龄的7-1=6倍。
由于年龄差不变,所以儿子10年前的年龄的6-1=5倍正好是25岁,可以求出儿子当时的年龄,从而使问题得解。
解:①儿子10年前的年龄:(10+15)÷(7-2)=5(岁)
②儿子现在年龄:5+10=15(岁)
③吴昊现在年龄: 5×7+10=45(岁)
答:吴昊现在45岁,儿子15岁.例6 甲对乙说:“我在你这么大岁数的时候,你的岁数是我今年岁数的一半.”乙对甲说:“我到你这么大岁数的时候,你的岁数是我今年岁数的2倍减7.”问:甲、乙二人现在各多少岁?
分析 从已知条件中可以看出甲比乙年龄大,甲乙年龄差这是一个不变的量。
甲对乙说“我在你这么大岁数的时候”,意思是说几年以前.这几年就是甲乙的年龄差.因此,甲整句话可理解为:乙今年的岁数,减去年龄差,正好是甲今年岁数的一半.乙对甲说“我到你这么大岁数的时候”,意思是说几年后.因此,乙整句话可理解为:甲今年的岁数,加上年龄差,正好是乙今年岁数的2倍减去7。
即 甲今+年龄差=2×乙今-7(2)
把甲乙的对话用下图表示为:
由(1)得甲今=2×乙今-2×年龄差(3)
由(2)得 甲今=2×乙今-7一年龄差(4)
由(3)(4)年龄差=7(岁)
…
从上图不难看出,甲现在的年龄是乙几年前年龄的2倍,1倍相当于2个年龄差,2倍相当于4个年龄差.乙现在的年龄相当3个年龄差。
乙几年后的年龄和甲现在的年龄相等,所以乙几年后相当4个年龄差.甲几年后的年龄比乙几年后的年龄多一个年龄差,正好是7岁,从而得出年龄差是7岁。
解:①乙现在年龄: 7×3=21(岁)
②甲现在年龄:7×4=28(岁)
答:乙现在21岁,甲现在28岁.