第一篇:奥数和差问题教案
五年级奥数
第二篇:奥数:和差问题教案
三年级奥数和差问题(教稿)
教学目标:
1:学会运用画图线的方法表示倍关系中两个量,以更方便的找到解题的思路。2:更熟练掌握解答差倍问题的方法,理解差倍问题中各个量之间的关系。
教学重点:更加熟练的运用画图线方法,更准确分析各量之间的关系。教学难点:能够更好的理解差倍应用题中各倍数和差倍数的量的关系。教学过程:
和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
相关链接
大数=(和—差)÷2
小数=(和+差)÷2 例1:
两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?
分析与解答:
我们可以这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克).解法1:①第二筐重多少千克?
(150-8)÷2=71(千克)
②第一筐重多少千克?
71+8=79(千克)
或 150-71=79(千克)
解法2:①第一筐重多少千克?
(150+8)÷2=79(千克)
②第二筐重多少千克?
79-8=71(千克)
或150-79=71(千克)
答:第一筐重79千克,第二筐重71千克。
例2:今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?
分析与解答:
题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.根据和差问题的解题思路就能解此题。
解:①爸爸的年龄:
[58+(35-7)]÷2 =[58+28]÷2 =86÷2 =43(岁)
②小强的年龄:
58-43=15(岁)
答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。
例3 : 小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?
分析与解答:
解和差问题的关键就是求得和与差,这道题中数学与语文成绩之差是8分,但是数学和语文成绩之和没有直接告诉我们.可是,条件中给出了两科的平均成绩是94分,这就可以求得这两科的总成绩.解:①语文和数学成绩之和是多少分?
94×2=188(分)
②数学得多少分?
(188+8)÷ 2=196÷2=98(分)
③ 语文得多少分?
(188-8)÷2=180÷2=90(分)
或 98-8=90(分)
答:小明期末考试语文得90分,数学得98分.例题4 :期中考试王平和李杨语文成绩的总和是188分,李杨比王平少4分。两人各考了多少分?
思路导航:根据题意画出线段图。
王平?分李杨?分
我们可以用假设法来分析。假设李杨的分数和王平一样多,则总分就增加4分,变为188+4=192分,这就表示王平的2倍,所以王平考了:192÷2=96分,李杨考了96-4=92分。
例题5.哥弟俩共有邮票70张,如果哥哥给弟弟4张邮票,这时哥哥还比弟弟多2张。哥哥和弟弟原来各有邮票多少张?
思路导航:我们可以这样想,哥弟俩共有邮票70张,根据“如果哥哥给弟弟4张,还比弟弟多2张”,说明原来哥哥比弟弟多4×2+2=10张邮票。所以,弟弟有邮票:(70-
188分
10)÷2=30张,哥哥有邮票30+10=40张。练习:
1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种 果树各有多少棵?
2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙 桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?
4.某工厂去年与今年的平均产值为96万元,今年比去年多10 万元,今年与去年的产值各是多少万元?
5.一只两层书架共放书72本,若从上层中拿出9本给下层,上层比下层多4本。上、下层各放书多少本?
6.两筐水果共重124千克,第一筐比第二筐多8千克。两筐水果各重多少千克?
7.小宁与小慧的身高总和是264厘米,又已知小宁比小慧矮8厘米。两人分别高多少厘米?
第三篇:奥数:和差问题教案 2
Abc暑期奥数班课程安排
第六讲 和差问题
教学目标:
1:学会运用画图线的方法表示倍关系中两个量,以更方便的找到解题的思路。2:更熟练掌握解答差倍问题的方法,理解差倍问题中各个量之间的关系。
教学重点:更加熟练的运用画图线方法,更准确分析各量之间的关系。教学难点:能够更好的理解差倍应用题中各倍数和差倍数的量的关系。教学过程:
和差问题是已知大小两个数的和与两个数的差,求大小两个数各是多少的应用题。
为了解答这种应用题,首先要弄清两个数相差多少的不同叙述方式.有些题目明确给了两个数的差,而有些应用题把两个数的差“暗藏”起来,我们管暗藏的差叫“暗差”。
例1:
两筐水果共重150千克,第一筐比第二筐多8千克,两筐水果各多少千克?
分析与解答:
我们可以这样想:假设第二筐和第一筐重量相等时,两筐共重150+8=158(千克);假设第一筐重量和第二筐相等时,两筐共重150-8=142(千克).解法1:①第二筐重多少千克?
(150-8)÷2=71(千克)
②第一筐重多少千克?
71+8=79(千克)
或 150-71=79(千克)
解法2:①第一筐重多少千克?
(150+8)÷2=79(千克)
②第二筐重多少千克?
79-8=71(千克)
或150-79=71(千克)
答:第一筐重79千克,第二筐重71千克。
1-1学校有排球、篮球共62个,排球比篮球多12个,排球、篮球各是多少个?
1-2甲、乙两人的年龄和是35岁,甲比乙小5岁,甲、乙各多少岁?
例2:今年小强7岁,爸爸35岁,当两人年龄和是58岁时,两人年龄各多少岁?
分析与解答:
题中没有给出小强和爸爸年龄之差,但是已知两人今年的年龄,那么今年两人的年龄差是35-7=28(岁).不论过多少年,两人的年龄差是保持不变的.所以,当两人年龄和为58岁时他们年龄差仍是28岁.根据和差问题的解题思路就能解此题。
解:①爸爸的年龄: [58+(35-7)]÷2
Abc暑期奥数班课程安排
=[58+28]÷2
=86÷2
=43(岁)
②小强的年龄:
58-43=15(岁)
答:当父子两人的年龄和是58岁时,小强15岁,他爸爸43岁。
2-1今年小刚和小强两人年龄和为22岁,一年前,小刚比小强大四岁,今年小刚和小强各是多少岁?
例3 : 小明期末考试时语文和数学的平均分数是94分,数学比语文多8分,问语文和数学各得了几分?
分析与解答:
解和差问题的关键就是求得和与差,这道题中数学与语文成绩之差是8分,但是数学和语文成绩之和没有直接告诉我们.可是,条件中给出了两科的平均成绩是94分,这就可以求得这两科的总成绩.解:①语文和数学成绩之和是多少分?
94×2=188(分)
②数学得多少分?
(188+8)÷ 2=196÷2=98(分)
③ 语文得多少分?
(188-8)÷2=180÷2=90(分)
或 98-8=90(分)
答:小明期末考试语文得90分,数学得98分.3-1小敏与妈妈今年的平均年龄为20岁,三年后,妈妈比小敏大28岁,今年妈妈和小敏各是多少岁?
Abc暑期奥数班课程安排
4-1:甲乙两个工程队共有236人,从甲工程队调14人到乙工程队,则两队的工人数正好相等,甲、乙工程队原有人数各是多少?
4-2甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等,甲、乙两人各有多少元钱?
例5:小丽、小马和小磊三人共有课外书55本。小丽比小马多4本,小马又比小磊多6本,三人各有多少本?
5-1三块布共长220米,第二块布长是第一块的3倍,第三块布长是第二块布长的2倍,三块布各长多少米?
5-2甲、乙、丙三名工人一共生产零件420个,甲比乙多生产10个,乙比丙少生产17个,甲、乙、丙三人各生产零件多少个?
例6:
在每两个数字之间填上适当的加或减符号使算式成立。2 3 4 5 6 7 8 9=5
分析与解答:
这样想:从1至9这几个数字相加是不会得到5的,只能从一部分数字相加再减去一部分字后差是5,也就是说1到9的和是45,而两部分的差是5,先要求出这两部分数字利用和差问题的方法便可以求出。
(45-5)÷ 2=20,20+5=25
可求出其中几个数的和是25,而另外几个数的和是20.在组成和是25的几个数前面添上“+”号,而在组成和是20的几个数前面添上“-”号,此题就算出来了。
例如:5+6+9=20可得到。
1+2+3+4-5-6+7+8-9=5
Abc暑期奥数班课程安排
又如:5+7+8=20可得到。
1+2+3+4-5+6-7-8+9=5 又如:3+4+6+7=20可得到。
1+2-3-4+5-6-7+8+9=5
同学们,这道题你还有其他解法吗?试试看!
练习:
1.果园里有桃树和梨树共150棵,桃树比梨树多20棵,两种果树各有多少棵?
2.甲、乙两桶油共重30千克,如果把甲桶中6千克油倒入乙桶,那么两桶油重量相等,问甲、乙两桶原有多少油?
3.用锡和铝制成500千克的合金,铝的重量比锡多100千克,锡和铝各是多少千克?
4.某工厂去年与今年的平均产值为96万元,今年比去年多10万元,今年与去年的产值各是多少万元?
第四篇:小学数奥和差问题
和差问题
【例题】 一群松鼠共108只,在一起吃草莓,每只大松鼠分到15个草莓,每只小松鼠分到12个草莓。草莓刚分完,小松鼠很快就把草莓吃完了,又要求再给每只小松鼠分3个草莓,每只大松鼠只得拿出3个草莓,满足每只小松鼠再吃3个草莓的要求之后,还剩余24个草莓。这群松鼠一共有多少个草莓?
【解题思路】要求草莓的的总数是多少,关键先求出大、小松鼠的只数。已知松鼠的和(总数)是108只,又由题目“每只大松鼠只得拿出3个草莓,满足每只小松鼠再吃3个草莓的要求之后,还剩24个草莓”,可确定大松鼠比小松鼠多,并且可算出大、小松鼠之差是24÷3=8(只)。题目分析道这里,可用和差公式把大、小松鼠的只数求出,最后能根据题意算出草莓总数。
大小松鼠之差:24÷3=8(只)小松鼠的只数:(108-8)÷2=50(只)大松鼠的只数:108-50=58(只)草莓总数:15×58+12×50=870+600=1470(个)答:这群松鼠一共有1470个草莓。
【练一练】
1.王亮期中考试语文和数学的平均分是94分,数学没考好,语文比数学多 8分。问:小明的语文和数学各得了多少分?
2.两筐橘子共180千克,从甲筐中取出30千克放入已筐,两筐橘子的质量
就相等了。原来两筐中各有橘子多少千克?
3.四个人年龄之和是89岁,最小的是10岁,她与最大的年龄之和比另外两个之和大9岁,最大的年龄是几岁?
第五篇:(快乐奥数)差倍问题教案
快乐奥数——“差倍问题”
一、课时:第四课 上课时间2016.10.23(周日)
二、教学内容:教材131页—138页为主,做适当补充。
前面讲了应用线段图分析“和倍”应用题,这种方法使分析的问题具体、形象,使我们能比较顺利地解答此类应用题.下面我们再来研究与“和倍”问题有相似之处的“差倍”应用题。
“差倍问题”就是已知两个数的差和它们的倍数关系,求这两个数。差倍问题的解题思路与和倍问题一样,先要在题目中找到1倍量,再画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量,然后求出另一个数,最后再写出验算和答题。
数量关系:
小数(1倍数)=两数差÷(倍数-1)大数(几倍数)=小数(1倍数)×倍数 或大数(几倍数)=小数(1倍数)+两数差 1.例1
甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?
分析 上图把乙班的图书本数看作1倍,甲班的图书本数是乙班的3倍,那么甲班的图书本数比乙班多2倍.又知“甲班的图书比乙班多80本”,即2倍与80本相对应,可以理解为2倍是80本,这样可以算出1倍是多少本.最后就可以求出甲、乙班各有图书多少本。
解:①乙班的本数: 80÷(3-1)=40(本)
②甲班的本数: 40×3=120(本)
或40+80=120(本)。
验算:120-40=80(本)
120÷40=3(倍)
答:甲班有图书120本,乙班有图书40本。
2.巩固练习
大、小两筐苹果,大筐苹果比小筐苹果多36个,大筐苹果是小筐的3倍。大小两筐各有多少个苹果?
3.例2
小明收的邮票比小军多18张如果小明在买30张那么他搜集的邮票是小军的4倍他们各收,小明和小军各收集多少张邮票?
4.巩固练习
苹果比梨多39个,如果苹果被吃掉7个,苹果是梨的5倍,苹果和梨各多少个?
5.例3 甲乙两辆货车运苹果,甲车装的苹果是乙车的3倍,如果从甲车卸下200箱装入乙车,则两车装的苹果箱数一样多。问:原来甲、乙两车各装了多少箱苹果?
6.巩固练习
甲乙两桶油,甲桶油是乙桶的4倍,当把甲桶油往乙桶中倒入31千克后,甲桶油比乙桶油多7千克。甲乙两桶油原来各有多少千克?
7.例4 有两根同样长的绳子,第一根截去12米,第二根接上14米,这时第二根长度是第一根长的3倍,两根绳子原来各长多少米?
分析上图,两根绳子原来的长度一样长,但是从第一根截去12米,第二根绳子又接上14米后,第二根的长度是第一根的3倍.应该把变化后的第一根长度看作1倍,而12+14=26(米),正好相当于第一根绳子剩下的长度的2倍.所以,当从第一根截去12米后剩下的长度可以求出来了,那么第一根、第二根原有长度也就可以求出来了。
解:①第一根截去12米剩下的长度:(12+14)÷(3-1)=13(米)
②两根绳子原来的长度:13+12=25(米)
答:两根绳子原来各长25米。
自己进行验算,看答案是否正确.另外还可以想想,有无其他方法求两根绳子原来各有多长.小
结:解答这类题的关键是要找出两个数量的差与两个数量的倍数的差的对应关系.用除法求出1倍数,也就是较小的数,再求几倍数。
解题规律:差÷倍数的差=1倍数(较小数)1倍数×几倍=几倍的数(较大的数)
或:较小的数+差=较大的数。
8.巩固练习
两根同样长的钢筋,给第一根接上9米,把第二根截去5米后,这时较长的一根是较短的一根的3倍,两根钢筋原来各长多少米?
9.课外思考
参加数学兴趣小组的人数,本学期比上学期多52人,本学期的人数比上学期的4倍多1人。本学期有多少人参加?