第一篇:基因的突变和进化 论文
基因的突变和进化 论文
基因突变是生物进化的源泉
基因突变是生物进化的源泉
现代生物进化理论的基本观点种群是生物进化的基本单位,生物进化的实质在于种群基因频率的改变。突变和基因重组、自然选择及隔离是物种形成过程的三个基本环节,通过以上的综合作用,种群产生分化,最终导致新物种的形成。其中突变和基因重组产生生物进化的原始材料,自然选择使种群的基因频率发生定向的改变并决定生物进化的方向,隔离是新物种形成的必要条件。
为生物进化提供原材料的是基因突变,基因突变的实质是基因在结构上发生碱基对组成或摆列顺序的改变。在一定条件下基因从原来的存在形式突然改变成为另一种新的存在形式。DNA变化的结果有三种情况:(1)产生的生命特征难以适应周围生存环境,导致死亡;(2)不改变生命或对生命特征有很小的影响,结果是产生了基因的多态性,即单核苷酸多态性(SNP),如ABO血型,HLA配型,疾病易感性,药物敏感性等;(3)产生的生命特征比原来优越,使生物更能适应环境。实际上,多数的变化都会导致第1种情况,成为生物进化的成本;而第2种和第3种情况在“适者生存”这个生物筛选法则下,渐渐表现为进化。因此,突变是生物进化的源泉。
例子
一、“基因突变让人类会说话。”
据《中国日报》报道,20万年前发生在一个基因上的两次关键性变异可能与语言的产生有关。据《自然》杂志报道,这项研究是由德国莱比锡马普人类演化研究所的科学家斯万特〃帕博和他的同事共同完成的,它为说明该基因在人类语言能力的发展中所扮演的重要角色提供了证据。研究结果表明,变异基因赋予人类祖先更高水平的控制嘴和喉咙肌肉的能力,从而使他们能够发出更丰富、更多变的声音,为语言的产生打下了良好的基础。使人脑能接受更复杂信息
这个名为FO XP2的基因存在于所有哺乳动物,由于该基因的变异,使得人类能够区别于黑猩猩。FO XP2基因关键的片断上共有715个分子。其中,黑猩猩只有2个分子和人类不一样。正是这极其微小的差别,才产生了深远的影响。
基因掌握着蛋白质形成的“密码”,而蛋白质是生物体中一切运动的杠杆和传动装臵。FO XP2基因上的变异明显改变了相关蛋白质的形态,因此,某种程度上使得人脑中控制脸部、喉咙运动的部分能够接受更为复杂的信息。虽然科学家迄今还不清楚FO XP2基因究竟在人体内扮演什么样的角色,但这一点足以说明它和某些重要的功能有密切联系,譬如说,胎儿脑部的发育。
在英国,科学家观察了16个人的FO XP2基因情况。其中,有15人来自同一个大家庭,他们都有不同程度的语言能力缺陷。结果发现,这15人都遗传了有缺陷的FO XP2基因。这表明,一个正常的FO XP2基因对人们的口语能力至关重要。基因变异发生在20万年前
《自然》的文章中列举了一系列的事实,来证明FO XP2基因的变异发生在人类进化史的近期,并迅速蔓延开来。大约经过500到1000代人,或者说在1万到2万年间,变异的基因完全替代了人类体内原始的基因。
而德国科学家指出,这种变异正好发生在20万年前解剖学意义上的现代人出现的时候,之后,现代人就取代了原始祖先,并排挤掉其他原始的竞争对手,主宰了地球。
基因的变异在自然界中非常普遍。它主要是由于细胞的复制机制出了问题而引起的。大多数的变异是有害无益的,但也有意外的情况。这种“偶尔的意外”因为它的先进性而得以在人类进化中迅速传播。FOXP2就是例证之一。
二、“性别的起源就是托了基因突变的福”
地球早期生命都是由原核细胞构成的低等生物,如细菌、蓝藻等,它们的繁殖只能靠自身的分裂,这时的生物是没有性别之分的。大约在18亿年前,正是由于基因突变,原核细胞开始进化出了比较复杂的真核细胞,真核细胞已经具有明显的细胞核结构和各种细胞器,使生物的雌雄分化成为可能。最迟在6亿多年前,性别分化就开始了,中国科学家在贵州中部发现的前寒武纪(即6亿多年前)古植物化石,是全球已知的第一个具有有性生殖方式的生物化石。古生物学家普遍认为,在长达30多亿年的生命进化史上,性别起源无疑是一个重大事件,性别之所以在产生后随着生命的进化而不断发展,是因为它给生命世界带来了巨大利益。有性繁殖需要两个个体参与,比无性繁殖复杂得多。有性繁殖的出现,通过产生不同基因的组合,使遗传变异量大大增加,举例来说,如果无性繁殖的原核细胞在遗传时有10个位点发生突变,那么它只能出现10加1共11种变异;而有性繁殖时,如果有10个位点出现突变,它就会有310种(59049种)变异的可能。如此大量的基因突变,使有性繁殖的生物后代获得“新型基因”的能力大大加强,其中有些“新型基因”可能会对生物进化具有重要作用。有性生殖给生物带来的第二个重大利益是使生殖与营养的分工化、生物结构的复杂化和生物个体由微观体积向宏观体积转变成为可能,生物的呼吸系统、神经系统、消化系统等各种器官也逐渐发达。生命自从有了性别之分,其遗传变异极大地增加,进化的步伐加快,生活变得更复杂、更丰富了。
三、基因突变让鲸鱼走向海洋
大约5000万年前,鲸类的祖先用四条腿从陆地走向海洋,为适应海洋生存环境,其后肢不断退化并几乎消失,而前肢却进化成鳍状肢。鲸类鳍状肢为何会出现?是不是基因变异的结果?
据生物学家研究,绝大多数动物的身体器官都受一个名为Hox的基因家族控制。而动物的前肢发育特别受到Hoxd12和Hoxd13基因的控制。这两个基因的突变会导致动物前肢的畸形。王等研究人员通过对鲸类和其它哺乳动物类群的Hoxd12和Hoxd13基因测序,发现了这两个基因在鲸类鳍状肢的起源与分化中起到了重要作用。即鲸和现存的河马、牛、猪等偶蹄目动物具有同一祖先,前肢都有4个独立的指头,但是由于这两个基因的突变,鲸类祖先的前肢多长出了1个指头,并且指间长出了蹼。在其后鲸类的再次进化过程中,部分须鲸的前肢却又从5指进化成4指,恢复了进化前的指头数量。
研究人员还发现这两个Hox基因在鲸类的平均进化速率,均显著高于其它哺乳动物类群,并最终认定,Hox基因的适应性进化时间与鲸类鳍状肢的宏观进化时代完全相符,是自然选择的结果,而非偶然形成的。
四、基因突变使蝙蝠会飞行。
科学家们介绍称,现代蝙蝠的祖先是在距今大约5000万年前掌握飞行技能的,并且这一学习过程并不太长。《新科学》杂志解释说,由于这一基因变化发生的非常迅速,以至于在蝙蝠的各个进化阶段未能留下多少化石标本。美国科罗拉多大学的卡伦〃希尔斯表示,由于基因的变化,蝙蝠的祖先们长出了适用于长时间飞行的两翼。为了弄清楚为什么这种会飞行的哺乳动物会长出如此长的爪子,卡伦〃希尔斯还专门研究了它们在胚胎发育阶段的发育过程,并将其与老鼠的胚胎发育进行了比较。卡伦〃希尔斯发现,无论是啮齿类动物,还是蝙蝠,它们的前爪都由胚胎中的软骨细胞发育而来--这些细胞均在所谓的生长区中最终转变为骨细胞。但蝙蝠的生长区要大得多--这主要是受到了BMP2基因的影响(该基因中携带了大量有关骨骼生长的信息)。希尔斯发现,BMP2基因在蝙蝠骨骼的发育过程中活动非常活跃,而在处于同一阶段的老鼠胚胎中,其功能却已完全弱化。接下来的试验也证实,BMP2基因确实在蝙蝠前爪的形成过程中发挥着决定性的作用:如果将这种基因加入到胚胎期老鼠的细胞中,那么它们同样也会发育出与蝙蝠一样的细长前爪。希尔斯认为,由于BMP2基因的活性增强才导致了蝙蝠的突然出现。同时,可能也正是由于该基因的突然变化造成蝙蝠的进化过程非常短暂,以至于人们很难找到其生活在5000万年前的原始祖先的化石。
五、基因突变促蝙蝠回声定位能力进化与多样化。
为了寻找猎物及躲避障碍物,不同种类的蝙蝠都会发出高频尖叫声,无一例外,它们都携带有一种高度变异的FOXP2基因。这种基因在蝙蝠体内的遗传变化促进了其在功能上的进化。对13只蝙蝠(它们分属6类蝙蝠)所携带的FOXP2基因进行了测序,同时在其他23种哺乳动物及2种鸟类和1种爬行动物体内寻找这种基因。结果发现,蝙蝠FOXP2基因序列所产生的突变是其他动物的2倍。某些蝙蝠具有与导致人类语言障碍的变异类似的遗传突变。这些发现表明,FOXP2基因在蝙蝠的回声定位能力进化与多样化过程中扮演了一个至关重要的角色。
六、广泛应用于农业的基因突变育种。
广泛应用于农业的基因突变育种,使得植物有基因发生突变,从而产生大量新性状,虽然其中大部分为有害性状,但是也存在有利的性状,人们通过筛选和培育,使得农作物的某些性状得以改良,比如培育高产、优质、抗病毒、抗虫、抗寒、抗旱、抗涝、抗盐碱、抗除草剂等的作物新品种都是通过基因突变等途径实现的。这样使得农作物能够有新的发展和改变,朝着利于人类的方向发展,在一定程度上得到了进化。只有通过基因突变才能产生原来从未出现过的新性状,其中有有利的性状使得农作物能够得以改良发展进化。因此说基因突变是生物进化的源泉。
七、西红柿比其祖先大很多源于基因突变。
研究人员鉴别出了一个遗传突变,正是这种变异使得西红柿的体积比它的野生祖先膨胀了1000倍。据美国《科学》杂志在线新闻报道,这一切是由一个较短的DNA序列造成的——该序列插入了一个能够控制西红柿中隔膜数量的基因。这种插入戏剧性地增加了隔膜的数量,加上之前鉴别出的一种能够促进细胞分裂的基因突变,最终使西红柿的体积变大。这两种变化是最近才发生的,并且由于人们喜欢又大又多汁的西红柿而保存了下来。
八、细菌、病毒等致病菌的基因突变
细菌、病毒等致病菌有许多都向某方向发生了突变,这种突变具有不定向性,例如其中某个细菌发生了突变,使它产生在青霉素环境下存活的能力,但是他和其他细菌一起繁殖,直到人类使用青霉素来杀菌,使用后细菌几乎全死了,就剩下有利突变的细菌,他们开始在适宜的环境下疯狂繁殖,当人类在使用青霉素是就不管用了,也就是人们所说的产生了抗药性。使得它们得以适应环境,从而进化。
基因突变虽然经常是使生物体产生有害的变化,然而,有益的基因突变却是生物多样性的基本原因,是生物进化的主要因素。如果基因复制一直非常完美、零缺点,那么地球上的生命老早就全部死光了,因为它们将无法适应地球在过去那些年代当中所发生的气候剧变和海陆变迁。正是由于轻微但持续存在的基因突变,才使得生物的后代得以在千奇百怪的紊乱环境里成功存活,得以进化,从而演变成今日生机盎然的生物世界。
第二篇:基因突变论文(推荐)
简述基因突变是生物进化的源泉
一.进化及基因突变
地球在47亿年前诞生,而地球上最早的生命从最原始的无细胞结构生物进化为有细胞结构的原核生物,从原核生物进化为真核单细胞生物,然后按照不同方向发展,出现了真菌界、植物界和动物界。植物界从藻类到裸蕨植物再到蕨类植物、裸子植物,最后出现了被子植物。动物界从原始鞭毛虫到多细胞动物,从原始多细胞动物到出现脊索动物,进而演化出高等脊索动物──脊椎动物。脊椎动物中的鱼类又演化到两栖类再到爬行类,从中分化出哺乳类和鸟类。现代进化学家坚持达尔文的渐变论思想和自然选择的创造性作用,强调进化是群体在长时期的遗传上的变化,认为通过突变(基因突变和染色体畸变)或遗传重组、选择、漂变、迁移和隔离等因素的作用,整个群体的基因组成就会发生变化,造成生殖隔离,演变为不同物种。
因此为生物进化提供原材料的是概率极小的基因突变。基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。基因虽然十分稳定,能在细胞分裂时精确地复制自己,但这种隐定性是相对的。在一定的条件下基因也可以从原来的存在形式突然改变成另一种新的存在形式,就是在一个位点上,突然出现了一个新基因,代替了原有基因,这个基因叫做突变基因。于是后代的表现中也就突然地出现祖先从未有的新性状。
二.例子
然而大多数突变是无用的,甚至是有害的。只有极少数的突变是有益的,正是这些极少数有益的突变使那些拥有突变性状的个体更适应环境,这便是达尔文所说的自然选择。它使得物种基因频率发生改变,物种便进化了。
例如意大利种蜜蜂(Ligurian bee),基因突变使它能够达到红三叶草的泌蜜处去吸食花蜜,因此富有这种红三叶草的一个地区,对于吻略长些的,即吻的构造略有差异的那些蜜蜂会大有利益。另一方面,这种三叶草也有突变花管较短或花管分裂较深的,而三叶草的受精要依靠蜂类来访问它的花,在这个地区里如果普通的蜂稀少了,就会使花管较短的或花管分裂较深的植物得到大的利益,这样,蜜蜂就能够去吸取它的花蜜了。通过连续保存具有互利的微小构造偏差的一切个体,花和蜂怎样同时地或先后慢慢地发生了进化。
再如生活在分布在印度和斯里兰卡,在孟加拉国、尼泊尔和不丹的热带森林中的熊,他们的主要食物是白蚁等昆虫,另外也吃树叶、花朵、水果,并会捡食腐肉。因此基因突变使那些上颚只有4颗门齿,尾巴粗短,脚掌巨大,脚掌上有很长的爪钩的熊更适应环境生存下来。因为这些性状有助于它们吸食白蚁而且方便它们挖掘蚁穴和爬树。久而久之,便进化成今日的懒熊。而那些生活在北极的熊,因为气温寒冷。基因突变使那些熊头部较小,耳小而圆,颈细长,足宽大,肢掌多毛的御寒性状出现并不断遗传。慢慢进化为今日的北极熊。而大熊猫从始熊猫缓慢进化时出现了臼齿发达,爪子除了五趾外还有一个“拇指”。这个“拇指”其实是一节腕骨特化形成,学名叫做“桡侧籽骨”,主要起握住竹子的作用。这些
优良性状出现并保留下来,使大熊猫生存至今未灭绝。
还有一些鸟类在进化过程中基因突变使得长而无膜的趾的性状的形成,这方便在沼泽地和浮草上行走。像陆秧鸡等,更有甚者如高地鹅的蹼脚已经变得残迹了。
双壳类的壳构造得能开能闭,但可细分为列齿目,绞合齿多同形,排成一列;闭壳肌2个,均发达。盾鳃或丝鳃。有湾锦蛤壳小而厚,卵圆形;盾鳃小,鳃丝完全横列。我国黄渤海有分布。云母蛤:壳前方常开口,鳃丝直,不反折。蚶:壳厚,膨胀,壳面有粗的放射肋,鳃丝常反折。异柱目,前闭壳肌很小或消失,后闭壳肌发达;绞合齿一般退化或成小结节状,或无绞合齿、鳃丝间以纤毛盘或结缔组织相连接。代表动物有:贻贝壳略呈三角形,壳顶尖,腹线平直。具足丝。其肉体干制品称淡菜,味鲜美。江瑶为大型种类,两壳等大,壳质脆,三角形。其闭壳肌的干制品称江瑶柱,为海味中的珍品。真瓣鳃目铰合齿少或无,前后闭壳肌均发达,大小相等;鳃丝和鳃小瓣间以血管相连接;出水孔和入水孔常形成水管。无齿蚌为淡水产,壳卵圆形,无绞合齿。代表动物有:珠蚌壳厚、长圆形。可以说,如此种类繁多的壳类都来源于基因突变所造成的性状改变。
三.小结
虽然基因突变具有稀有性,少利多害性,然而生物的进化离不开那些小概率的有益突变。因而可以说基因突变是生物进化的源泉,有了不同类型的突变型,而自然起到了选择的作用,使得适应环境的生物得以生存下来,进而产生了生物的多样性。
参考资料:
《物种起源》达尔文
第三篇:人教版教学论文《基因突变和基因重组》说课稿
高中生物必修二
《基因突变与基因重组》说课稿
乐陵市第二中学 刘桂华
大家好,今天我说课的内容是人教版普通高中标准实验教科书生物必修2第五章《第一节 基因突变与基因重组》。通过前面各章的学习,学生对“基因是什么”、“基因在哪里”和基因如何起作用“等问题已有了基本的认识。本章内容既是对前四章内容合乎逻辑的延续,又是学习第六章《从杂交育种到基因工程》和第七章《现代生物进化理论》的重要基础。
本节介绍了可遗传变异的两种类型:基因突变和基因重组。其中基因突变从实例入手,通过对镰刀型细胞贫血症的分析,引入基因突变的概念,然后详细阐述基因突变的原因和特点、意义。在基因重组部分,教材设置了“思考与讨论“的栏目,旨在让学生利用数学方法,通过计算,体会基因重组机制提供的极其多样的基因组合方式。正文中则简要阐述了基因重组的概念、类型和意义。本节内容引导学生从分子水平上理解遗传物质如何引起生物变异的。
依据课程标准和教材内容确定本节教学目标如下: 知识与技能
(1)举例说明基因突变的特点和原因。(2)举例说出基因重组。
(3)说出基因突变和基因重组的意义。过程与方法
(1)采用镰刀型细胞贫血症的实例,从现象开始,追根溯源,让学生理解基因突变的根本原因是DNA分子的碱基对发生了变化。
(2)用类比推理的方法引导学生理解基因突变的类型。
(3)通过生活中的具体事例引导学生理解抽象的概念,归纳哪些因素会导致基因突变。(4)以设问和讨论的形式引导学生思考基因突变和基因重组的意义。情感态度与价值观
引导学生从生物学角度对基因突变和基因重组做科学的了解,形成正确的科学价值观,激发学生的责任感。
教学重点:
基因突变的概念、特点及原因。教学难点:
基因突变和基因重组的意义 学情分析:
生物的变异现象对于学生而言并不陌生。通过前面生物课的学习,学生已经初步认识到生物的变异与遗传物质有关,也和环境有关。在此基础上,教师应引导学生在分子水平上理解基因突变和基因重组的概念、掌握实质。基因突变和基因重组是遗传学中重要的概念,是学生学习生物的遗传、变异和进化的基础,其中的基因突变是生物变异这部分教学内容中的一个重点知识。由于该部分的知识比较抽象,需要学生具备相当强的空间思维能力和丰富的想象力。虽然学生在本模块前面的教学内容中遇到类似的情况,通过学习提高了能力,但要达到从分子水平上理解和掌握,仍需要教师通过采取适当的教学策略,引导学生在不断地探究、思考、分析和讨论的过程中实现教学目标。
教学方法:
教师在教学过程中利用多媒体课件,创设形象生动的教学氛围;同时应用讲述法、比较法、讨论探究等方法。适当补充相关的材料,让学生从实例分析入手,按照认知的规律从现象到概念,从宏观到微观来归纳总结概念;引导学生运用类比推理的方法,从讨论英文句子中发生个别字母改变可能导致句子意义的变化情况,通过联想和类比,理解基因突变和生物性状改变的关系;以设问、讨论的形式引导学生思考基因突变和重组的意义;用填表的形式引导学生进行知识的对比和总结。生物必修
高中生物必修二
教学过程:
(一):引入
由“一母生九子,连母十个样”谈起,变异如同遗传是生物界普遍存在的现象。通过初中生物课的学习,学生已经初步认识到生物的变异首先与遗传物质有关,其次与环境有关,即变异有两种类型:不可遗传的变异和可遗传的变异。可遗传的变异有三种来源:基因突变、基因重组和染色体变异。今天我们一起来学习基因突变和基因重组。
(二):基因突变的新授教学
1、基因突变的实例
为了让学生更好地理解基因突变的概念,教材不是从概念到概念,而是从实例(镰刀型细胞贫血症)入手,通过对“思考与讨论”中问题的解决,引导学生得出基因突变的概念、时间等问题(板书)。并结合问题探讨,让学生类比推理基因突变的类型和结果。理解基因突变的类型,可以用英文句子中一个字母的改变,导致句子意思不变、变化不大、完全变化三种情况,通过联想和类比的方法,结合不同密码子对应相应的氨基酸的知识,了解基因突变对生物性状影响的三种情况。使学生明确基因突变不一定都导致生物性状的改变。所以,基因突变对生物体来说,有的有害,有的有利,有的既无害也无利。
2、基因突变的原因
关于基因突变的具体原因的教学,首先,介绍癌症的形成是体细胞发生基因突变的结果,然后让学生列举生活中的事例,回忆癌症形成的诱因,引导学生分析思考讨论类比得出基因突变的原因(板书),归纳哪些因素会诱发基因突变,从而选择健康的生活方式养成健康的生活习惯。
3、基因突变的特点
基因突变的特点的教学,我采用教师指导学生阅读(呈现教师设计的问题,让学生有目的地看书),(问题指出后,教师退居组织者、指导者、信息资料提供者位置,学生成为课堂的主人;他们运用课本知识展开互动的讨论,相互启发,互相补充,解疑去惑,获取知识,锻炼能力。教师也可以参与其中,“亦师亦生”让课堂气氛更加热烈和融洽)
通过学生自主学习、讨论探究,他们已对基因突变的特点有一定的认识和理解。但若想使他们更加准确、牢固地掌握本知识点,教师的系统点拨是必要的(针对上述教师的提问或讨论过程中学生的典型问题作具体的解释和讲解)。(板书)
4、基因突变的意义
为了理解基因突变是生物变异的根本来源,是生物进化的原始材料,可以引导学生思考下列问题。基因突变能产生新的基因吗?这些新的基因产生的新性状对生物的生存有什么意义(有利还是有害)?自然环境会选择哪些个体生存下来?通过这些设问,使学生理解基因突变最重要的特点是产生了新的基因,原来的基因和新的基因所表达的性状为自然环境提供了选择的材料。(这里引导得出结论的同时重点强调)(板书)
(三)、基因重组的新授教学
温故知新:基因的自由组合定律引入。为帮学生理解和记忆,可提出问题让学生思考: 1基因重组是指基因的重新组合,哪些基因可以重新组合呢? 2非等位基因为什么要重新组合呢? 3非同源染色体在什么时期重新组合呢?
4减数第一次分裂后期,同源染色体和等位基因是怎样变化的? 带领学生梳理知识直接找出基因重组的概念、类型(板书)、原因
通过对课本中 “思考与讨论”的解决,使学生认识到基因重组是通过有性生殖实现的,两个亲本的杂合性越高,基因重组的的类型就越多,生物通过有性生殖产生的变异就更多了。基因重组尽管不能产生新的基因,但可以产生不同的生物性状组合,产生新的基因型。所以说,基因重组为生物的进化提供了可供选择的材料。
(四)课堂总结及反馈训练(多媒体展示)生物必修
高中生物必修二
列表比较基因突变和基因重组的有关知识(本质、发生时间、原因、条件、发生可能、意义等方面),让学生讨论再回答。(注重知识的横向联系,有利于学生对知识的深入理解)
反馈训练:(注意典型性,由基础到提高的层次性)说教学反思:
本节课,怎样在原来的基础上引导学生对基因突变和基因重组的理解进入一个新的平台是本次教学思考的主要问题。在对教学资源进行整合的基础上,立足课本,实现对知识的深化和拓展是主要的指导思想。在学习基因突变时,重点是带领学生学习基因突变的基本概念,研究内涵即基因结构的改变,外延是碱基对的增添、缺失和替换。结合基因的结构和基因对性状控制的相关知识,教师以多种多样的教学方式让学生自己研究基因突变是否一定会带来性状的改变。同样在学习基因重组的过程中采取了新的尝试,让学生根据文字,结合减数分裂的相关知识学习,在自己摸索的过程中实现外界知识的内化。
板书设计
一、变异的类型
可遗传的变异有三种来源:基因突变、基因重组和染色体变异
二、基因突变
1:概念 DNA分子中发生碱基对的替换、增添、缺失,而引起的基因结构的改变。
根本原因 DNA分子的碱基对发生变化
时间 DNA分子复制时
结果 引起基因结构的改变,可能会导致生物体的性状发生改变。2:原因
①外因(1)物理因素:X射线、激光等。
(2)化学因素:亚硝酸,碱基类似物。
(3)生物因素:某些病毒、细菌、一场代谢产物等。②内因:DNA复制时偶尔也会产生错误。
3:特点 普遍性、随机性、不定向性、低频性、少利多害性
4:意义 基因突变是新基因产生的途径,是变异的根本来源,是生物进化的原始材料
三、基因重组
1:概念:生物体在有性生殖的过程中,控制不同性状的基因的重新组合 2:类型
(1)随机重组:减数第一次分裂后期
(2)(交叉互换:简述第一次分裂四分体时期。
3:意义 基因重组是生物变异的来源之一,对生物的进化具有重要的意义。生物必修
第四篇:《基因突变和基因重组》教案
《基因突变和基因重组》教案
www.5y
kj.co
m
一、教学目标
(一)知识与技能
.举例说明基因突变的概念、原因、特点;
2.举例说出基因重组;
3.说出基因突变和基因重组的意义。
(二)过程与方法
.学会数据处理,类比推理等科学方法;
2.培养学生自学能力,发散思维及综合能力。
(三)情感态度与价值
.在基因突变的学习中懂得生物界在丰富多彩的本质,从而进行辩证唯物主义的思想教育;
2.在基因突变的学习中懂得如何确立健康的生活方式;
3.引导学生从生物学角度对基因突变和基因重组作科学的了解,形成正确的科学价值观,激发学生的责任感。
二、教材分析
《基因突变和基因重组》是人教版高中生物必修二《遗传与进化》第5章第1节的教学内容,主要学习基因突变的概念、特点和原因,基因突变和基因重组的意义。
三、教学重点难点
、重点:
(1).基因突变的概念及特点;
(2).基因突变的原因。
2、难点:
基因突变和基因重组的比较。
四、学情分析
生物的变异现象对于学生而言并不陌生,通过初中生物课的学习学生已经初步认识到生物的变异与遗传物质和环境有关。本节在此基础上进一步引导学生学习遗传物质究竟是如何引起生物的变异的。
五、课时安排:1课时
六、教学程序设计
依据新课改”自主、合作、探究”的精神,按“学生是主体,教师是主导”的原则,以探究式教学方法为主线,利用学案导学,开展自主探究学习,让学生在讨论、探究、交流中相互启迪,获得新知,形成良好的学习习惯和学习方法。同时,教师充分利用现代声像技术及多媒体工具,借助多媒体动画,把基因突变的原因及类型和基因重组的原理直观地展示给学生,有利于学生由感性认识上升到理性认识。教师适时进行点拨,以帮助学生建构正确的知识结构,把课堂的主动权交给学生。
七、教学过程
教师组织和引导
学生活动
设计意图
创设情境,激发欲望
(5分钟)、多媒体展示水毛茛和果蝇的图片,设疑:
1、水毛茛裸露在空气中的叶和浸在水中的叶为什么表现出两种不同的形态?这种变异能遗传吗?
2、果蝇的白眼性状能遗传给后代吗?
2、导出生物体变异的类型(不可遗传变异和可遗传变异),并指出本节课学习的内容为可遗传变异中的基因突变和基因重组。
3、多媒体展示学习目标,并进行学习目标和课程标准的解读。、学生回顾生物体的表现型与基因型和环境之间的关系并思考相关问题。
2、通过学习,知晓生物体变异的类型以及本节课所要学习的内容。
3、明确本节内容和学习目标。
步步导入,激发学生的好奇心,主动地参与获取新知识,明确学习的相关内容和学习目标。
自主学习,组内讨论
探究1:基因突变(10分钟)、组织学生组内探讨基因突变的原因、特点,并进行小组展示。
2、多媒体展示镰刀型细胞贫血症的发病机理。并引导学生思考:碱基对的替换是否一定会引起生物体性状的改变?
3、复习豌豆的皱粒以及囊性纤维病的产生原因,提出问题引导学生进行分析,引出基因突变的概念。
4、拓展:人类ABo血型,让学生了解复等位基因。
5、对基因突变的意义进行引导,让学生懂得如何确立健康的生活方式。、通过学案上的知识梳理,组内讨论,形成统一认知进行小组展示。
2、观看多媒体展示的镰刀型细胞贫血症的发病机理并思考相关问题,回顾密码子的简并性。
3、小组讨论,总结基因突变的概念。
4、通过人类ABo血型的学习,掌握基因突变的不定向性。
5、理解基因突变的意义,并在以后的生活中树立正确的健康观念。
培养学生自主学习的能力,并体现学生的主体地位。
多媒体直观地展示给学生,有利于学生由感性认识上升到理性认识。
通过以前所学知识的回顾,帮助学生理解基因突变的类型和实例。
完成情感态度与价值观的目标。
自主学习,组内讨论
探究2:基因重组(10分钟)、组织学生组内探讨基因重组的类型、特点、实例并进行小组展示。
2、多媒体展示基因重组的类型及机理。
3、分析基因重组的意义。、通过学案上的知识梳理,组内讨论,形成统一认知进行小组展示。
2、观看多媒体展示。
3、知晓基因重组的意义。
培养学生自主学习的能力,并体现学生的主体地位。
班内交流,确定难点
(10分钟)、多媒体展现合作探究内容,倡导学生合作式学习、交流。
2、对于基因突变和基因重组的区别进行适时点拨,帮助学生理解。、合作交流,确定难点。
2、尝试构建表格分析基因突变和基因重组之间的区别。
培养学生发散思维及综合分析的能力,完成课标中的能力要求。
随堂练习,当堂反馈
(5分钟)
多媒体展示相关习题,由简单到复杂。
读题,思考与讨论,并进行解答。
、帮助学生对知识点进行巩固。
2、通过对学生练习结果的评价,了解学生对知识的掌握情况,以便确定下一步的补偿性学习的安排。
归纳总结,科学评价
(5分钟)、构建思维导图,帮助学生构建知识框架;
2、对本节课的小组表现进行科学评价,并评出最佳小组。
通过思维导图,构建知识框架,掌握相关知识。
科学评价有利于小组内学生之间的相互团结,培养学生团队合作的意识。
八、板书设计
5.1基因突变和基因重组
一、基因突变
、实例:
2、概念:碱基对的增添、缺失或替换
3、原因:外因、内因
4、特点:普遍性、随机性、不定向性、低频性、多害少利性
5、意义:变异的根本
二、基因重组、概念:控制不同性状的基因的重新组合2、类型:自由组合、交叉互换
3、意义:变异的丰富
三、基因突变与基因重组的区别
九、布置作业
固学案P31-32相关习题
十、教学反思
www.5y
kj.co
m
第五篇:进化生物学论文:鱼的进化
鱼的进化
摘要:从整个动物演化的情况来看,脊椎动物是从无脊椎动物演化来的,有颌类是从无颌类进化而来。在泥盆纪时代,鱼类就出现了四大类:棘鱼类(Acanthodii)、盾皮鱼类(Placodermi)、软骨鱼类(Chondrichthyes)及硬骨鱼类(Osteichthyes)。关键字:动物进化
泥盆纪
鱼
1棘鱼类
在地质年代上是出现最早的鱼类,化石出现在志留纪,最初发掘出来的棘鱼化石仅仅是一些棘和鳞片,到泥盆纪时,已达最高峰,化石也较完整。棘鱼是原始有颌类的一种,上颌(腭方骨)与下颌相咬合,体长仅是几厘米的小鱼,如梯棘鱼(Climatius)体呈纺锤形,歪尾,偶鳍除胸、腹络之外,在胸、腹鳍之间,腹部两侧尚有五对较小的鳍,奇鳍和偶鳍基部较宽,各鳍前均有一小棘,棘鱼的名称由此而来。体表覆盖一层细密的菱形鳞片,头上排有规则的小骨板保护头部,鳃孔不外露,头侧各有5个鳃小盖,其上覆盖着一块大的骨质鳃盖物。
棘鱼曾一度被划为盾皮鱼类的一种,是由于它的细密的鳞片和头上的小骨板,现在对这点还有不同的看法。也曾经把棘鱼类划为软骨鱼类,是因为它有歪尾。现在更多的人认为棘鱼接近硬骨鱼类的祖先——古鳕鱼类,是因为它的鳞片、部分骨化的骨骼及鳃盖等这些特征。2盾皮鱼类
体外被有盾甲,盾皮鱼类由此而得名。有颌(有典型的下颌和与头骨愈合在一起的上颌),有成对鼻孔,偶鳍和歪型尾,骨骼为软骨。它是在志留纪与泥盆纪时期,沿着和早期的鲨类与硬骨鱼类不同的进化路线发展起来的有颌脊椎动物。随着泥盆纪的结束而退出历史舞台,只少数延续到石炭纪。
盾皮鱼类是比较复杂的类群,它是由许多种类共同组成,下面简述几类: 2.1节颈鱼类(Arthrodira)
通常称为泥盆纪的装甲鱼或颈部有关节的鱼类。头与体躯前部有骨甲,两只大眼在头甲的两侧,一对鼻孔位于头的前端,有一背鳍,歪尾,脊椎骨仅有椎弓和脉弓。代表种类为节颈鱼(Coccosteus)。2.2扁平鱼类(Petalichthyida)
代表种类为大瓣鱼(Macropetalichthys)。有一个强壮骨质头盾,类似于节颈鱼类的头盾,脑也与节颈鱼类相似,头盾之后是胸盾和一对胸棘,体被大鳞片组成外部甲胃。大瓣鱼与节颈鱼类有亲缘关系,在早期各自沿着不同的途径向前发展。2.3褶齿鱼类(Ptyctodontida)
是小型的眉皮鱼类,头甲退化,胸甲也退化,除胸棘外,尚有一个大的背棘,头骨显得短而高,上下颌短,有发达齿板,适于食软体动物,脑颅的构造和银鲛有颇多相似之处,有人则认为是银鲛的祖先。2.4硬鲛类(Rhenanida)
是一类体型平扁,头部宽阔,体表具有小结节,似现代鲨的楯鳞,口端位有尖利的牙齿,眼与鼻孔都位于头部的背面,胸鳍大,和近代鳐和相似,但颌的构造仍是原始的,内部结构比软骨鱼原始,只是两种不同的动物沿着相似的路线发展进化的结果。
促使棘鱼类和盾皮鱼类绝灭的因素是多方面的,但促使这些类群衰落的主要原因,则是早期的硬骨鱼类与鲨类的兴起和发展,它们有更好的适于游泳的结构,超过了同时代的棘鱼类和盾皮鱼类,在同一水域环境生存的棘鱼类和盾皮鱼类,在生存竞争中被淘汰了。3软骨鱼类
软骨鱼类和硬骨鱼类从有化石记录开始以来,就已明显的表明,它们是两个系统,从两股道上发展来的。盾皮鱼类是软骨鱼类的近亲,棘鱼类则是硬骨鱼类的近亲。
由于软骨不利于保存化石,除少数情况外,保留下来的大多是一些牙齿和鳍刺。软骨鱼早就分为两个支系:一支为鲨鳐类;另一支则为全头类。3.1裂口鲨(Cladoseiache)
代表最早阶段的软骨鱼类,化石最早发现于上泥盆纪。体长约1m,呈纺锤形,体被楯鳞,2背鳍,第一背鳍有一棘,至尾,偶鳍基部宽,末端尖,胸鳍大,腹鳍小,没有发现鳍脚构造,颌弧的悬挂方式为双接型(除上颌直接联在脑颅外,尚通过舌颌骨与脑颅相接)。3.2弓鲛类(Hybodonti)
中的弓鲛(Hybodus)是作为鲨类进化中的中间类型的代表。化石在泥盆纪末期出现,到古生代后期和中生代才兴旺起来。颌弧和脑颅联接方式为双接型,偶鳍基部变窄(运动显得更加灵活)和出现了鳍脚。在分类上已归人鲨目。3.3现代鲨
类如:扁鲨、六鳃鲨科等的化石,在侏罗纪就开始出现,和现代鲨类变异不大。现代鲨类颌弧与脑颅联接方式由原始的两接型改变为舌接型(上、下颌通过舌颌骨与脑颅相联)。大多数为海产,极少数到淡水中生活。沿着两个方向发展:一支为纺锤形体型、迅速游泳的种类,即鲨类;另一支为扁平体型、底栖、少活动的种类,即鳐类。
3.4全头类(Holocephali)
则是从下石炭纪开始出现,可能是从原始的,祖先型的鲨类中发展出来的辐射分支,属于食软体动物类型,其亲缘关系尚不能确定。4硬骨鱼类
一般认为从棘鱼发展而来。从最早的化石记录开始就分成两支:一支为辐鳍类,发展为现代硬骨鱼类的主体;另一支是肉鳍类,由其中的总鳍鱼类演化出陆生脊椎动物。
4.1辐鳍类(Actinopterygii)
化石由泥盆纪开始,发展至今天,大致经历了3个阶段:早期阶段为软骨硬鳞类(Chondroste)以古鳕鱼类(Palaeonisci)为代表,泥盆纪开始出现,石炭纪是它的全盛时期,到三迭纪渐渐被全骨类代替,到白垩纪绝迹。体呈纺锤形,被菱形硬鳞,骨骼大部分为软骨,脊索发达,上颌固定在颊部,歪尾,上叶覆有鳞片。
4.2全骨类(Holostei)
比软骨硬鳞鱼有明显的进步。椎骨骨化,上颌不再固定在颊部,歪尾,鳞片变薄。化石在三叠纪开始出现,全盛时期是中生代,到中生代后期渐被真骨鱼类取代。现代生存的只北美的雀鳝和弓鳍鱼。4.3真骨类(Teleostei)
是辐鳍类发展的第三阶段,它是沿着全骨鱼类所取得的那些进步性,继续向前发展,所以它能繁荣昌盛,至今不衰的分布在全球各个水域,占领各种生态环境。化石在侏罗纪开始出现,在白垩纪和第三纪时期,广泛的辐射发展,成为各种生态类型,使它们更好地适应各种不同的生态环境。
4.4肉鳍类(Sarcopterygii)
或称内鼻类。包括肺鱼和总鳍鱼。肉鳍类的化石从泥盆纪早期已出现,在以后的地质年代从未得到大的发展,中生代末期已接近绝灭,至今残存的肺鱼有三属,而鳍鱼则仅有矛尾鱼留存在到现在。古总鳍鱼的一支演化出陆生脊椎动物的祖先。
4.5硬骨鱼类
是最进步的鱼类,也是现今世界上水域中的“主人”。一般认为,硬骨鱼类是从棘鱼进化来的。棘鱼是早期有颌鱼类,早志留世(距今4亿年前)便已出现,一直延续到二叠纪(距今2亿5千万年前)。这是一种小型鱼类,曾被认为与盾皮鱼类有关,与软骨鱼类有关,近年来通过对新材料的研究,才确定它与硬骨鱼类有关。
拉蒂迈鱼是空棘鱼类的唯一的现生代表,而扇鳍鱼类则全为化石种类。后者曾被认为是陆生四足动物的祖先,但近年被我国学者所否定。肺鱼类从泥盆纪(3亿6千万年前)开始出现,直到现在还有澳洲肺鱼、非洲肺鱼和南美肺鱼为代表。顾名思义,肺鱼是可用肺呼吸的,这可是陆生脊椎动物的基本要求,再加上其它一些特征,肺鱼曾被认为可能是陆生四足动物的祖先。后来这“祖先”地位被“具有内鼻孔”的扇鳍鱼所取代。20世纪80年代,随着扇鳍鱼类内鼻孔的被否定,扇鳍鱼类祖先说动摇了。于是有关学者又回到肺鱼中去寻找陆生四足动物的祖先了。鱼类作为地球上最古老的脊椎动物的一个类群,其漫长的演化历史一直是众多的生物学家感兴趣的问题。鱼类的出现,标志着从低等、原始的无脊推动物向脊椎动物进化的一个质的飞跃;鱼类的发展、演化又提出了脊推动物进化的明显谱系。一切高等动物,两栖类、爬行类、鸟类、哺乳类,甚至我们人类自身都是在此基础上发展而来的。
研究古生物通常以化石材料为根据。科学家通过放射性同位素来测定岩石的绝对年龄,并划分成不同的地质年代。这些地质年代中保存下来的古生物,记录了当时的环境条件和生物信息,经过千万年的沉积,形成化石,成为研究地质历史和生物进化史的根据。
鱼类的化石并不十分丰富,但它们依然能够展示出古今各种鱼类发生、发展的过程。最早的鱼类化石沉积在寒武纪和奥陶纪的岩石里,距今已有大约4亿年的历史了。通过对岩石的研究,人们知道这种最早的鱼类生活在咸水环境里,或者说是生活在海洋中,它们的身体外面披有铠甲一样坚硬的外骨骼。这些原始的鱼类浑身布满了硬甲,具有扁平的前背甲。由于它们没有颌,所以被称为无颌类。它们可以说是最古老的鱼类,因为穿了甲胄,它们无疑地不能过游泳生活,只能生活在水底沉积物中。应该说,它们是一群不会游泳的鱼类。无颌类的内骨骼没有被保存下来,所以科学家们推测它们具有软骨骼,像现在我们见到的软骨鱼类鲨鱼和魟鱼一样。
大量完整的无颌类化石是在泥盆纪找到的、泥盆纪可算是鱼类初生时代,中生代的诛罗纪和白垩纪(距今约1.3亿-1.6亿年),是鱼类中兴时代,新生代时,各种古今鱼类共存于海洋和地球上的其他水域,鱼类家庭达到全盛。
在无颌鱼类的基础上,最早的有颌鱼类也发展了。最初的颌是由几个硬骨鳃弓改造过来的。鳃弓最初埋在肌肉里,在进化过程中,颌与头部背甲融为一体,从而形成了一个更坚固、更有效率的进食器官——咀嚼器。
原始有颌类也称作盾皮鱼,它们在泥盆纪盛极一时,但到泥盆纪末已大部灭绝了,一般认为,软骨鱼类和硬骨鱼类都是由盾皮鱼演化来的,它们分别朝不同 的方向发展,但尚未找到十分清楚的证据证明这个推论。一些盾皮鱼仍具有扁平的身体,像它们的祖先一样;但是大多数都变成流线型,甲胄也减少了,这种变化使它们获得了很强的游泳能力。软骨鱼类也脱去了沉重的甲胄(但仍有背板的痕迹),发展出更加强劲有力的适于游泳的肌肉组织。有些科学家认为,软骨鱼类是“原始”鱼类,但它们是否真正地比硬骨鱼原始,还有待证实。
有关脊椎动物颌的发生与进化的研究,是从上个世纪进行的胚胎学研究开始的,它揭示了进化中的一个重要过程。颌的出现,说明动物的某个新的重要的特征的出现可以使一个类群的生活领域扩大到以往不能生活的地区。这以后,鱼类得到了迅速扩展,成为今日最普遍的游泳生物类群。
硬骨鱼最初生活在淡水里,后来逐渐向海洋伸展,终于成为海洋鱼类的优势类群。在进化过程中,它们产生了内部硬骨骼,把僵硬的甲胄变成了薄薄的鳞片,从而使动作敏捷灵活,提高了运动速度。
硬骨鱼有两个类群,其中辐鳍鱼类在数量和种类上都大大超过另一种鱼——内鼻孔鱼类。内鼻孔鱼类包括一些形态和构造都很特殊的原始种类,它们具有内鼻孔构造,可以把嘴闭上而并不影响呼吸。内鼻孔鱼类今天能见到的只有肺鱼和矛尾鱼。矛尾鱼隶属空棘目腔棘纲。它被誉为活化石,在1938年以前一直被科学家们认为是已经灭绝了的种类。第一尾矛尾鱼是1938年被一名渔民在非洲东南海岸捕到的,这一发现轰动世界。以后又陆续捕到,证实这一古老鱼类仍生活在现代的海洋里。腔棘鱼的重要特征是,鳍成叶状,具有肌肉,并有相连的辐棘,从而使一些鱼可以在陆地上爬行。它们与两栖类有密切的亲缘关系。人们认为两栖类就是由它们演化而来的。
典型的高等鱼类都是流线型身体,这一点与许多善于游泳的原始鱼形动物并无太大差别,所不同的是,它们发展出了一套后者从来没有过的完善的运动器官——鳍。
典型的高等鱼类有一个大而有力的尾鳍,尾鳍来回摆动在水中引起反作用力,从而推动身体前进。背部有1~2个背鳍,腹面一般还有一个臀鳍,均为平衡器,当鱼游动时防止滚动和侧滑。偶鳍包括位于前方的一对胸鳍和一对位置或前或后的腹鳍。在进步的鱼类中,这些偶鳍非常灵活,起到水平翼或升降舵的作用,有助于鱼在水中上下运动;也可以起方向舵的作用,使鱼能够急转弯;还可以作为制动器使鱼能够急停。有了奇鳍和偶鳍的配合,鱼类就能够完善地适应在水中的活跃的生活方式。
在标志着高等鱼类兴起的诸多事物中,有一项解剖结构上的革新是非常重要的。在鱼类进化的初期,颌骨后面的第一对鳃弓特化为舌弓,上面的骨头特化为起支柱或连接作用的舌凳骨,将颌骨与颅骨连接起来。舌颌骨在鱼类的进化和由鱼类发展为陆生动物的过程中都发挥了重要作用。由于舌颌骨一端与头骨后部相连接而另一端与颌骨相连接,原来位于头骨与舌弓之间的鳃裂就大为缩小;在较原始的鱼类中,这种缩小了的鳃裂保留下来转变成喷水孔,它是位于第一对完全鳃裂前方的一对小孔;在高度进步的鱼类中喷水孔也完全消失了。
高等鱼类包括软骨鱼类和硬骨鱼类。软骨鱼类即一般所说的鲨类,几乎全部是海洋动物。它们在整个生活史中始终是软骨质的,骨骼中的坚硬部分通常仅仅包括牙齿和各种棘,大多数的化石软骨鱼类就是从这些东西得知的,偶尔也会有充分钙化了的颅骨和脊椎等被保存为化石。
已知最早的鲨类是裂口鲨属,化石发现于美国伊利湖南岸晚泥盆纪克利夫兰页岩中。身长约1米,体型似鱼雷;有一条大歪尾,不能活动的成对的胸鳍和腹
鳍凭借宽阔的基部附着在身体上;另外在尾的基部还有一对小的水平鳍。
裂口鲨的上颌骨由两个关节连接在颅骨上,一个是眶后关节,紧挨在眼睛后边;另一个在头骨后部,舌颌骨在这里形成颅骨与上颌背部的连接杆。这种上颌与颅骨的连接形式称为双接型,是相当原始的连接方式。裂口鲨的上颌仅由一块腰方骨组成,下颌也仅有一块骨头,称为下颌骨。牙齿中间有一个高齿尖,其两侧各有一个低齿尖,许多古老软骨鱼类的牙齿都是这种原始结构。颌之后有六对鳃弓(或称鳃条)。
裂口鲨的结构在许多方面都是鲨类中原始的模式,可以认为它接近鲨类进化系统中央主干的基点,后期的鲨类可能是从这里出发沿着各个方向进化出来的,它们包括:
1.肋刺鲨类:双接型的颌。背鳍长,尾鳍与身体成一直线向后直伸形成尖尾(称为圆尾型)。头后具长刺。牙齿由三个齿叶组成,两侧齿尖高。中央齿尖低;从石炭纪和二叠纪发展起来,生活在古生代晚期淡水的湖泊与河流中,是鲨类进化的侧枝。
2.弓鲛类:是现代鲨类(真鲨类)最早和最原始的类型。后面的牙齿不像前边的牙齿那样尖锐,呈低而宽阔的齿冠,具有压碎软体动物介壳的功能。最初出现于泥盆纪晚期,演化史经过了中生代达到新生代的开始时期。
3.异齿鲨类:较原始的真鲨类,是弓鲛类稍有变异的后代。出现于中生代,种类较少。牙齿具有压碎的功能。
4.六鳃鲨类:一个较小的肉食性类群,出现于中生代,也被认为是弓鲛类与真鲨类之间的连续环节。
5.鼠鲨类:现代鲨类。颌的连接方式改变为舌接型,即依靠舌颌骨与头骨的后部相连接,使颌的活动性得以增强。兴起于中生代,尤其是侏罗纪。6.鳐类:扁平,适于底栖生活,为高度特化了的现代鲨类。
以上各目组成了软骨鱼纲中最为繁盛的一大类群一板鳃亚纲。另外一个种类不多、生活在深海中的软骨鱼类群,因其独特的自接型颌骨连接方式而被分为一个单独的亚纲一全头亚纲。银鲛类是这一亚纲的代表,其进化历史可以追溯到侏罗纪早期。
在古生代晚期的地层中还发现了数量极多的适于研磨的齿板,统称为缓齿鲨类,其亲缘关系尚不能确定。
软骨鱼类一直是很成功的脊椎动物,虽然它们的种属从来不很多,但是所发展出来的类型,对其环境总是能够异常完善地适应。从泥盆纪到现代,它们一直生活在世界的各个海洋中(极少数在淡水水域),成功地控制着它们的对抗者,甚至压制着与它们生活在同一生态环境中的更高级的动物类群。
硬骨鱼侵入到了地球上所有的水域之中。它们种类繁多,形态、大小千差万别,适应性更是“八仙过海,各显神通”。它们的进化史波澜壮阔,各个时代的各群“名星”纷法登场,将一部进化史诗表演得像涨潮的大海,一浪高过一浪。在此我们只能粗线条地介绍一些最基本的背景和最简略的框架。
硬骨鱼类具有高度进步的骨化了的骨骼。头骨在外层由数量很多的骨片御接拼成一整幅复杂的图式,覆盖着头的顶部和侧面,并向后覆盖在鳃上。鳃弓由一系列以关节相连的骨链组成;整个鳃部又被一单块的骨片——鳃盖骨所覆盖,因此硬骨鱼在鳃盖骨的后部活动的边缘形成鳃的单个的水流出口。硬骨鱼的喷水孔大为缩小,有的甚至消失了。大多数硬骨鱼由舌颌骨将颌骨与颅骨以舌接型的连接方式相关连。
脊椎骨有一个线轴形的中心骨体,称为椎体;椎体互相关连成一条支持身体的能动的主干。椎体向上伸出棘刺,称为髓棘,尾部的椎体还向下伸出棘刺,称为脉棘;在胸部则由椎体的两侧与肋骨相关连,有一个复合的肩带,通常与头骨相连接,胸鳍也与肩带相关节。所有的鳍内部均有硬骨质的鳍条支持。
体外覆盖的鳞片完全骨化。原始硬骨鱼类的鳞厚重,通常呈菱形,可分为2种类型:一种是以早期的肺鱼和总鳍鱼为代表的齿鳞;另一种是以早期的辐鳍鱼类为代表的硬鳞。随着硬骨鱼类的进化发展,鳞片的厚度逐渐减薄,最后,进步的硬骨鱼仅有一薄层骨质鳞片。原始的硬骨鱼类有具机能性的肺,但大多数硬骨鱼的肺已经转化成有助于控制浮力的鳔。硬骨鱼类的眼睛通常较大,在其生活中起着重要作用;嗅觉的作用退为次要。
硬骨鱼类最早出现于泥盆纪中期的淡水沉积物中。之后,它们分化为走向不同进化道路的两大类;辐鳍鱼类(亚纲)和肉鳍鱼类(亚纲)。肉鳍亚纲包括肺鱼类和总鳍鱼类,它们在鱼类适应于水中生活的进化史上是一个旁支,但是在整个脊椎动物的进化史上却起着承上启下的关键性作用,这将在后面详述。在此我们仅概述一下作为硬骨鱼类构成主体的辐鳍亚纲。
泥盆纪的古鳕鱼目中的鳕鳞鱼属可以说是早期硬骨鱼类最好的代表。从鳍鳞鱼型的祖先类型发展出了各种类型的辐鳍鱼类,其进化历程可分为三个阶段,分别以三个次亚纲所代表,这三个次亚纲各自在总体上的形态特点,正反映了辐鳍鱼类进化的趋向。
辐鳍鱼类是所有脊椎动物中最成功的水生类群,它们几乎占领了地球上水域中的所有生态位。它们种类繁多,大小千差万别,适应性更是“八仙过海,各显神通”;它们的进化史波澜壮阔,各个时代的各群“明星”纷纭登场,将一部鱼类进化史诗“表演”得像涨潮的大海,一浪高过一浪。
辐鳍鱼类在地球上的进化经历了三个发展阶段,相应的可以由辐鳍鱼类所包括的三大类群(次亚纲)所代表,它们是原始的软骨硬鳞鱼类(软骨硬鳞鱼次亚纲)、中间的全骨鱼类(全骨鱼次亚纲)和进步的真骨鱼类(真骨鱼次亚纲)。
软骨硬鳞鱼类是最早发展出来的硬骨鱼类,它们在泥盆纪出现,在古生代晚期的二叠纪占有优势。然后,在中生代的早期和中期,全骨鱼类发展起来并取代了软骨硬鳞鱼类在水域里的地位。到现代,软骨硬鳞鱼类中只有鲟形目一个目还生存着,由分布很广的鲟鱼以及分布在北美洲和我国的白鲟为代表。
全骨鱼类在三叠纪出现,在侏罗纪和白垩纪早期达到了进化的全盛时期,此后它们走向衰落,只有雀鳝和弓鳍鱼两个属生存到了现代。
造成全骨鱼类衰退的原因是真骨鱼类的兴起。最早的真骨鱼类出现于侏罗纪,从白垩纪开始直到现在,它们的家族不断地发展壮大,成为江河湖海里真正的“主人”。我们现在最经常接触到的青鱼、草鱼、鲢鱼、鲤鱼、鲫鱼、鲶鱼、鲈鱼、带鱼、黄花鱼、比目鱼、海马、沙丁鱼等等几乎所有的硬骨鱼类都属于真骨鱼类。
在辐鳍鱼类的进化发展过程中,我们可以看到一些明显的平行进化的例子,随着时间的发展有许多“情节”一再地重复出现了。例如,软骨硬鳞鱼类在二叠纪时发展出了一些体型又短又高的类型;然后在侏罗纪时,从全骨鱼类中又发展出了一些与之非常相似的种类;最后在新生代,真骨鱼类这种进化的相同模式又被重复了。这样的例子在其它方面也是不胜枚举。5讨论
会这样呢?答案可能很复杂,但是生存竞争可能是最重要的因素,从过去到现在,鱼类之间的竞争始终是非常激烈的。由于遗传过程中产生的变异和自然选
择的结果,新的类型不断出现,新类型中总有一些在应付环境,以及与其它鱼类竞争方面更有优势,这样就使得整个硬骨鱼类家族呈现出不断产生出“更高级”类型的趋向。但是适应于水生生活的条件限制是非常严格的。例如,流线型的体形是快速游泳的鱼类必不可少的,而高体形以及与之相关的一些身体结构对于那些在珊瑚礁丛中生活的鱼类又特别重要。同样,巨大的嘴对于大多数肉食性鱼类来说是有优势的。因此,当更进步的鱼类替代他们那些效力较差的前辈的同时,它也面临着与前辈相同的适应问题,而这些问题又都是需要以相似的方式去解决。这正是硬骨鱼类浪潮式进化模式的最根本的原因所在。参考文献:
2、《鱼的休眠—夏眠》生态掠影网站 贴友:阿猪 发贴时间: 2006-6-6 10:47:09;
3、《淡水鱼类的护幼习性》生态掠影网站 贴友:阿猪 发贴时间: 2006-6-6 10:45:39;
4、《海产鱼类的求爱活动》生态掠影网站 贴友:阿猪 发贴时间: 2006-6-2 14:20:18;
5、《鱼类生殖期的搏斗习性》生态掠影网站 贴友:阿猪 发贴时间: 2006-6-2 16:05:27;
6、《鱼类绚丽多彩的颜色》生态掠影网站 贴友:阿猪 发贴时间: 2006-5-23 10:59:16;
7、《鱼类体表的色彩与生活习性》生态掠影网站 贴友:阿猪 发贴时间: 2006-5-23 11:08:56。