小学奥数工程问题教案.

时间:2019-05-12 20:24:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学奥数工程问题教案.》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学奥数工程问题教案.》。

第一篇:小学奥数工程问题教案.

小学奥数工程问题教案

一、本讲学习目标

联系生活实际,弄清楚工作量、时间、效率之间的关系,提高解决行程问题的能力。

二、重点难点考点分析

工程问题的实质就是工作量、工作时间和工作效率之间的关系问题。工程问题的解题思路和行程问题相似,需要找出三个基本量之间的关系,通过三个基本量之间的换算找出解题方法。工程问题当中,分数的出现与运算较为常见,因此,解决工程问题首先要学好分数的四则运算。

三、知识框架

解决工程问题首先弄清行程问题中这三个量的关系: 工作量=时间×效率(a=t×e)时间=工作量÷效率(t=a÷e)效率=工作量÷时间(e=a÷t)

四、概念解析

工作量:工程问题中的工作量是工程问题的总体量,在未知情况下,可假设工作量为1 ; 时间:工程问题中的时间是工程问题的因子量;

效率:和时间一样,效率也是工程问题的因子量,其地位和形式与时间类似。

五、例题讲解

甲、乙两个工程队共同完成一项工程需18天,如果甲队干3天、乙队干4天则完成工程的1/5。问:甲、乙两队独立完成该工程各需多少天?

打印一份稿件,甲单独打需要50分完成,乙单独打需30分完成。现在甲单独打若干份后,乙接着打完,共42分。问:甲打了稿件的几分之几?

有甲、乙两根水管,分别同时给两个大小相同的水池A和B注水,在相同的时间内甲、乙两管注水量之比是7:5。经过2时,A、B两池中已注入水之和恰好是一池水。此后,甲管的注水速度提高25%,乙管的注水速度降低30%。当甲管注满A池时,乙管还需多长时间注满B池?

一项工程,甲,乙两队合作30天完成.如果甲队单独做24天后,乙队再加入合作,两队合作12天后,甲队因事离去,由乙队继续做了15天才完成.这项工程如果由甲队单独完成,需要多少天

李师傅加工540个零件。他前一半时间每分生产8个,后一半时间每分生产12个,正好完成任务。当他完成任务的45%时,恰好是上午9点。张师傅开始工作的时间是几点几分几秒?

师徒三人合作承包一项工程,8天能够全部完成。已知师傅单独做所需的天数与两个徒弟合作所需的天数相同。师傅与徒弟甲所需的天数的4倍与徒弟乙单独完成这项工程所需的天数相同。问:徒弟乙单独完成这项工程需多少天?

一项工程,甲,队独做10天可以完成,乙队独做30天可以完成.现在两队合作期间甲队休息了2天,乙队休息了8天(两队不在同一天休息).从开始到完工共用了多少天

某工程如果由第一、二、三小队合干需要12天才能完成;如果由第一、三、五小队合干需要7天才13

能完成;如果由第二、四、五合干需要8天完成;如果由第一、三、四小队合干需要42天。那么这五个小队一起合干需要多少天才能完成这项工程?

六、课后练习

完成一项工作,需要甲干5天、乙干6天,或者甲干7天、乙干2天。问:甲、乙单独干这件工作各需多少天?

一件工作,甲、乙合干需要6天完成,已知甲单独完成该工作的1/2所需的时间与乙单独完成该工作1/3的时间相等。问:甲单独完成该工作需要多长时间?

一项工程,如甲队独做,可6天完成.甲3天的工作量,乙要4天完成.两队合做了2天后,由乙队单独做,乙队还需做多少天才能完成

甲、乙、丙三人合修一围墙。甲、乙合修5天修好围墙的1/3,乙、丙合修2天修好围墙的余下1/4,剩下的围墙甲、丙又合修5天才完成。问:甲、乙、丙单独修好围墙分别需要几天?

有一批工人完成某项工程,如果能增加八人,则10天就能完成;如果能增加3人,就要20天完成。现在只能增加2个人,那么完成这项工程需要多少天?

八 励志或学科小故事——欧几里得

欧几里得出生于雅典,接受了希腊古典数学,30岁就成了有名的学者。欧几里得善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度”。尽管欧几里得简化了他的几何学,国王还是不理解,希望找到一条学习的捷径。欧几里得说:“在几何学里,大家只能走一条路,没有专为国王铺设的达到”。这句话成为千古传诵的学习箴言。

第二篇:小学奥数教案平均数问题(定稿)

小学奥数教案---平均数问题

第1讲

平均数(一)

一、知识要点

把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?

平均数=总数量÷总份数

总数量=平均数×总份数

总份数=总数量×平均数

二、精讲精练

【例题1】 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱苹果多少个?

【思路导航】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);

(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:

1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习1:

1.一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。问:甲、丁各得多少分?

2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。求四人的平均体重是多少千克?

【例题2】 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。求这个班男生有多少人?

【思路导航】女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

练习2:

1.两组学生进行跳绳比赛,平均每人跳152下。甲组有6人,平均每人跳140下,乙组平均每人跳160下。乙组有多少人?

2.有两块棉田,平均每亩产量是92.5千克,已知一块地是5亩,平均每亩产量是101.5千克;另一块田平均每亩产量是85千克。这块田是多少亩?

【例题3】 某3个数的平均数是2.如果把其中一个数改为4,平均数就变成了3。被改的数原来是多少?

【思路导航】原来三个数的和是2×3=6,后来三个数的和是3×3=9,9比6多出了3.是因为把那个数改成了4。因此,原来的数应该是4-3=1。

练习3: 1.已知九个数的平均数是72.去掉一个数之后,余下的数的平均数是78。去掉的数是多少?

2.有五个数,平均数是9。如果把其中的一个数改为1.那么这五个数的平均数为8。这个改动的数原来是多少?

【例题4】 五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?

【思路导航】98分比89分多9分。多算9分就能使全班平均每人的成绩上升91.7-91.5=0.2(分)。9里面包含有几个0.2.五一班就有几名同学。

练习4:

1.五(1)班有40人,期中数学考试,有2名同学去参加体育比赛而缺考,全班平均分为92分。缺考的两位同学补考均为100分,这次五(1)班同学期中考试的平均分是多少分?

2.某班的一次测验,平均成绩是91.3分。复查时发现把张静的89分误看作97分计算,经重新计算,该班平均成绩是91.1分。问全班有多少同学?

【例题5】 把五个数从小到大排列,其平均数是38。前三个数的平均数是27,后三个数的平均数是48。中间一个数是多少?

【思路导航】先求出五个数的和:38×5=190,再求出前三个数的和:27×3=81.后三个数的和:48×3=144。用前三个数的和加上后三个数的和,这样,中间的那个数就算了两次,必然比190多,而多出的部分就是所求的中间的一个数。

练习5:

1.甲、乙、丙三人的平均年龄为22岁,如果甲、乙的平均年龄是18岁,乙、丙的平均年龄是25岁,那么乙的年龄是多少岁?

2.十名参赛者的平均分是82分,前6人的平均分是83分,后6人的平均分是80分。那么第5人和第6人的平均分是多少分?

第2讲

平均数

二、精讲精练

【例题1】 小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?

【思路导航】100分比86分多14分,这14分必须填补到前几次的平均分84分中去,使其平均分成为86分。每次填补86-84=2(分),14里面有7个2.所以,前面已经测验了7次,这是第8次测验。

练习1:

1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?

2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?

【例题2】 小亮在期末考试中,政治、语文、数学、英语、自然五科的平均成绩是89分,政治、数学两科平均91.5分,政治、英语两科平均86分,英语比语文多10分。小亮的各科成绩是多少分?

【思路导航】因为语文、英语两科平均分84分,即语文+英语=168分,而英语比语文多10分,即英语-语文=10分,所以,语文是(168-10)÷2=79分,英语是79+10=89分。又因为政治、英语两科平均86分,所以政治是86×2-89=83分;而政治、数学两科平均分91.5分,数学是91.5×2-83=100分;最后根据五科的平均成绩是89分可知,自然分是89×5-(79+89+83+100)=94分。

练习2:

1.甲、乙、丙三个数的平均数是82.甲、乙两数的平均数是86,乙、丙两数的平均数是77。乙数是多少?甲、丙两个数的平均数是多少?

2.小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。这一次是他第几次测验?

【例题3】 两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。往返两地的平均速度是每小时多少千米?

【思路导航】用往返的路程除以往返所用的时间就等于往返两地的平均速度。显然,要求往返的平均速度必须先求出逆水行全程时所用的时间。因为360÷10=36(千米)是顺水速度,它是汽艇的静水速度与水流速度的和,所以,此汽艇的静水速度是36-6=30(千米)。而逆水速度=静水速度-水流速度,所以汽艇的逆水速度是30-6=24(千米)。逆水行全程时所用时间是360÷24=15(小时),往返的平均速度是360×2÷(10+15)=28.8(千米)。

练习3:

1.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米。求汽船从甲码头顺流行驶几小时到达乙码头?

2.一艘客轮从甲港驶向乙港,全程要行165千米。已知客轮的静水速度是每小时30千米,水速每小时3千米。现在正好是顺流而行,行全程需要几小时?

【例题4】 幼儿园小班的20个小朋友和大班的30个小朋友一起分饼干,小班的小朋友每人分10块,大班的小朋友每人比大、小班小朋友的平均数多2块。求一共分掉多少块饼干?

【思路导航】只要知道了大、小班小朋友分得的平均数,再乘(30+20)人就能求出饼干的总块数。因为大班的小朋友每人比大、小班小朋友的平均数多2块,30个小朋友一共多2×30=60(块),这60块平均分给20个小班的小朋友,每人可得60÷20=3(块)。因此,大、小班小朋友分得平均块数是10+3=13(块)。一共分掉13×(30+20)=650(块)。

练习4:

1.数学兴趣小组里有4名女生和3名男生,在一次数学竞赛中,女生的平均分是90分,男生的平均分比全组的平均分高2分,全组的平均分是多少分?

2.两组同学跳绳,第一组有25人,平均每人跳80下;第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳几下? 【例题5】 王强从A地到B地,先骑自行车行完全程的一半,每小时行12千米。剩下的步行,每小时走4千米。王强行完全程的平均速度是每小时多少千米?

【思路导航】求行完全程的平均速度,应该用全程除以行全程所用的时间。由于题中没有告诉我们A地到B地间的路程,我们可以设全程为24千米(也可以设其他数),这样,就可以算出行全程所用的时间是12÷12+12÷4=4(小时),再用24÷4就能得到行全程的平均速度是每小时6千米。

练习5:

1.小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米。求小明往返的平均速度。

2.运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。

作业

1.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。三个小组各植树多少棵?

2.把甲级和乙级糖混在一起,平均每千克卖7元,乙知甲级糖有4千克,平均每千克8元;乙级糖有2千克,平均每千克多少元?

3.甲、乙、丙、丁四位同学,在一次考试中四人的平均分是90分。可是,甲在抄分数时,把自己的分错抄成了87分,因此,算得四人的平均分是88分。求甲在这次考试中得了多少分?

4.五个数的平均数是18,把其中一个数改为6后,这五个数的平均数是16。这个改动的数原来是多少?

5.两组同学进行跳绳比赛,平均每人跳152次。甲组有6人,平均每人跳140次,如果乙组平均每人跳160次,那么,乙组有多少人?

6.五个数排一排,平均数是9。如果前四个数的平均数是7,后四个数的平均数是10,那么,第一个数和第五个数的平均数是多少?

7.甲船逆水航行300千米,需要15小时,返回原地需要10小时;乙船逆水航行同样的一段水路需要20小时,返回原地需要多少小时?

8.一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元。问这位技术工得多少元?

9.把一份书稿平均分给甲、乙二人去打,甲每分钟打30个字,乙每分钟打20个字。打这份书稿平均每分钟打多少个字?

第三篇:小学六年级奥数教案—06工程问题二

小学六年级奥数教案—06工程问题二

本教程共30讲

工程问题

(二)上一讲我们讲述的是已知工作效率的较简单的工程问题。在较复杂的工程问题中,工作效率往往隐藏在题目条件里,这时,只要我们灵活运用基本的分析方法,问题也不难解决。

例1 一项工程,如果甲先做5天,那么乙接着做20天可完成;如果甲先做20天,那么乙接着做8天可完成。如果甲、乙合做,那么多少天可以完成?

分析与解:本题没有直接给出工作效率,为了求出甲、乙的工作效率,我们先画出示意图:

从上图可直观地看出:甲15天的工作量和乙12天的工作量相等,即甲5天的工作量等于乙4天的工作量。于是可用“乙工作4天”等量替换题中“甲工作5天”这一条件,通过此替换可知乙单独做这一工程需用20+4=24(天)

甲、乙合做这一工程,需用的时间为

例2 一项工程,甲、乙两队合作需6天完成,现在乙队先做7天,然后

么还要几天才能完成?

分析与解:题中没有告诉甲、乙两队单独的工作效率,只知道他们合作

们把“乙先做7天,甲再做4天”的过程转化为“甲、乙合做4天,乙再单独

例3 单独完成一件工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。如果甲、乙二人合做2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。问:甲、乙二人合做需多少天完成?

分析与解:乙单独做要超过3天,甲、乙合做2天后乙继续做,刚好按时完成,说明甲做2天等于乙做3天,即完成这件工作,乙需要的时间是甲的,乙需要10+5=15(天)。甲、乙合作需要

例4 放满一个水池的水,若同时打开1,2,3号阀门,则20分钟可以完成;若同时打开2,3,4号阀门,则21分钟可以完成;若同时打开1,3,4号阀门,则28分钟可以完成;若同时打开1,2,4号阀门,则30分钟可以完成。问:如果同时打开1,2,3,4号阀门,那么多少分钟可以完成?

分析与解:同时打开1,2,3号阀门1分钟,再同时打开2,3,4号阀门1分钟,再同时打开1,3,4号阀门1分钟,再同时打开1,2,4号阀门1分钟,这时,1,2,3,4号阀门各打开了3分钟,放水量等于一

例5 某工程由一、二、三小队合干,需要8天完成;由二、三、四小队合干,需要10天完成;由一、四小队合干,需15天完成。如果按一、二、三、四、一、二、三、四、„„的顺序,每个小队干一天地轮流干,那么工程由哪个队最后完成?

分析与解:与例4类似,可求出一、二、三、四小队的工作效率之和是

例6 甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整天做完,并且结束工作的是乙。若按乙、丙、甲的顺序轮流

件工作,要用多少天才能完成?

分析与解:把甲、乙、丙三人每人做一天称为一轮。在一轮中,无论谁先谁后,完成的总工作量都相同。所以三种顺序前面若干轮完成的工作量及用的天数都相同(见下图虚线左边),相差的就是最后一轮(见下图虚线右边)。

由最后一轮完成的工作量相同,得到

练习6

1.甲、乙二人同时开始加工一批零件,每人加工零件总数的一半。甲完成有多少个?

需的时间相等。问:甲、乙单独做各需多少天?

3.加工一批零件,王师傅先做6时李师傅再做12时可完成,王师傅先做8时李师傅再做9时也可完成。现在王师傅先做2时,剩下的两人合做,还需要多少小时?

独修各需几天?

5.蓄水池有甲、乙、丙三个进水管,甲、乙、丙管单独灌满一池水依次需要10,12,15时。上午8点三个管同时打开,中间甲管因故关闭,结果到下午2点水池被灌满。问:甲管在何时被关闭?

6.单独完成某项工作,甲需9时,乙需12时。如果按照甲、乙、甲、乙、„„的顺序轮流工作,每次1时,那么完成这项工作需要多长时间?

7.一项工程,乙单独干要17天完成。如果第一天甲干,第二天乙干,这样交替轮流干,那么恰好用整天数完成;如果第一天乙干,第二天甲干,这样交替轮流干,那么比上次轮流的做法多用半天完工。问:甲单独干需要几天?

答案与提示练习6

1.360个。

2.甲18天,乙12天。

3.7.2时。

解:由下页图知,王干2时等于李干3时,所以单独干李需12+6÷2×3=21(时),王需21÷3×2=14(时)。所求为

5.上午9时。

6.10时15分。

7.8.5天。

解:如果两人轮流做完的天数是偶数,那么不论甲先还是乙先,两种轮流做的方式完成的天数必定相同(见左下图)。

甲乙甲乙„„甲乙甲乙甲乙„„甲乙 甲

现在乙先比甲先要多用半天,所以甲先时,完成的天数一定是奇数,于是得到右上图,其中虚线左边的工作量相同,右边的工作量也相同,说明乙做1天等于甲做半天,所以乙做17天等于甲做8.5天。

第四篇:小学六年级奥数教案—05工程问题一

小学六年级奥数教案—05工程问题一

本教程共30讲

工程问题

(一)顾名思义,工程问题指的是与工程建造有关的数学问题。其实,这类题目的内容已不仅仅是工程方面的问题,也括行路、水管注水等许多内容。

在分析解答工程问题时,一般常用的数量关系式是:

工作量=工作效率×工作时间,工作时间=工作量÷工作效率,工作效率=工作量÷工作时间。

工作量指的是工作的多少,它可以是全部工作量,一般用数1表示,也可

工作效率指的是干工作的快慢,其意义是单位时间里所干的工作量。单位时间的选取,根据题目需要,可以是天,也可以是时、分、秒等。

工作效率的单位是一个复合单位,表示成“工作量/天”,或“工作量/时”等。但在不引起误会的情况下,一般不写工作效率的单位。

例1 单独干某项工程,甲队需100天完成,乙队需150天完成。甲、乙两队合干50天后,剩下的工程乙队干还需多少天?

分析与解:以全部工程量为单位1。甲队单独干需100天,甲的工作效

例2 某项工程,甲单独做需36天完成,乙单独做需45天完成。如果开工时甲、乙两队合做,中途甲队退出转做新的工程,那么乙队又做了18天才完成任务。问:甲队干了多少天?

分析:将题目的条件倒过来想,变为“乙队先干18天,后面的工作甲、乙两队合干需多少天?”这样一来,问题就简单多了。

答:甲队干了12天。

例3 单独完成某工程,甲队需10天,乙队需15天,丙队需20天。开始三个队一起干,因工作需要甲队中途撤走了,结果一共用了6天完成这一工程。问:甲队实际工作了几天?

分析与解:乙、丙两队自始至终工作了6天,去掉乙、丙两队6天的工作量,剩下的是甲队干的,所以甲队实际工作了

例4 一批零件,张师傅独做20时完成,王师傅独做30时完成。如果两人同时做,那么完成任务时张师傅比王师傅多做60个零件。这批零件共有多少个?

分析与解:这道题可以分三步。首先求出两人合作完成需要的时间,例5 一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果一开始是空池,打开放水管1时后又打开排水管,那么再过多长时间池内将积有半池水?

例6 甲、乙二人同时从两地出发,相向而行。走完全程甲需60分钟,乙需40分钟。出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。甲再出发后多长时间两人相遇?

分析:这道题看起来像行程问题,但是既没有路程又没有速度,所以不能用时间、路程、速度三者的关系来解答。甲出发5分钟后返回,路上耽误10分钟,再加上取东西的5分钟,等于比乙晚出发15分钟。我们将题目改述一下:完成一件工作,甲需60分钟,乙需40分钟,乙先干15分钟后,甲、乙合干还需多少时间?由此看出,这道题应该用工程问题的解法来解答。

答:甲再出发后15分钟两人相遇。

练习5

1.某工程甲单独干10天完成,乙单独干15天完成,他们合干多少天才可完成工程的一半?

2.某工程甲队单独做需48天,乙队单独做需36天。甲队先干了6天后转交给乙队干,后来甲队重新回来与乙队一起干了10天,将工程做完。求乙队在中间单独工作的天数。

3.一条水渠,甲、乙两队合挖需30天完工。现在合挖12天后,剩下的乙队单独又挖了24天挖完。这条水渠由甲队单独挖需多少天?

则完成任务时乙比甲多植50棵。这批树共有多少棵?

5.修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米?

6.蓄水池有甲、乙两个进水管,单开甲管需18时注满,单开乙管需24时注满。如果要求12时注满水池,那么甲、乙两管至少要合开多长时间?

7.两列火车从甲、乙两地相向而行,慢车从甲地到乙地需8时,比快车从

40千米。求甲、乙两地的距离。

答案与提示 练习5

2.14天。

3.120天。

4.350棵。

5.6000米。

6.8时。

提示:甲管12时都开着,乙管开

7.280千米。

第五篇:奥数植树问题教案(精选)

《植树问题》教案一

教学目标:

1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2.会解决在不封闭线路上植树(指线路首尾不相连)问题,培养运用植树问题解决实际问题的能力。

教学重点:

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。教学难点:

应用植树问题灵活解决一些相关的实际问题。

一、例题1:一根木头锯成4段要付锯费1.2元,如果要锯成12段,要付锯费多少元?

二、例题分析:把一根木头平均锯成4段,需据4-1=3次,属于两端都没有点。从而可求出锯1次的费用1.2÷3=0.4元。现要锯成12段,也就是要锯12-1=11次,这样就可以求出费用。解:1.2×(4-1)×(12-1)=0.4×11 =4.4元

三、同类练习

1、这条公路全长1000米,每隔5米种一棵树(两端要种)。一共需要多少棵树苗?

解:1000÷5=200(棵)200 +1=201(棵)(两端要种:棵树=段数+1)

2、在一条长2000米的路的一侧种树,每隔10米种一棵(两端不种)。一共需要多少棵树苗?(两端不种:棵树=段数—1)

3、学校有一条长60米的走道,计划在道路旁栽树。每隔3米栽一棵。如果只有一端栽树,那么共需多少棵树苗?(一段种树:棵树=段数)

4、运动会上,在笔直的跑道的一侧插彩旗,每隔10米插一面(两端要插)。这条跑道长100米,一共要插多少面彩旗?(学生独立完成。)5.一根木头长8米,每2米锯一段。一共要锯几次?(学生独立完成。)

6、在一条路的一侧种树,每隔6米种一棵,一共种了41棵树。从第1棵树到最后一棵树的距离是多少米?

四、变式练习:

1、在一条长600米的公路两旁各栽一行树,起点和终点都栽,一共栽302棵,每相邻两棵之间的距离都相等,相邻两棵之间的距离是多少?

2、一条路每隔5米有一根电线杆,连两端的电线杆在内共20根,算一算公路有多长?

3、把30米长的一条绳子分成3段,后一段总比前一段多3米,秋各段长度。

4、小英和小明同住在一幢大楼里,小英家住在6层,每天回家要走80个台阶,小明回家要走32个台阶,小明家住在几层?

5、一座桥长116米,在桥的两侧栏杆上,分别安装了16块花纹

图案,图案的横长为2米,两头的图案离桥端都是12米,且每相邻两块图案间的间隔都相等,相邻两块图案之间应间隔多少米? 《植树问题》教案二 教学目标:

1.经历将实际问题抽象出植树问题模型的过程,掌握种树棵树与间隔数之间的关系。

2.会解决在封闭线路上植树(指线路首尾相连)问题,培养运用植树问题解决实际问题的能力。

教学重点:

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。教学难点:

应用植树问题灵活解决一些相关的实际问题。

一、例题

2、有一个长方形的操场,长45米,宽30米,如果沿着它的周围每隔3米栽一棵树,一共要栽多少棵树?

二、例题分析:这是在一个封闭的长方形周长上植树。首先要求出长方形的周长(45+30)×2=150米,在平均用每段3米,求出种多少棵树。解:(45+30)×2÷3 =75×2÷3 50棵

三、同类习题:

1、一个圆形的跑道400米,如果每隔10米竖一块警示牌,共需要多少块警示牌?

2、一个湖泊的周长是1800米,沿湖泊周围每隔8米栽一棵柳树,每两棵柳树中间栽一个桃树,湖泊周围栽了多少棵柳树和桃树?

3、一个圆形花圃周围长40米,沿周围每隔4米插一面红旗,每两面红旗的中间插一面黄旗,花圃周围各插了多少面红旗和黄旗?

4、一个圆形水池周围每隔2米栽一棵柳树,共栽了40棵,水池的周长是多少?

四、变式练习:

1、一个圆形喷水池,周长62.8米,在距池岸边均为3米的池内圆周上安装28根喷水管,每相邻两个喷水管的距离是多少米?

2、学校图书馆前摆了一个方阵花坛,这个花坛的最外层每边各摆放12盆花,最外层共摆了多少盆花?这个花坛一共要多少盆花?

3、张大伯在承包的正方形池塘四周种上树,池塘边长为60米,每隔5米种一课,四个角上各种一棵,张大伯买了50棵树苗够吗?

下载小学奥数工程问题教案.word格式文档
下载小学奥数工程问题教案..doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    奥数:和差问题教案

    三年级奥数和差问题(教稿) 教学目标: 1:学会运用画图线的方法表示倍关系中两个量,以更方便的找到解题的思路。 2:更熟练掌握解答差倍问题的方法,理解差倍问题中各个量之间的关系......

    奥数和差问题教案

    五年级奥数第二讲 和差问题 知识点拨: 和差问题是已知大小两个数的和与这两个数的差,求大小两个数各是多少的应用题 为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方......

    奥数鸡兔同笼问题专题教案

    奥数之鸡兔同笼问题(交换问题) 一.讲解 1. 鸡兔同笼,有20个头,54条腿,鸡,兔各有多少只? 用方程解 2. 鸡兔同笼,共有45个头,146只脚。笼中鸡兔各有多少只? 分析 题目中给出了鸡、兔共45......

    小学数奥和差问题★

    和差问题 【例题】 一群松鼠共108只,在一起吃草莓,每只大松鼠分到15个草莓,每只小松鼠分到12个草莓。草莓刚分完,小松鼠很快就把草莓吃完了,又要求再给每只小松鼠分3个草莓,每只大......

    小学奥数——追及问题(范文)

    第3讲 追击问题 (一)知识要点 1.追击问题的基本数量关系式是:路程差=速度差×追击时间 在速度差、追击时间和路程差这三个量中,如果知道其中的两个量,就可以求出第三个量。 2.在解......

    2014最新小学奥数高斯问题

    五年級(繁體)下冊《高斯求和》 姓名:班別:日期:得分:高斯求和 德國著名數學家高斯幼年時代聰明過人,上學時,有一天老師出了一道題讓同學們計算: 1+2+3+4+…+99+100=? 老師出完題後,全班同學......

    小学奥数教案——容斥问题

    教案 容斥问题 一 本讲学习目标 理解并掌握容斥问题。 二 重点难点考点分析 容斥问题涉及到一个重要原理——包含和排除原理。也叫容斥原理。即当两个计数部分有重复包含时,......

    小学六年级奥数工程问题行程问题练习专题

    工程问题练习1、 修一条路,甲队独修需15天完成,乙队独修12天完工,两队合修4天后, 乙队调走,剩下的甲队继续修完,甲队一共修了多少天?2、一件稿件,甲独抄要10天完成,乙独抄要7.5天完......