第一篇:基因重组质粒的构建与抽提
基因重组质粒的构建与抽提
摘要....................................................................................................................................................Ⅰ Abstract............................................................................................................................................Ⅱ 引言.......................................................................................................................................................1 1 材料与仪器、用品.........................................................................................................................2 2 原理与方法......................................................................................................................................3
2.1 获取目的基因.......................................................................................................................3
2.1.1提取RNA.................................................................................................................3 2.1.2 RNA反转录为cDNA............................................................................................3 2.1.3 聚合酶链式反应......................................................................................................4 2.2 回收目的基因.......................................................................................................................5
2.2.1 核酸电泳....................................................................................................................5 2.2.2 胶回收........................................................................................................................6 2.3 DNA分子体外连接.............................................................................................................7 2.4 转化.......................................................................................................................................7 2.5 抽提鉴定质粒.......................................................................................................................8 3 讨论...............................................................................................................................................10 3.1试剂.....................................................................................................................................11 3.2 核酸酶................................................................................................................................11 3.3 核酸电泳缓冲液...............................................................................................................11 3.4 胶回收效率........................................................................................................................11 3.5 DNA酶切位点..................................................................................................................11 3.6 转化效率............................................................................................................................11 3.7 试剂盒................................................................................................................................12 参考文献...........................................................................................................................................13 致谢....................................................................................................................错误!未定义书签。附录....................................................................................................................................................14
Contents Chinese Abstract............................................................................................................................Ⅰ Abstract.........................................................................................................................................Ⅱ Preface.............................................................................................................................................1 1 Materials and equipment, supplies...............................................................................................2 2 The principle and method.............................................................................................................2 2.1 Acquire target gene...............................................................................................................2 2.1.1 Extraction of RNA........................................................................................................2 2.1.2 RNA transcription for cDNA.........................................................................................3 2.1.3 Polymerase chain reaction..............................................................................................3 2.2 Recycling target gene............................................................................................................5 2.2.1 Nucleic acid electrophoresis...........................................................................................5 2.2.2 Plastic recycling.............................................................................................................4 2.3 Connection of DNA molecules in vitro.................................................................................5 2.4 Transformation......................................................................................................................2.5 Extraction and identification of plasmid...............................................................................6 3 Disguss.......................................................................................................................................10
3.1 Reagent................................................................................................................................11
3.2 Nuclease..............................................................................................................................11
3.3 The nucleic acid electrophoresis buffer...............................................................................11
3.4 Efficiency of plastic recycling.............................................................................................11
3.5 DNA enzyme loci................................................................................................................11
3.6 The efficiency of conversion...............................................................................................11
3.7 Kit........................................................................................................................................12 References.....................................................................................................................................10 Acknowledgement.........................................................................................................................10 Appendix.......................................................................................................................................10
引言
自噬是一种实现细胞本身代谢需要和某些细胞器更新的生命活动,该活动对于动物机体生长发育具有重要意义。自噬相关基因LC3通过与细菌质粒结合可以大量复制。质粒存在于许多细菌以及酵母菌等生物中,是细胞染色体外能够自主复制的很小的环状DNA分子。不同微管之间的差异,主要与结合于微管的非微管结构蛋白有关,它们参与微管结构的组装,维持微管的稳定LC3和微管与其他骨架纤维之间的连接,表现为广泛的功能性作用,该类蛋白被统称为微管相关蛋白,LC3即微管相关蛋白轻链3,作为动物机体的一个自噬相关基因,对于其自噬活动相关微管蛋白质表达具有重要意义,目前国内外对该基因研究逐步增多、不断深入。Vega-Naredo等研究表明LC3 调控对巨噬过程是至关重要的,因为蛋白质LC3-II定位自噬前体和自噬小体,它被认为是一个自噬标记,在其对两性哈德氏腺的实验中,免疫印迹分析显示了LC3-I和LC3-II两个对应波段[1];Hanqing Dong等的发现表明,LC3 结合可能发生在脂滴表面,导致限制膜形成,在原位分隔脂滴的一部分,其他脂滴的候选识别是脂滴-相关蛋白质;Noboru Mizushima和Masaaki Komatsu的文章叙述了选择性自噬最有特性的基质是p62,它也被称为死骨片1 / SQSTM1,p62是广泛表达的细胞蛋白质,在动物中守恒,但在植物和真菌不是,在分隔膜中通过LC3-作用区域p62直接与LC3相互作用[3]。此次实习实验过程中,将该基因作为目的基因,采用基因克隆技术构建重组基因,并提取出目的基因。提取出的目的基因可成为相关研究、实验的组成环节,例如用于测序、体外转录与翻译、限制性内切酶消化、细菌转化等分子生物学检验,以及动物机体蛋白质表达控制研究、自噬研究等。
质粒是附加到细胞中的非细胞的染色体或核区DNA原有的能够自主复制的较小的DNA分子,即细胞附殖粒、又称胞附殖粒。大部分的质粒虽然都是环状构型,它存在于许多细菌以及酵母菌等生物中,乃至于植物的线粒体等胞器中,总体多为原核生物。构建重组质粒指将目的基因,即外源基因,与具有自主复制能力的载体在体外人工连接,构建成新的重组DNA,随后抽提质粒可以将目的基因与细菌DNA分离,以获得高纯度的目的基因。笔者通过实验学习、实际动手操作,完成了此质粒的构建和抽提过程,并在文中阐述了获取目的基因后而进行的LC3基因克隆过程,其中使用GFP、RFP载体构建质粒。基因克隆又称为分子克隆,指采用重组DNA技术,将不同来源的DNA分子在体外进行特异切割,重新连接,组装成一个新的杂合DNA分子。在此基础上,这个杂合分子能够在一定的宿主细胞中进行扩增,形成大量的子代分子的过程。其是七十年代发展起来的一项具有革命性的研究技术,可简要叙述为分、切、连、转、选五个步骤。其最终目的在于通过相应技术手段,将目的基因导入寄主细胞,在宿主细胞内目的基因被大量的复制,即把一段外源DNA片段与质粒DNA连接起来,构成了一个重组质粒,并将该重组质粒转入细菌中,建立基因克隆体系。本实验构建含GFP-RFP-LC3基因的重组质粒,GFP、RFP分别为绿色和红色荧光基因;使用的T载体为克隆载体,符合基因工程的载体应具有的基本性质,包括在宿主细胞中有独立的复制和表达的能力,使外源重组的DNA片段得以扩增;分子量小,利于在宿主细胞中有较多的拷贝,便于结合更大的外源DNA片段,且在实验操作中也不易被机械剪切而破
[2]
坏;载体分子中具有两个以上的容易检测的遗传标记,以赋予宿主细胞的不同表型特征;载体具有较多的限制酶单一切点,为避开外源DNA片段中限制酶位点的干扰提供更大的选择范围。
细胞中的RNA可分为信使RNA、转运RNA和核糖体RNA三大类,不同组织总RNA提取实质就是将细胞裂解,释放出RNA,并通过不同方式去除蛋白、DNA等杂质,最终获得高纯RNA产物的过程,目前,国内外提取RNA的技术均比较成熟,生产出的有关试剂盒利用分子量比较大的有机溶剂氯仿使有机相和无机相迅速分离,初步获取RNA,并进一步分离纯化。提取RNA后将其反转录并扩增,即可获得用于重组质粒的目的基因。重组质粒过程中利用了聚合酶链式反应(PCR)、琼脂糖凝胶电泳等方法。聚合酶链式反应是利用DNA片段旁侧两个短的单链引物,在体外快速扩增特异DNA片段的技术,它应用热稳定的聚合酶,通过双链DNA模板的热变性、引物退火和引物延伸的重复循环,DNA片段以指数方式增加了百万倍。从非常微量的DNA甚至单个细胞所含有的DNA起始,可产生微克量的PCR产物。琼脂糖凝胶电泳以琼脂凝胶作为支持物,利用核酸分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。重组质粒构建后,使用AxyPrep质粒DNA小量试剂盒抽提质粒,本实验采取的离心法抽提质粒,即去除 RNA,将质粒与细菌基因组 DNA分开,去除蛋白质及其它杂质,以得到相对纯净的质粒。最后将得到的质粒送至有关生物公司测序,测序结果分析表明,目的基因片段存在于送检样品中,说明实验成功构建并获取了鸭RFP-GFP-LC3重组质粒。材料与仪器、用品
鸭肝脏组织,液氮,75%酒精,无水乙醇,氯仿,蒸馏水,普通双蒸水,琼脂糖,50倍浓度商品化TAE,2000bpDNA标准参照物(Marker),填充剂(Loading),氨苄霉素,LB培养液,E.coli DH5a 菌株。
美国Omega RNA提取试剂盒,包含HiBin微型制备管,2毫升收集管,RNA-Solv试剂,RNA Wash 缓冲液 I,RNA Wash 缓冲液 II,DEPC水等。
AxyPrep质粒DNA小量试剂盒,试剂盒中的试剂包括小量制备 制备管, 2毫升 微量离心管,1.5毫升 微量离心管, RNA酶 A, 缓冲液 S1, 缓冲液 S2,缓冲液 S3,缓冲液 W1, 缓冲液 W2 浓缩液,Eluent洗脱液。
AxyPrepDNA凝胶回收试剂盒,试剂盒中试剂包括缓冲液 W1,缓冲液 W2浓缩液,缓冲液 DE-A,缓冲液 DE-B,Eluent洗脱液。
RNA引物混合液,包含模版RNA,随机引物,无RNA酶双蒸水等。
反转录反应液,包含模版RNA引物变性溶液,随机引物,5倍浓度M-MLV 缓冲液,dNTP混合物,RNA酶抑制剂,RNA酶M-MLV,无RNA酶双蒸水。
一次性口罩,一次性手套,实验工作服,超净工作台,恒温培养箱,制冰机,研钵,移液器,枪头,无DNA酶和RNA酶的收集管,1.5毫升收集管,2毫升收集管,制备管,离心机,恒温水浴锅,振荡器,冰盒,酒精灯,蒸馏设备和用品(50毫升烧杯,蒸馏头,100℃温度计,冷凝管,接引管,三角瓶,铁夹,铁环,酒精灯,沸石,50m量筒,铁架台),PE管,PCR仪,锥形瓶,微波炉,水平电泳槽,电泳仪,电泳仪电源,记号笔,卫生纸,玻璃涂棒。原理与方法
2.1 获取目的基因 2.1.1提取RNA RNA提取的原理就是将细胞破碎裂解,利用一些试剂去除多糖、酚类、蛋白和DNA的污染,通过一系列的抽提、洗涤和沉淀,最终得到纯净的RNA的过程。影响RNA提取质量的因素有很多,尤其是RNA酶的污染。RNA酶无处不在,包括破碎细胞内的RNA酶,实验室空气、实验台上的酶,实验所用试剂中的酶,实验人员身上携带的酶以及实验器材的污染等等,而且RNA酶性质稳定,实验室很难做到完全隔离这个酶的作用[4]。RNA提取试剂盒的通病就是A260/A230普遍偏低,主要是因为RNA样品中易残留RNA酶的变性剂异硫氰酸胍和β-巯基乙醇,细胞裂解不彻底,导致核糖核酸不能完全释放出来。另外,有些细菌的细胞壁坚韧,一般温和的破壁方法很难将其完全破碎,降低了核糖核酸的量[5]。
本实验使用美国Omega RNA提取试剂盒。实验前,酒精充分消毒实验台、实验室空气,戴棉手套取适量液氮置于保温瓶中,将用酒精冲洗过的研钵泡入液氮中,同时将鸭的肝组织泡入液氮中,待两者充分冷冻,在研钵中研碎鸭肝组织。
操作步骤包括取适量组织粉末置于无DNA酶和RNA酶的收集管中,离心,5000转/分钟,5分钟,4℃。加1毫升RNA-Solv试剂,振荡混匀,室温孵化3分钟。加0.2 毫升氯仿(每1 毫升 RNA-Solv与组织混合液加0.2 毫升氯仿),盖好管盖,用手剧烈振荡15秒,冰上孵育10分钟。随后4°C,12000转/分钟,离心10分钟,离心后混合物分三层,RNA存在于最上层水相。将五分之四的RNA水层置于新的收集管,加三分之一收集管的无水乙醇。轻微混匀并离心后,小心吸出不大于700 微升的上层RNA水层液体于无RNA酶的制备管中,振荡混匀沉淀,离心,10000转/分钟,1分钟,20℃,弃去滤液。重复上一步骤,再次离心,10000转/分钟,1分钟,20℃,弃去滤液。将制备管置于新的2毫升收集管,加400微升RNA Wash 缓冲液 I,离心,10000转/分钟,1分钟,20℃,弃去滤液。用同一收集管,加500微升RNA Wash 缓冲液 II,离心,10000转/分钟,1分钟,20℃,弃去滤液,随后用空收集管离心,13000转/分钟,2分钟,20℃,完全干燥。干燥可使用的方法亦有用移液器将离心管内残余的液体吸出,打开管盖,将沉淀于超净台上晾5分钟;或将装有沉淀的管子盖紧盖子后,放进一次性手套中,然后打开管盖,稍微包扎手套后,于50°C烘箱中放置3分钟。最后洗提RNA,将制备管置于新的1.5毫升收集管,加入40微升的DEPC水,确保加入到制备管中央,随后室温静置2分钟,离心,13000转/分钟,1分钟,20℃。得到的RNA保存在超低温冰箱。2.1.2 RNA反转录为cDNA 反转录是以RNA为模板,通过反转录酶催化,以dNTP为原料,合成DNA的过程,是DNA
生物合成的一种特殊方式。反转录过程由反转录酶催化,该酶也称依赖RNA的DNA聚合酶,即以RNA为模板催化DNA链的合成,合成的DNA链称为与RNA互补DNA(cDNA)。反转录酶的作用是以dNTP为底物,以RNA为模板,tRNA(主要是色氨酸tRNA)为引物,在tRNA3′末端上,按磷酸到五碳糖(5'-3')的方向方向,合成一条与RNA模板互补的DNA单链,这条DNA单链叫做互补DNA,它与RNA模板形成RNA-DNA杂交体。随后又在反转录酶的作用下,水解掉RNA链,再以cDNA为模板合成第二条DNA链。至此,完成由RNA指导的DNA合成过程[
6、7]。
操作步骤包括收集管中配制模版RNA引物混合液,为6微升体系,包含模版RNA2微升,随机引物1微升,无RNA酶双蒸水3微升。70℃保温10分钟后迅速在冰上急冷2分钟以上。离心数秒种使模版RNA引物的变性溶液聚集于收集管底部。在收集管中配制反转录反应液,为10微升体系,包含上述模版RNA引物变性溶液6微升,随机引物1微升,5倍浓度M-MLV 缓冲液2微升,dNTP混合物0.5微升,RNA酶抑制剂0.25微升,RNA酶M-MLV0.5微升,无RNA酶双蒸水0.75微升。因为本实验使用随机引物,所以先于30℃恒温水浴锅保温10分钟,然后42℃保温60分钟。70℃保温15分钟后冰上冷却,得到的cDNA做好标记并保存于超低温冰箱。2.1.3 聚合酶链式反应
聚合酶链式反应(PCR)是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,它的最大特点,是能将微量的DNA大幅增加[8]。聚合酶链式反应是利用DNA在体外95℃高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度、复性温度和延伸温度之间很好地进行控制以得到多量脱氧核糖核酸[
9、10]。
本实验第一次聚合酶链式反应是用两对引物分别扩增cDNA为DNA,目的是判断哪一对引物扩增效果好,选择其进行DNA扩增。准备步骤包括制作双蒸水,首先取蒸馏水200 微升,于超净台点燃酒精灯,安装设备对蒸馏水再次蒸馏,PE管分装后放置于-20℃保存,注意操作完成后用酒精棉擦拭双手,禁用双手触碰PE管口。RNA引物获取,是将目的基因送至博士生物公司,由其进行引物的设计与合成;合成的引物经过真空冷冻干燥,呈薄膜状附在离心管中,盛有引物的离心管经过离心后开启,随后加入规定量的双蒸水合上管盖充分振荡使其溶解,备用。
操作步骤包括准备四个PE管,并分别标记为1-
1、1-
2、2-
1、2-2,将两对引物分别加入两个模版中,配制25微升体系,每管加入r-Tag酶12.5微升,上下游引物各0.25微升,dNTP1微升,模版3微升,双蒸水11微升。将所有PE管振荡,并瞬时离心一次,使管壁没有残留混合液,随后摆到双面板上;使用PCR扩增仪进行RNA扩增,打开电源开关,设置运行条件为94℃、5分钟,94℃、30秒,51℃、30秒,72℃、5分钟,72℃、10分钟,4℃、保存时长,循环30次。
2.2 回收目的基因
2.2.1 核酸电泳
核酸电泳,其中利用了琼脂糖凝胶,琼脂糖是从海藻中提取出来的一种线状高聚物。将琼脂糖在所需缓冲液中加热熔化成清澈、透明的溶胶,然后倒入胶模中,凝固后将形成一种固体基质,其密度取决于琼脂糖的浓度[11]。将凝胶置电场中,在中性pH值下带电荷的核酸通过凝胶网孔向阳极迁移,迁移速率受到核酸的分子大小、构象、琼脂糖浓度、所加电压、电场、电泳缓冲液、嵌入染料的量等因素影响。在不同条件下电泳适当时间后,大小、构象不同的核酸片段将处在凝胶不同位置上,从而达到分离的目的。琼脂糖凝胶的分离范围较广,用各种浓度的琼脂糖凝胶可分离长度为200bp至50kb的DNA[12],一般来说,需要分离的目的基因片段越大,琼脂糖浓度越小,凝胶密度越小,反之亦然。样品加入量加样量的多少依据加样孔的大小及DNA中片段的数量和大小而定,过多的量会造成加样孔超载,从而导致拖尾和弥散。每孔点样的体积一般少于25微升,吸取每一个样品时,操作需谨慎,没有颜色的样品需要加入填充剂。另外,电泳系统须加入适宜DNA标准参照物进行判定,过大或过小的标准参照物姐不利于判定结果。
PCR产物的琼脂糖凝胶电泳准备步骤包括核酸用琼脂糖凝胶制作,配制1%的琼脂糖凝胶,首先称取1.000g琼脂糖加入锥形瓶中,倒入100毫升电泳缓冲液TAE(50倍浓度TAE20毫升加1升水,混匀),摇晃混匀后用封口膜封住瓶口后在微波炉内加热两三分钟,在水龙头上冲凉冷却至60℃左右后加入10微升EB替代染料,在此过程中注意自身防护。同时用蒸馏水将电泳槽和梳子冲洗干净,放在水平桌面上,并架好梳子,将配好的琼脂糖凝胶液体倒入电泳槽,凝固约20分钟。溶解的凝胶应及时倒入板中,避免倒入前凝固结块,倒入板中的凝胶应避免出现气泡,影响电泳结果。
将完全凝固的琼脂糖凝胶放置在加有缓冲液的电泳槽,缓冲液一定要没过凝胶,由负极到正极电泳;琼脂糖加样时用移液抢将样品加至点样孔,动作稳重注意不要戳破凝胶导致滤液,点样是每孔加50微升样品混合液,标准参照物加10微升;接通电泳仪电源,调节电流为120A,电压为120V,开始电泳;约20分钟后样品跑到五分之四凝胶宽度,取出电泳胶,观察结果,以确定扩增目的基因引物为第一对或第二对(图1)。
图1 引物选择PCR结果
Figure 1 The result of PCR for primer choice 2.2.2 胶回收
cDNA扩增引物选择结果显示引物2的扩增效果较引物1好,因此选择引物2进行目的基因扩增。加入第二对引物进行第二次的聚合酶链式反应扩增DNA并回收产物,扩增使用高保真的连接酶。配制50微升体系,每管加入缓冲液15微升,高保真酶La Tag0.3微升,上下游引物各1.2微升,dNTP5微升,模版3微升,双蒸水24.3微升,随后将PE管振荡,并瞬时离心一次,使管壁没有残留;使用PCR扩增仪进行RNA扩增,运行条件为94℃、5分钟,94℃、30秒,51℃、30秒,72℃、5分钟,72℃、10分钟,10℃、保存时长,循环40次。将PCR产物进行琼脂糖凝胶电泳,配胶过程同上,点样时,每孔加50微升样品混合液和5微升Loading,然后接通电泳仪电源,调节电流为120Ma,电压为120V,开始电泳。约20分钟跑胶完成,观察结果(图2)。为对琼脂糖凝胶电泳的某一核酸条带做进一步分析,可对DNA进行胶回收
[
13、14]。
图2 cDNA扩增结果
Figure 2 cDNA amplification results 本实验使用AxyPrepDNA凝胶回收试剂盒对目的片段切胶回收。准备步骤包括缓冲液 W2浓缩液中加入一定体积的无水乙醇,原因是此为第一次使用凝胶回收试剂盒。准备无核酸或核酸酶污染的Tip头、离心管。准备75℃水浴。试用前,检查缓冲液 DE-B是否出现沉淀,如出现应于70℃水浴加热并溶解。
操作步骤包括戴上防护帽在紫外灯下切下含有目的基因的DNA的琼脂凝胶,用纸巾吸尽凝胶表面的液体并切碎,计算凝胶重量,用加入凝胶后称量重量减去提前记录的1.5毫升离心管重量,该重量作为一个凝胶体积。加入3个凝胶体积的缓冲液 DE-A,混合均匀后于75℃加热,每而两三分钟间断混合,直至凝胶完全融化。加0.5个缓冲液 DE-A体积的缓冲液 DE-B,混合均匀。吸取上一步中的混合液,转移到DNA制备管,制备管置于2毫升离心管,离心,12000转/分钟,1分钟,弃去滤液。制备管置回2毫升离心管,加500毫升 缓冲液 W1,离心,12000转/分钟,0.5分钟,弃去滤液。制备管置回2毫升离心管,加700毫升 缓冲液 W2,离心,12000转/分钟,0.5分钟,弃去滤液。以同样的方法加700毫升缓冲液 W2洗涤一次,离心,12000转/分钟,0.5分钟,弃去滤液。制备管置回2毫升离心管,离心,12000转/分钟,1分钟,弃去滤液。将制备管置于洁净的1.5毫升离心管中,在制备膜中央加30微升 Eluent或去离子水,室温静置1分钟,离心,12000转/分钟,1分钟,洗脱DNA。得到的DNA保存至超低温冰箱。2.3 DNA分子体外连接
本实验采用卡那霉素抗性T载体连接,此步骤即重组DNA分子,为目的基因导入细菌细胞并复制的必要条件。重组的DNA分子是在DNA连接酶的作用下,有Mg2、ATP存在的连接缓冲系统中,将分别经酶切的载体分子与外源DNA分子进行连接。T4噬菌体DNA 连接酶催化DNA 连接反应分为3 步:首先,T4 DNA 连接酶与辅因子ATP形成酶-ATP复合物;然后,酶-ATP复合物再结合到具有5'磷酸基和3'羟基切口的DNA上,使DNA腺苷化;最后产生一个新的磷酸二酯键,把切口封起来。连接反应通常将两个不同大小的片断相连。连接反应的温度在37℃时有利于连接酶的活性。但是在这个温度下粘末端的氢键结合是不稳定的。因此采取折中的温度,即12-16℃,连接12-16h过夜,这样既可最大限度地发挥连接酶的活性,又兼顾到短暂配对结构的稳定。
T载体连接操作时,首先于小PCR管中配制50微升体系,包括Solution I 5微升,回收产物4.5微升,T载体0.5微升。随后混匀并于16℃连接过夜,连接时间至少8小时。2.4 转化
外源 DNA 与载体分子的连接即为 DNA 重组技术,这样重新组合的 DNA 分子叫做重组子。将重组质粒导入感受态细胞中,将转化后的细胞在选择性培养基中培养,可以通过抗生素筛选法筛选出重组子,并可通过限制性核酸内切酶酶切,电泳,根据DNA Maker标准判断阳性重组子中是否含有目的基因。感受态细胞制作原理为细菌在0°C氯化钙低渗溶液中胀成球形,丢失部分膜蛋白,成为容易吸收外源DNA的感受态[15]。转化是将外源 DNA 分子导入到受体细胞,即原核细胞或者真核细胞,使之获得新的遗传特性的一种方法[16]。基因克隆中的转化过程原理为质粒DNA或重组DNA粘附在细菌细胞表面,经过42°C短时间的热击处理,促进吸收DNA.然后在非选择培养基中培养一代,待质粒上所带的抗菌素基因表达,可以在含抗菌素的培养基中生长,从而鉴别选择出转化子。
准备步骤包括配制LB培养基、LB固体培养基、含抗生素LB培养基。首先,每升LB培养基,需在超纯水中加入蛋白胨10克,酵母提取物5克,氯化钠10克,溶解混匀;LB固体培养基是在每升LB培养基中加入15克琼脂糖,混匀加热溶解;制作含氨苄霉素培养基,称量固体LB微波炉加热3分钟,冲冷水至不烫手,按1:1000比例加入氨苄霉素,倒薄薄的一层于培养皿中,待其凝固,盖上培养皿盖子,倒置并标记。
操作步骤包括准备冰盒,打开42℃水恒温浴锅,将无抗LB提前放入37℃预热;从超低温冰箱取出E.coli DH5a 感受态菌株,将商品化DH5a 感受态细胞快速且温柔取于冰中,待其于冰中融化;在超净工作台作业,吸取10微升载体连接产物,缓慢加入感受
态中,反复抽吸三次混匀,动作需轻微,防止产生气泡,放入冰盒30分钟;将样品放入42℃中热激90秒,此为转化必须环节;冰浴2分钟,使其停止转化过程;将预热的无抗LB8微升加入样品中,放入摇床45分钟至60分钟,复苏感受态细胞;将涂菌棒用酒精灯灭菌,从冰箱取出培养基放入37℃温箱预热;将摇好后的样品4000g离心5分钟,弃去上清600微升,余200微升,目的是使得细菌浓度升高,将剩余200微升样品混匀,加到培养板上,用灭菌放凉的涂菌棒涂匀;涂菌后的培养基保存于37℃恒温箱过夜。
培养大肠杆菌,在培养基上37℃恒温培养大肠杆菌过夜,长出的菌落呈乳白色大圆点状菌,表面和背面颜色一致,菌落边缘整齐均匀,表面光滑湿润,分散分布于整个培养皿(图3)。随后挑菌、摇菌、获得菌液,用于筛选、抽提鉴定质粒。挑菌时在细菌间超净工作台作业,取10只试管标号,依次摆到试管架上,灼烧试管盖和镊子,用镊子拔下试管盖后,在此灼烧试管口和试管盖,倒入约三分之一的氨苄抗性LB,用镊子夹枪头挑去细菌,连同枪头扔进试管,灼烧管口和试管口,在火焰中盖上试管盖。摇菌是在37℃摇床,过夜后就得到了菌液。余下的菌落用封口膜封上放入4℃冰箱中保存。
图3 转化后大肠杆菌培养结果
Figure 3 The result of the e.coli bacteria after transformation 2.5 抽提鉴定质粒
质粒是在细菌细胞中染色体之外能够自主复制的共价闭合环状双螺旋的分子或遗传因子。质粒抽提原理即去除 RNA,且将质粒与细菌基因组 DNA分开,去除蛋白质及其它杂质,以得到相对纯净的质粒[
17、18]。
本实验采用AxyPrep质粒DNA小量试剂盒抽提质粒。
准备步骤包括RNA酶 A全部加入缓冲液 S1中并4℃贮存。准备无核酸或核酸酶污染的Tip头、离心管。缓冲液 W2浓缩液中加入指定体积的无水乙醇,原因是第一次使用试剂盒。试用前,检查缓冲液 S2是否出现沉淀,如有沉淀应于37℃水浴加热并溶解。
操作步骤包括取2毫升在LB培养基中培养过夜的菌液,12000转/分钟,离心1分钟,弃尽上清。加250微升缓冲液 S1悬浮细菌沉淀,悬浮需要均匀,不能够有小的菌块,确认缓冲液W2中已加入无水乙醇。加250毫升,温和并充分地上下翻转6次混合均匀使菌体充分裂解,直至形成透亮的溶液,此步骤需要控制在5分钟之内。使用后立即盖紧瓶盖,以免空气中的和中的中和,降低溶菌效率。避免剧烈摇晃,否则可能导致基因组DNA的污染,此步骤需要控制在5分钟之内。采用离心法纯化质粒,吸取上一步骤中的离心上清并转移到制备管,12000转/分钟,离心1分钟,弃去滤液;将制备管置回离心管,加500微升 缓冲液 W1,12000转/分钟,离心1分钟,弃去滤液;加700微升 缓冲液 W1,12000转/分钟,离心1分钟,弃去滤液;加700微升 缓冲液 W1,12000转/分钟,离心1分钟,弃去滤液;将制备管置回2毫升离心管中,12000转/分钟,离心1分钟。将制备管移入新的1.5毫升离心管中,在制备管中央加80 微升的Eluent或去离子水,室温静置1分钟,12000转/分钟,离心1分钟,将Eluent或去离子水加热至65℃能提高洗脱效率。随后,质粒测序鉴定目的基因是否插入。菌液PCR后使用随机引物进行通测,引物合成及测序由北京华大生物公司完成(图4、5)。
图4 质粒基因组碱基序列
Figure 4 Plasmid genome base sequence
图5 质粒基因组测序峰
Figure 5 Plasmid genome sequencing 3 讨论
本文构建的目的基因LC3有关自噬活动,近年来,自噬在癌症免疫因素感染炎症和神经退行性变等领域的研究不断增加,准确地检测自噬基因对于研究自噬的生物学功能至关重要,根据LC3的特点构建重组质粒,从而获取大量LC3基因可作为自噬研究的组成环节。
本实验采用反转录的方法获取cDNA后,依据PCR产物的琼脂糖凝胶电泳效果显示第二对引物扩增的条带比较清晰,由此选择第二对引物进行扩增,得到相应目的基因。采用T载体连接方法,将目的基因引入感受态大肠杆菌,进行基因克隆。转化子扩增后,将转化成功的质粒提取出,进行电泳、测序等进一步鉴定。转化后质粒的琼脂糖凝胶电泳结果显示出现约600bp的明亮条带,为目的基因条带,说明目的基因成功导入细菌质粒并复制,进一步的基因测序鉴定结果表明实验完成了鸭RFP-GFP-LC3重组质粒的构建。最后使用试剂盒提取并纯化质粒,得到多量目的基因LC3。
整个过程的每个环节中皆包含影响实验结果的因素,各个因素稍有变化既可能对实验结果造成量或质的影响,现将需要注意的几个重要因素及其影响讨论如下: 3.1试剂
试剂使用前应当仔细阅读说明书。如用于提取RNA的Omega RNA提取试剂盒,其中的缓冲液 W2 浓缩液在提取开始或贮存在室温条件前,必须用无水乙醇稀释,如果使用了未经处理浓缩液,则无法充分洗涤RNA,使得最后产物中存在大量杂质。3.2 核酸酶
注意保证实验环境中RNA酶量最小化,操作过程应迅速且谨慎,始终戴一次性橡胶手套,并经常更换,以防止手、臂上的细菌和真菌以及人体自身分泌的RNA酶带到试管或污染用具;避免在操作中说话聊天,戴口罩以防止引起RNA酶污染;配制溶液用的酒精、异丙醇等应采用未开封的新瓶,使用专门配制的无RNA酶制备管、收集管。酶如果没有被充分隔绝,将减少甚至提取不出RNA。3.3 核酸电泳缓冲液
琼脂糖核酸电泳的缓冲系统在高离子强度的缓冲液中,电导很高并产热,可能导致DNA变性,因此应注意缓冲液的选择和浓度,而且不同厂家、不同批号的琼脂糖,其杂质含量不同,影响DNA的迁移及荧光背景的强度,应有选择地使用。
DNA样品中盐浓度会影响DNA的迁移率,平行对照样品应使用同样的缓冲条件以消除这种影响,凝胶中所加缓冲液应与电泳槽中的相一致,否则将导致实验结果参照不准。3.4 胶回收效率
将凝胶切成细小的碎块可大大缩短凝胶融化时间,从而提高回收率;勿将含DNA的凝胶长时间地暴露在紫外灯下,减少紫外灯对DNA造成的损伤;融化凝胶时应当完全,避免残留降低回收率,以及阻塞制备管滤膜影响后续步骤也会降低回收效率。3.5 DNA酶切位点
基因克隆时选择载体DNA酶切位点时应注意两个酶切位点的距离不应过小,否则影响限制性内切酶识别切点;目的基因片段内部不应含有所选的酶切位点;实验后继应用的所有载体都尽可能含有所选的酶切位点,并且要保证在载体上的插入方向正确(定向克隆)[20];选择较常用的酶切位点,两个酶切点至少隔上3个碱基;使用酶切效率高,且双酶切有共同缓冲液的酶。3.6 转化效率
为了提高转化效率, 实验中要考虑细胞生长状态和密度,不要用经过多次转接或储于4℃的培养菌,最好从-70℃或-20℃甘油保存的菌种中直接转接用于制备感受态细胞的菌液;细胞生长密度以刚进入对数生长期时为好,可通过监测培养液的OD600 来控制,DH5α菌株的OD600 为0.5 时,这时比较合适,密度过高或不足均会影响转化效率。
质粒的质量和浓度方面应注意用于转化的质粒DNA 应主要是超螺旋态DNA,转化效率与外源DNA 的浓度在一定范围内成正比,但当加入的外源DNA 的量过多或体积过大时,转化效率就会降低,1纳克的超螺旋态DNA 即可使50微升的感受态细胞达到饱和,一般情况下,DNA 溶液的体积不应超过感受态细胞体积的二十分之一[
18、19]。
试剂的质量方面应注意所用的试剂,如氯化钙等均需是最高纯度的,并用超纯水配制,最好分装保存于干燥的冷暗处;防止杂菌和杂DNA 的污染,整个操作过程均应在无菌条件下进行, 所用器皿, 如离心管,Tip头等最好是新的,并经高压灭菌处理,所有的试剂都要灭菌,且注意防止被其它试剂、DNA 酶或杂DNA所污染[20], 否则均会影响转化效率或杂DNA 的转入, 为以后的筛选、鉴定带来不必要的麻烦。3.7 试剂盒
本实验使用了若干试剂盒,例如AxyPrepDNA凝胶回收试剂盒、AxyPrep质粒DNA小量试剂盒、美国Omega RNA提取试剂盒,使操作能够摆脱繁重的试剂配制及优化过程,试剂盒中配备有相应使用说明书,按照说明书不需或只需少量的优化即可得到满意的结果,使用试剂盒时要根据自己的实验需要选取专用提取试剂盒,如果不是专用试剂盒,提出的RNA不能确保其质量以及完整性,会影响RT-PCR、基因克隆、抽提质粒等后续实验的结果。
参考文献
[1] Vega-Naredo, Beatriz Caballero, et al.Sexual dimorphism of autophagy in Syrian hamster Harderian gland culminates in a holocrine secretion in female glands.Landes Bioscience 2009;30:785-92.[2] Hanqing Dong and Mark J.Czaja, et al.Regulation of lipid droplets by autophagy.Cell 2005;19:2066-8.[3] Noboru Mizushima1 and Masaaki Komatsu.Autophagy: Renovation of Cells and Tissues.Dev Cell 2011;6:463-77.[4]邹晓蕾,刘礼崔,罗立新.细菌总RNA提取方法的比较[J].现代食品科技,2013,08:1948-1954.[5]淳俊,郑彦峰,王胜华,陈放.一种广泛适用的RNA提取方法[J].生物化学与生物物理进展,2008,05:591-597.[6] 张涛,韩梅等.人参总RNA提取方法及反转录酶的比较[J].江苏农业科学,2015,08:34-37.[7] 邱建明,董泽平等.应用反转录-套式PCR方法检测肾综合征出血热病人血清中的汉坦病毒特异性RNA[J].病毒学报,1997,02:23-29.[8]黄银花,胡晓湘等.影响多重PCR扩增效果的因素[J].传,2003,01:65-68.金科华,刘洁.[9]段新华,刘诚明.关于PCR扩增体系优化的实验研究[J].现代肿瘤医学,2004,04:294-298.[10] 潘力,崔翠等.一种用于PCR扩增的丝状真菌DNA快速提取方法[J].微生物学通报,2010,03:450-453.张涛,韩梅,刘翠晶,胥苗苗.[11]梅魁敏,伍学州等.用ELISA法和核酸电泳法检测牛轮状病毒[J].微生物学通报,1991,06:366-367.[12]刘淑华.核酸电泳法检测轮状病毒(摘要)[J].青海医药杂志,1986,02:29.[13]吴淑珍,夏露等.用PCR-PAGE切胶回收-PCR测序法制备DXS9898基因座等位基因分型标准物[J].温州医学院学报,2009,05:460-461+463.[14]徐珍,张玉芹等.不同酶切体系对胶回收纯化DNA浓度的影响[J].医学研究杂志,2010,09:54-57.[15]李明才,何韶衡.一种高效、快速的大肠杆菌感受态细胞制备及质粒转化方法[J].汕头大学医学院学报,2005,04:228-230+241.[16]罗锋,余腾等.感受态细胞制备和质粒转化冰浴时间对大肠埃希菌转化效率的影响[J].江汉大学学报(自然科学版),2011,03:82-85.[17]金科华,刘洁等.质粒抽提策略对双酶切鉴定的影响[J].山西医科大学学报,2015,06:559-561.[18]李钧敏,边才苗.几种细菌质粒抽提方法的研究[J].环境科学与技术,2004,05:9-12+114.[19]封建凯,孙万邦等.重组hIL-10质粒构建及其在毕赤酵母SMD1168中的表达和纯化[J].生物技术通报,2010,03:168-172.[20]卢钧雄.端粒酶逆转录酶C端重组质粒构建与表达及对细胞增殖和活力的影响[D].南方医科大学,2012.附录
附录1:离心力和离心转速换算计算公式
RCF= 1.118 ×10-5×N2 ×R RCF表示相对离心力,单位为g N表示转速,单位为rpm(转/分)R表示离心半径,单位为cm。
本实验使用的离心机离心力和离心转速换算如下: 12000rpm=13205rcf 13000rpm=15497rcf
附录2:试剂稳定性
AxyPrep质粒DNA小量试剂盒,试剂稳定性及贮存条件如下:
RNA酶 A,室温可以贮藏6个月,长期贮存于-20℃;缓冲液 S1为细菌悬浮液,加入RNA酶 A后,混合均匀,4℃贮存;缓冲液 S2为细菌裂解液,室温密闭贮存;缓冲液 S3为中和液,室温密闭贮存;缓冲液 W1为洗涤液,室温密闭贮存;缓冲液 W2为浓缩液或去盐液,使用前,按照试剂瓶上指定的体积加入无水乙醇,混合均匀,室温密闭贮存;Eluent为洗脱液,室温密闭贮存。的AxyPrepDNA凝胶回收试剂盒,试剂稳定性及贮存条件如下:
缓冲液 W1为洗涤液,室温密闭贮存;缓冲液 W2 为浓缩液,又称去盐液,使用前,按照试剂瓶上指定的体积加入无水乙醇,混合均匀,室温密闭贮存;Eluent为洗脱液,室温密闭贮存;缓冲液 DE-A为凝胶融化剂,含DNA保护剂,防止DNA在高温下降解,室温密闭贮存;缓冲液 DE-B为结合液,室温密闭贮存。
第二篇:质粒抽提常见问题与解答
1.没有提出质粒或者质粒收获量很低
A菌种老化
建议:对于甘油保存的菌种,需要先进行活化,涂布或者划线菌种,重新挑选单菌落进行液体培养,并对菌种进行初摇活化,按照1:500的比例进行菌种培养。二次培养时间最好不要超出16小时(或者OD600不超过3.0)。
B低拷贝质粒
建议:如果是由于低拷贝质粒引起的质粒收获量低,可以采用两倍的菌体量,并相应增加各种Buffer的用量。
C质粒丢失
建议:某些质粒在次继代培养的过程中会出现丢失的想象,另外检查筛选抗生素的浓度是否正确。
D裂解不充分
建议:如果采用超过推荐量的菌体进行质粒制备,会导致菌体裂解不充分。可适当减少菌体的用量或者相应增大各种Buffer的用量。并确保细菌混悬均匀。
EBuffer中有沉淀未溶解
建议:BufferB1和BufferN1,BufferC1在温度较低时会出现沉淀,使用前请检查是否有沉淀生成,如果有沉淀生成,请置于37℃温育片刻,待溶液澄清后使用。
FDNAWashBuffer中未加入要求量的乙醇
建议:按照说明书要求加入要求量的无水乙醇,使用后旋紧瓶盖,防止乙醇挥发。另外对于质粒中提,大提等,要求用70%乙醇洗涤,请确保乙醇的体积不小于70%。
G离心柱中乙醇残留
建议:漂洗后,可适当延长离心时间,尽量去除残留的乙醇。另外对于质粒中提,大提和朝大量提取,建议离心后,将柱子或大漏斗用吹风机冷风吹片刻(或置于65℃烘箱),以彻底去除残留的乙醇,便于洗脱和后续实验操作。
H洗脱液加入位置不正确
建议:洗脱液应加在膜中央,已取得最好的洗脱效果。
I洗脱液pH值不正确
建议:将DNA从柱子上洗脱下来的最适pH值在7.0-8.5之间,如果洗脱液的pH超出此范围将会显著影响洗脱效果,请使用试剂盒配套的ElutionBuffer(pH8.5,10mMTris-HCl)进行洗脱,如果用ddH2O进行洗脱,请确保pH在7.0-8.5之间。
J洗脱体积的选择
建议:洗脱体积将会影响最终的收获量,洗脱体积越大,收获量越高,但是浓度将会降低。请使用试剂盒推荐的洗脱体积进行洗脱,以保证最好的收获量和浓度。如果需要高浓度的质粒,请减少洗脱体积。另外,如果想收获高浓度高收获量的质粒,请根据试剂盒要求进行二次洗脱,再用推荐的方法进行沉淀,浓缩质粒。
K洗脱时间的选择
建议:加入洗脱Buffer后,室温放置2-5分钟,将有利于洗脱。
2.质粒纯度不高
A蛋白质污染
建议:选择推荐量的菌体,离心后小心吸取上清,如果上清液中混有悬浮物,可再次离心,以彻底去除蛋白。另外如果用ddH2O作为稀释溶液,测定OD比值,比值可能较低,造成蛋白污染的假象,可用pH8.0的TEBuffer来稀释。
BRNA污染
建议:检查配送的RNaseA是否完全加入到BufferA1中,加入RNaseA后,BufferA1/RNaseA应该存放在4℃,如果存放时间过长,或者没有正确存放,RNaseA活力下降,请重新加入RNaseA。
C基因组DNA污染
建议:加入BufferB1后,轻轻颠倒混匀,避免剧烈震荡涡旋,加入BufferB1的处理时间最好不要超过5分钟。
D菌株为含内源核酸酶的宿主菌株
建议:请选用含内源核酸酶的宿主菌株质粒DNA提取试剂盒,或者转化质粒到不含内源核酸酶宿主菌株中。
3.加样时DNA飘出加样孔外
原因:柱中残留乙醇未除干净。
建议:洗脱质粒DNA前确保无乙醇残留在柱子上。可再离心或者抽真空。
第三篇:质粒DNA抽提实验报告
质粒DNA抽提实验报告
一.实验目的:
1.掌握碱裂解法小量快速提取质粒DNA的方法,提取的质粒DNA可直接用于酶切,PCR扩增等。
2.学习利用水平式琼脂糖凝脉电泳初步检测DNA的纯度,构型,含量和分子量大小。
二.实验原理:碱变性抽提质粒DNA是基于染色体DNA与质粒DN结果A的变性与复性的差异而达到分离目的。在pH值高达12.6的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性。质粒DNA的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离,当以pH4.8的NaAc高盐缓冲液去调节其pH值至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。三.实验仪器及试剂:
1.5mlEP管、高速离心机、移液枪
溶液I: 50 mmol/L 葡萄糖、10 mmol/L EDTA、25 mmol/L Tris-HCl(pH 8.0)2毫克/毫升 溶菌酶
溶液II: 200 mmol/L NaOH、1% SDS 溶液III: 3 mol/L NaAc(pH4.8)溶液、TE缓冲液:10 mmol/L Tris-HCl、pH 7.51 mmol/L EDTA 四.实验步骤:
1、取1.5ml细胞培养物于1.5mlEP管中,12000rpm/min离心1min,去上清液(重复一次)
2、加200μl溶液Ⅰ重悬浮细胞
3、加200μl溶液Ⅱ,轻轻摇匀,放置5min
4、加150μl溶液,轻轻摇匀,冰浴5min,12000rpm/min离心5min
5、取上清,加入等体积氯仿,摇匀,12000rpm/min离心10min
6、去上清,加入等体积异丙醇,室温放置5min,12000rpm/min离心10min 7、70%乙醇洗涤沉淀2次,风干
8、加20ddH2O溶解沉淀,-20℃下保存备用
五.实验结果:得到大肠杆菌质粒DNA
PCR以及电泳实验报告
一.实验原理:
PCR:该技术是在模板DNA、引物和四种脱氧核糖核苷酸存在下,依赖于DNA聚合酶的酶促合成反应。DNA聚合酶以单链DNA为模板,借助一小段双链DNA来启动合成,通过一个或两个人工合成的寡核苷酸引物与单链DNA模板中的一段互补序列结合,形成部分双链。在适宜的温度和环境下,DNA聚合酶将脱氧单核苷酸加到引物3´-OH末端,并以此为起始点,沿模板5´→3´方向延伸,合成一条新的DNA互补链。
电泳:琼脂糖凝胶可以用于蛋白质和核酸的电泳支持介质,尤其适合于核酸的提纯、分析。如浓度为1%的琼脂糖凝胶的孔径对于蛋白质来说是比较大的,对蛋白质的阻碍作用较小,这时蛋白质分子大小对电泳迁移率的影响相对较小,所以适用于一些忽略蛋白质大小而只根据蛋白质天然电荷来进行分离的电泳技术,如免疫电泳、平板等电聚焦电泳等。琼脂糖也适合于DNA、RNA分子的分离、分析,由于DNA、RNA分子通常较大,所以在分离过程中会存在一定的摩擦阻碍作用,这时分子的大小会对电泳迁移率产生明显影响。
二.实验仪器及试剂:
EP管、离心机、PCR仪、电泳槽、电泳仪、移液枪、紫外透射检测仪等 DNA模板、与特定DNA模板结合的引物、去离子水、商业化的DNA聚合酶以及缓冲液、dNTP、DNA荧光染料溴化乙锭、琼脂糖凝胶
三.PCR反应体系(25μl)2× PCRmix 12.5μl 引物1 1μl 引物2 1μl 20ddH2O 10.5μl
四.操作步骤 1、94℃预变性5min,然后94℃,30s-64℃,45s-72℃,1min循环7次 2、94℃,30s-55℃,45s-72℃,1min循环23次 3、72℃,10s
4、电泳检测
五.实验结果分析
分离不同大小的DNA片段所用的最适凝胶浓度是不同的,数据见下表:
如右图所示:实验所用的琼脂糖凝胶浓度为1.3%,实验的DNA条带位置在500bp-750bp之间,接近500bp,证明实验是成功的
2000bp 1000bp
750bp 500bp 250bp 100bp 实验组
对照组
第四篇:重组质粒的构建经验~~~
昨天我在版中我看很多谷友询问重组质粒的构建问题,有些谷友说构建质粒需要一个月,甚至更长时间,这让我联想我刚做分子生物学时候的曲折。重组质粒构建是常用的分子生物学手段,其实只是最基本的方法,一般一个星期同时构建三二个组质粒是没有问题的。在国内先进的实验中,也大都是由实验员搞定。但是其中还是有些基本的技巧需要掌握。在这里将我的心得分享于大家,这也是我本人几年来一线工作时的经验积累,以期能为谷友提供借鉴,让大家在实验中少走弯路。所涉及内容如下: 1)克隆基因的酶切位点问题 2)载体酶切的问题 3)连接片段浓度比的问题 在阐明上述问题同时,本人尽可能举些实验中的问题案例予以说明。
一、克隆基因的酶切位点问题
1、克隆位点选择的问题。首先要对目标基因进行酶切位点扫描分析,列出其所含酶切位点清单。然后对照质粒多克隆位点,所选择的克隆位点必须是目标基因所不含的酶切位点。这是常识,不赘述。
2、保护碱基数目的问题。在设计PCR引物时,引入酶切位点后,常常要加入保护碱基,这是大家所熟知的。但是保护碱基数量多少,可能被新手所忽视。这种忽视碰可能会大大影响后续的实验进展。一般情况下,普通的内切酶只加入两个保护碱基,其内切反应就可以正常进行;而有一类,仅仅只加入两个保护碱基,其内切反应就不能正常进行,这是因为内切酶不能正常结合DNA片段上。如NdeI就属这类,需要加入至少6个保护碱基,常用的HindIII也要三个。下面是我提供这类酶的列表及其所需最少的保护碱基数,相信下列将有助于大这家的实验设计。NcoI4 NdeI6 NheI3 NotI8 PmeI6 SacI3 SalI3 SmaI3 HindIII 3 BstI8 SphI4 XhoI3 XbaI3 SmaI4 案例分析一:本人最初曾选用NdeI克隆位点,未注意到保护碱基数目的问题,设计PCR引物时,引入NdeI酶切位点后,只加上两个保护碱基,一个月内没有进展,始终不能成功构建重组载体。后查文献得知症结所在,在NdeI序列后加上六个保护碱基后,迎刃而解。大家引以为戒啊。现在普通酶我都引入三个保护碱基。现在碱基合成价格也不贵了,为保证酶切充分,连接顺利,不用节约那点钱,再说若一次不成功,重复实验花费时间与金钱更多,孰利孰弊,不言自明。呵呵。
二、载体酶切的问题
1、质粒的单酶切鉴定。这个问题似乎很简单,但我认为很有着重强调之必要。现在大家手头的质粒都是转来转去的,其中的各酶切位点状况如何,是否能被有效地切开,这些问题都是要核实的。因此,在实验开始之前必须对质粒载体进行单酶切鉴定。现在我每次构建之前,对所选择的克隆位点都要作一一鉴定,例如选择NdeI和HindIII作为克隆位点,就先分别对质粒上这两个酶的酶切位点进行单酶切鉴定。单酶切鉴定能有效地切开后,再发出引物合成定单,进行引物合成;若不能,就按“一”中原则进行调换。
2、连接反应的对照。在实验中,这步骤属于质粒载体与外源DNA片段的连接反应。成功与否,很大程度上取决于与质粒和DNA片段的酶切效果。一般情况下,都在通用缓冲液中进行双酶切,但这两种酶在通用缓冲液中酶切效率不一样,这可能导致部分的单缺口的质粒片段存在,这样,在连接反应中,即使在外源DNA片段存在下,这种单缺口的质粒片段能够进行更快速有效自我连接。最终结果是大量假阳性的菌斑生长。对照连接反应中,在不加入外源片段情况下,实验结果如果有菌斑生长,说明双酶切不充分,质粒DNA必须重新进行双酶切。实验案例分析2:本人曾用XhoI和HindIII酶切位点构建重组质粒,对质粒进行双酶切后,直接就做连接,未上述两步鉴定,每次结果满板的菌斑。但就是没有阳性。后来对质粒进行单酶要鉴定后,发现XhoI酶切位点损坏。又是一个月没有进展,浪费精力和药品。血的教训啊。因为当时没有注意到:单切质粒是一条带,双切质粒也是一条带,电泳行为上是一样的,分辨不出。如果做上述任何一个鉴定就会知道问题出在那儿,呵呵。实验案例分析3:本实验室一个号称实验严谨的大博士,用KpnI和HindIII构建重组质粒,一个月未果,只得阴性斑,不得阳性斑,后怀疑KpnI酶失效。迁怒KpnI,在我不知情下扔掉实验室所有KpnI酶。我得知后,问他做过上述两鉴定实验后,他支吾着说没有,后经鉴定HindIII位点失效。最后他责备本人暗中保留一手,没
有倾攮相授。呵呵,他不自责自己不思考,只是木着脑袋做实验,反倒咬一口解铃人,再说我在那以前也不知道他遇到什么难题。呵呵,你说冤不冤?这世道啊!也可看出,实验室人员之间相互交流相当重要。两星期前写了前两问题后,终于能抽时间写第三个问题,在做好前述两个方面工作后,这个问题相对简单。
三、连接时两片段浓度比问题 一般实验指导手册上都说质粒:片段=1:3(摩尔比),在实际操作中我以为在1:5甚至1:10为宜。做好“
一、二”,16℃ 10小时后,每次都能有效地连接上。当然还有大肠杆菌感受觉态问题,我们以前自己做,现在懒得做了,都用“天为时代公司”的产品,感觉还不错(特别声明我不是天为公司内线,呵呵)。这里介绍一个估测处DNA浓度的方法:DNA可以用紫外法检测,也可以电泳对比marker估测,在要求不是很精确情况下,大家不妨试试下面方法: 1. 取一平皿。
2. 薄薄倒一层含有EB的琼脂糖胶,凝固(4 ℃可以存一个星期)。3.平皿背面可以画成小方格。4. 一小格中点1 ul样品。5. 另一小格格点1 ul DNA标准品(我一般用Takara 2000 DNA lander,1 ul相当60 ng)6. 凉干后,紫外灯下根据亮度就可以估测了。OK,我连接时这么估测浓度,5分钟就要可以知道两片段浓度。其实连接片段浓度比可以充许在一个范围内,1:5至1:10都可以,所以上述估测方法在这种情况下是行得通的。
第五篇:转化方法和酵母质粒抽提
酵母转化(快速)
侯昕
1、挑单菌落于3ml 2XYPAD培养基中,30°C 200rpm培养至菌浓度为2X108 cell/ml。(约18h)。
2、用1.5ml离心管收集菌液两次,每次1ml,13500rpm,常温离心30秒。3、4、2mg/ml carrier DNA变性,100°C 5分钟,置冰上备用。在菌中依次加入
50%PEG3350
240ul
1M LiAc
34ul 2mg/ml S.S.carrier DNA
50ul plasmid DNA(各1ug)
36ul 每加入一种后,要吸打混匀。5、6、42°C水浴1-3小时。
13500rpm离心1分钟,吸弃上清。沉淀中加500ul水,吸打均匀,100ul涂皿。
7、30°C培养两天
此方法可用于已知蛋白互做检测,将两个质粒共转化。
2×YPAD:Yeast Extract
16g
2mg/ml carrier DNA:
Peptone
32g
鲑鱼精DNA(Sima D1626)
Glucose
32g
溶于水,低温放置过夜,灭
Adenine hemisulfate
80mg
菌后-20°C保存。
d2 H2O
800ml 酵母转化(高效)
侯昕
1、挑酵母单菌落于100ml SC液体培养基中,30°C,200rpm摇至菌浓度为2X107 cell/ml(稀释20倍,OD545或OD600为0.1)。※或挑酵母单菌落于50ml 2XYPAD液体培养基中,30°C,200rpm摇至菌浓度为2X108cell/ml(稀释200倍,OD545或OD600为0.1)。
2、用两个50ml离心管分别收集40ml菌液,3000g,常温离心5分钟。
3、将菌分别转入两瓶150ml 2XYPAD培养基中,扩大培养至菌浓度为2X107cell/ml。
4、用500ml离心管收集300ml菌液,3000g,5分钟。用 200mlddH2O洗两次,将菌转入一个50ml离心管。
5、2mg/ml carrier DNA变性,100°C 5分钟,置冰上备用。
6、配Mixture:
50%PEG3350
14.4Mml
1M LiAc
2.16ml 2mg/ml S.S.carrier DNA
3ml plasmid DNA+ddH2O
2.04ml
7、把Mixture加入菌沉淀中,吸打均匀。
8、42°C水域热激45分钟;每5分钟摇一下,使其受热均匀。
9、3000g,离心5分钟,弃上清,菌沉淀中加40ml水,吸打均匀,涂皿,100-200u/皿。
此方法可用于酵母双杂交文库筛选,建议分步转化。
酵母质粒抽提
侯昕
1、收集菌液,10000g,离心10秒。
2、菌沉淀中加200ul YLS,牙签打散。
3、加200ul 苯酚氯仿异戊醇(25:24:1),摇5分钟,13000rpm,离心5分钟。
4、将上层转入一新离心管中,重复3。
5、将上层转入一新离心管中,加20ul 3M NaOAc(pH5.2)、500ul乙醇,摇匀,10000g,4°C离心10-30分钟。
6、750ul 75%乙醇洗,10000g,离心5-10分钟。
7、重复6。
8、吹干,加10-20ul 水或TE。
此方法得到的质粒可用于电转大肠杆菌
Yeast lysis solution(YLS):
2%(v/v)
Triton X-100
1%(w/v)
SDS 100mM
NaCl 1mM
EDTA