第一篇:鸽巢原理的教学反思
鸽巢原理的教学反思
教学内容:
《义务教育教科书 数学》(人教版)六年级下册第70-71页。教材和学情分析:
1、理解教材:
在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。
本课时的教学内容为例1和例2。
例1介绍了较简单的“抽屉问题”:只要物体数比抽屉数多,总有一个抽屉里至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个杯子里至少放进2根小棒。例1呈现的是2种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过例1两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。
例2在例1的基础上说明:只要物体数比抽屉数多,总有一个抽屉里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,能用有余数的除法算式表示思维的过程。
2、分析学生:
通过调查,发现有相当多的学生以前的奥数班已经解除了抽屉原理,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。
还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。设计理念:
1、用具体的操作,将抽象变为直观。
“总有一个笔筒中至少放进3枝笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”,二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个笔筒中至少放进3枝笔”这种现象,让学生理解这句话。
2、充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生手去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
3、适当把握教学要求。
我们在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“抽屉”和“物体”。
第二篇:《鸽巢原理》教学设计
《鸽巢原理》教学设计
严 波
教学目标
1、知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理” 解决简单的实际问题。
2、过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。
3、情感与态度:通过“鸽巢原理”的灵活应用感受数学的魅力。
教学重、难点
重点:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。难点:理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。
教学过程
一、创设情境、引入新课
同学们,你们喜欢魔术吗?今天,老师也给大家变一个魔术,请5名同学参加这个游戏。这是一副54张的扑克牌,我取出大小王,还剩52张,你们5人每人随意抽取一张,我知道至少有2张牌是同一花色的,你信吗?让我们带着疑问见证奇迹!
在这个游戏中蕴含着一个有趣的数学原理叫做鸽巢原理,这节课我们就一起来研究鸽巢原理。(板书课题)
二、自主学习、探究新知
(一)活动一:研究3枝铅笔放进2个文具盒。
(1)要把3枝铅笔放进2个文具盒,有几种放法?请同学们想一想,摆一摆,写一写,再
把你的想法在小组内交流。
(2)反馈:两种放法:(3,0)和(2,1)。
(3)从两种放法,同学们会有什么发现呢?你是怎么发现的?(4)“总有”什么意思?(一定有)
(5)“至少”有2枝什么意思?(不少于2枝)
小结:在研究3枝铅笔放进2个文具盒时,同学们表现得很积极,发现了“不管怎么放,总有一个文具盒放进2枝铅笔。
(二)活动二:研究4枝铅笔放进3个文具盒。
(1)要把4枝铅笔放进3个文具盒里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)从四种放法,同学们会有什么发现呢?(总有一个笔盒至少有2枝铅笔)
(4)你能用更直接的方法,只摆一种情况,就能得到这个结论呢?(每个文具盒都先放进一枝,还剩一枝不管放进哪个文具盒,总会有一个文具盒至少有2枝笔)(你真是一个善于思想的孩子。)
(5)这位同学运用了假设法来说明问题,你是假设先在每个文具盒里放1枝铅笔,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)
(7)谁能用算式来表示这位同学的想法?(5÷4=1„1)商1表示什么?余数1表示什么?怎么办?
(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是枚举了所有放法,找规律,二是采用了“假设法”来说明理由,你觉得哪种方法更明了更简单?
三、小组讨论、共同研究
1、研究铅笔比文具盒多1的情况
类推:把5枝铅笔放进4个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把6枝铅笔放进5个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把7枝铅笔放进6个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
把100枝铅笔放进99个文具盒,是不是总有一个笔盒至少有2枝铅笔?为什么?
2、总结规律:从刚才我们的探究活动中,你有什么发现?(只要放的铅笔比文具盒的数量多1,总有一个文具盒里至少放进2枝铅笔。)
3、深入研究:如果铅笔数比文具盒数多2呢?多3呢?是不是也能得到结论:“总有一个笔盒至少有2枝铅笔。”
4、问题: 把6枝铅笔放在4个文具盒里,会有什么结果呢? 下面请你猜一猜:
1)、如果把6个苹果放入4个抽屉中,至少有几个苹果被放到同一个抽屉里呢? 2)、如果把8个苹果放入5个抽屉中,至少有几个苹果被放到同一个抽屉里呢? 你发现了什么规律?
5、介绍资料:经过刚才的探索研究,我们经历了一个很不简单的思维过程,个个都是了不起的数学家。“ 鸽巢原理”最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
四、展示评研、归纳提升
小结:从以上的学习中,你有什么发现?你有哪些收获呢?(在解决抽屉原理时,我们可以运用假设法,把物体尽可量多地“平均分”给各个抽屉,总有一个抽屉比平均分得的物体数多1。)
五、拓展延伸,巩固提升 做一做:
1)、7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个佶舍里。为什么? 2)、8只鸽子飞回3个鸽舍,至少有3只鸽子要飞时同一个鸽舍里。为什么?(先让学生独立思考,在小组里讨论,再全班反馈)3)揭穿谜底:
回答开始的问题: 我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?
第三篇:鸽巢原理教学设计优质课
《鸽巢原理》教学设计
教学内容:义务教育教科书六年级下册第68、69页。教学目标:
1.知识与能力目标:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。
2.过程与方法目标:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。
3.情感、态度与价值观目标:通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。教学难点:理解“鸽巢原理”,并应用这一原理解决实际问题。教学准备:多媒体课件、纸杯、铅笔、书。教学过程:
一、游戏激趣,初步体验。
1、游戏:猜扑克牌。请5位同学,每人随意抽一张扑克牌。
2、教师猜:在5张扑克牌里至少有2张的花色是一样的。
3、引入学习内容。
二、操作探究,发现规律。1.自主猜想,初步感知。
把4枝铅笔放进3个笔筒中。不管怎么放,总有一个笔筒至少放进()枝铅笔。让学生猜测“至少会是”几枝? 2.验证结论。
小组合作:学生借助实物进行操作,(摆一摆、画一画、写一写)来验证结论,并做好记录。
3、指名学生汇报
(1)根据学生汇报的情况,教师适时演示,同时教师根据学生的回答板书所有的情况。(4,0,0)(3,1,0)(2,2,0)(2,1,1)(明确这是枚举法)
(2)观察摆一摆、画一画、写一写的结果,你发现了什么?(把4枝铅笔放进3个笔筒中。不管怎么放,总有一个笔筒里至少有2枝铅笔)
4、思考:“总有”、“至少”是什么意思?
5、提出问题:不用一一列举,想一想还有其它的方法来证明这个结论吗? 在学生汇报的基础上,教师小结:假如把4枝铅笔中的3枝平均放到3个笔筒中,每个笔筒放1枝铅笔,剩下的1枝铅笔不管怎样放,总有一个笔筒里至少有2枝铅笔。(明确这是假设法)
6、初步观察规律。
教师继续提问:把5支铅笔放进4个笔筒里会出现什么情况? 把5支铅笔放进4个笔筒里会出现什么情况? 把7支铅笔放进6个笔筒里呢? 把8枝笔放进7个笔筒里呢?„„ 100支铅笔放进99个笔筒呢? 教师引导学生进行比较:你发现什么?
(笔的枝数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2枝铅笔。)
7、看有关鸽巢原理资料,让学生感受古代数学文化。
8、学习例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉至少放进3本书。为什么?
(1)让学生独立思考、再小组内讨论:该如何解决这个问题呢?可以摆一摆。
(2)汇报讨论结果,同时教师进行板书:
7÷3=2„„1 至少数: 3(本)(3)如果有8本书会怎样呢?10本书呢?)
8÷3=2„„2 至少数: 3(本)10÷3=3„„1 至少数:4(本)
(4)思考、讨论:观察算式中“商”和“至少数”之间有什么关系?
9、引导学生得出结论:至少数=商数+1。
三、巩固练习:运用鸽巢原理解决问题
四、全课小结。
今天这节课,我们又学习了什么新知识?
鸽巢问题原来又叫作抽屉问题,这一内容比较抽象,学生理解起来也不太容易。根据学生的特点,使用游戏引入,激发学生的兴趣。同时,通过学生动手操作,小组探究,让学生找到解决这一问题的规律。
第四篇:鸽巢原理教学设计
六年级下册《鸽巢原理》教学设计
北马路小学 郝美玲
【教学内容】新人教版小学数学六年级下册
68页——数学广角《鸽巢问题》第一课时。
【教材分析】“鸽巢原理”是一种解决某种特定结构的数学或生活问题的模型,是一类较为抽象和艰涩的数学问题。为此,教材在例1前,设计了一个抽扑克牌的魔术引入教学,例1以学生熟悉的、可操作的铅笔和笔筒为素材,习题用鸽子和鸽笼为例,选择这些学生常见的、熟悉的事物,以及一些有趣的、新颖的内容作为学习的素材,以增强学习材料的吸引力,提升学生学习的积极性,缓解学习难度带来的压力。在例题与习题的衔接上,在习题的层次方面,教材也都很关注细节,体现出循序渐进的原则。
【设计理念】让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。在教学中,通过几个直观的例子,借助实际操作,向学生介绍“鸽巢问题”;学生在理解的基础上,对一些简单的实际问题“模型化”,会用鸽巢原理解决问题或解释相关的现象,促进逻辑推理能力的发展。
【教学目标】
1.学生理解鸽巢原理的基本形式(假如有多于n个元素分成n个集合,那么一定有一个集合中至少含有2个元素),初步学习鸽巢原理的分析方法,能初步运用鸽巢原理解决简单的实际问题或解释相关的现象。
2.学生通过操作、观察、比较、推理等活动探究鸽巢原理的过程中,逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养模型思想和逻辑推理思想。
3.学生通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高解决问题的能力和兴趣。
【教学重点】理解鸽巢原理,掌握先“平均分”、再调整的方法。【教学难点】理解“总有”、“至少”的意义,理解平均分后余数不是1时的至少数。
【教学准备】扑克牌、纸杯(笔筒)、多媒体课件。【教学过程】
一、创设情境,引出问题。
1.老师表演小魔术:一副牌,取出大小王,还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。
选两组学生抽扑克牌,让大家判断老师的说法对不对。教师结合学生抽出的扑克牌的情况引导学生理解“至少2张牌”的意思。2.引入课题:老师能料事如神,是有依据的,这还是一个著名的数学原理。大家想知道吗?老师相信,集合大家的智慧,你们自己就能发现其中的奥秘!
[设计意图]扑克牌小魔术作为新课的切入点,激起学生认知上的兴趣,趁机抓住他们的求知欲,激发学生探究新知的热情,使学生积极主动地投入到新课的学习中去。同时,在魔术中直观地感知“至少”的意思。
二、共同探究,理解鸽巢原理。
(一)出示例1,共同探究验证。
1.老师还能料定:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放2支铅笔。质疑:大家对老师的说法有什么不理解之处吗?如果学生不能提出疑问,那么老师来提问:“总有”是什么意思?(3个笔筒无论哪个,一定有一个)“至少放2支铅笔”是什么意思?(放2支或2支以上,最少2支)
[设计意图]引导学生理解关键词语“总有”和“至少”的含义,培养学生认真阅读理解的习惯。
2.讨论:你认为老师的说法对吗?先让学生凭直觉判断对或错。再指出:对待数学问题,我们要有严谨的态度,只有经过周密的验证才能下结论。那么,可以用什么方法来验证老师的说法对不对呢?学生独立思考,提出设想。
[设计意图]树立学生严谨的数学学习态度,打开学生的思维,大胆设想验证方法。
3.小组合作探究:小组合作验证,验证完成了准备汇报并坐端正。需要笔筒的用纸杯代替笔筒。教师巡视,了解学生验证的情况。[设计意图]放手让学生自主探究,让学生充分表达自己的想法,有充足的空间和时间合作探究。4.小组汇报交流,预设情况如下:
(1)枚举法
请用实物模拟实验的小组先展示,有用画图、数的分解的方法分析的也进行展示。引导学生认识到要把铅笔摆放的所有方式都列举出来,为了不遗漏要做到有序列举(课件展示),指出这种思考方法叫“枚举法”。
[设计意图] 经历探究鸽巢原理的过程,初步学习枚举的分析方法,培养学生分析问题的能力和严谨的思维习惯。(2)假设法
请学生展示并解说其他的方法,如果学生没有想到,教师示范:假设老师的说法是错误的,没有任何笔筒里有2支或2支以上的铅笔,那么每个笔筒里只放1支,剩下1支放入任意一个笔筒中,这个笔筒中就有2支笔了。所以总有一个笔筒中至少有2支铅笔。
集体讨论:让学生充分质疑,充分发表意见,教师适时点拨。教师可连续发问:先在每个笔筒中放1支铅笔,实际上就是在怎样分?为什么一开始就平均分呢?只考虑平均分这一种情况,其他的摆放方法不用考虑了吗?引导学生认识到:先在每个笔筒中放1支铅笔,实际上就是在平均分;平均分,就可以使每个笔筒的铅笔尽可能的少,也就有可能找到和老师说法不一样的情况;平均分已经使每个笔筒中的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。
可以用除法算式表示这种分析方法,指出这种思考方法叫做“假设法”。[设计意图]经历探究鸽巢原理的过程,理解学习假设的分析方法,培养学生逻辑推理的能力和严谨的思维习惯。(3)请学生评价这两种方法。总结结论并板书。
[设计意图]培养学生的优化意识,使学生认识到枚举法的优越性和局限性、假设法的独特优点。
(二)解决变式问题,建立数学模型 1.解决变式问题:
(1)把6支铅笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放2支铅笔。这种说法对吗?为什么? 先同桌互相说一说,再指名回答。
(2)把6个苹果放进5个抽屉里,不管怎么放,总有一个抽屉里至少放2个苹果。这种说法对吗?为什么?
学生独立思考,指名回答。引导学生认识到:6个苹果相当于6支铅笔,5个抽屉相当于5个笔筒,那么就有同样的结论“总有一个抽屉里至少放2个苹果”。
(3)把7支铅笔放进6个笔筒里,不管怎么放,总有一个笔筒里至少放几支铅笔?为什么? 学生独立思考,指名回答。
(4)把7个篮球放进6个球筐里,不管怎么放,总有一个球筐里至少放2个篮球。这种说法对吗?
学生独立思考,齐答。提问:7个篮球相当于什么?6个球筐相当于什么?(5)17只鸽子飞进16个鸽巢里,不管怎么飞,总有一个鸽巢里至少飞进2只鸽子。这种说法对吗?
学生独立思考,齐答。提问:17只鸽子相当于什么?16个鸽巢相当于什么?
[设计意图]通过解决变式问题,让学生真正掌握并运用假设法解决问题,培养学生解决问题的灵活性和迁移能力;通过联系、对比,建立待分物体和“鸽巢”的多个表象,为抽象出数学模型做基础。2.讨论:这些问题有什么相同点吗?有什么规律吗?
引导学生发现:铅笔、苹果、篮球、鸽子都是待分物体,笔筒、抽屉、球筐、鸽巢都可以看作盛放待分物体的“鸽巢”;待分物体都比“鸽巢”多1,都是总有一个“鸽巢”至少放2个待分物体。
引导学生用字母表示:如果“鸽巢”个数用n来表示,待分物体就有(n+1)个,那么总有一个“鸽巢”至少放2个待分物体。并用一句完整的话来描述。
揭示课题:这就是老师所说的那个著名的数学原理——鸽巢原理。(板书课题)
[设计意图]让学生经历将具体问题数学化的过程,建立鸽巢原理最简单情况的数学模型,初步形成模型思想,发展学生的抽象能力和概括能力。
3.普及数学史知识
知道鸽巢原理最早是由谁提出的吗?课件出示:这个原理是组合数学中的一个重要原理,它最早由德国数学家狄利克雷提出并运用于解决数论中的问题,所以该原理又称“狄利克雷原理”。该原理有两个经典案例,一个是把10个苹果放进9个抽屉,总有一个抽屉里至少放了2个苹果,所以这个原理又称为“抽屉原理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以也称为“鸽巢原理”(指名读)。
学生齐读课件出示的“鸽巢原理”——把(n+1)个待分物体放进n个鸽巢,总有一个鸽巢里至少放了2个待分物体。
[设计意图]了解鸽巢原理的由来,进一步强化鸽巢原理基本形式的数学模型,感受数学的魅力,体会数学的价值。
三、运用鸽巢原理解决问题
1.请学生解释扑克牌小魔术中的奥秘。引导学生认识到:5人抽出了5张牌,这5张牌相当于5个待分物体,扑克牌有4个花色,相当于4个鸽巢,5张牌归入4个花色,那么总有一个花色至少有2张牌。[设计意图]能初步运用鸽巢原理解释相关的现象。
2.讨论问题:5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?
先同桌讨论,再交流,重点引导学生讨论平均分后余下2只鸽子该怎么办。引导学生认识到:为了找到飞进鸽子的至少数,余下的2只鸽子也要尽可能的平均分。
[设计意图]通过讨论理解平均分后余数不是1时的至少数,掌握先“平均分”再调整的原则。
3.解决问题:随意找13位老师,他们中至少有2个人的属相相同。为什么?若是随意找15位、17位老师,还是至少有2个人的属相相同吗?
学生自由发言,互动交流。
[设计意图]能初步运用鸽巢原理解决简单的实际问题,体会数学的价值,提高解决问题的能力和兴趣。
四、集体交流:这节课你有什么收获?引导学生从数学知识、数学思考方法等多方面来谈收获。
[设计意图] 培养学生反思归纳的学习习惯。
五、课后问题:随意找30位老师,他们中至少有多少个人的属相是相同的?
[设计意图]为下节课的探究活动做铺垫。
第五篇:《鸽巢问题》教学反思
《鸽巢问题》教学反思
课堂上,我首先采用学生抢凳子游戏导入,使学生初步感受总是有一个凳子上要坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,也使学生集中注意力,把心思马上放到课堂上,让学生觉得这节课探究的问题既好玩又有意义,为后面教与学的活动做了铺垫。但这部分内容真正理解对于学生来说有一定的难度。在教学中我通过实际案例培养学生有根据、有条理地进行思考和推理的能力,从而解决实际问题,初步感受数学的魅力。本堂课注重为学生提供自主探索的空间,引导学生通过探索,初步了解“鸽巢原理”,总结“鸽巢原理”的规律,会用“鸽巢原理”解决实际问题。
在本节课中,我非常注重学生的自主探索精神,让学生在学习中,经历猜想、验证、推理、应用的过程。
1、采用枚举法,让学生通过小组合作把4本书放入3个抽屉中的所有情况都列举出来,然后通过学生汇报四种不同的排放情况,运用直观的方式,发现并描述、理解最简单的“鸽巢原理”即“书本数比抽屉数多1时,总有一个抽屉里至少有2本书”。进而介绍这种摆放的方法是我们数学中常用的一种方法即枚举法。
2、让学生借助直观操作发现,把书尽量多的“平均分”给各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。
3、大量例举之后,再引导学生总结归纳这一类“抽屉问题”的一般规律,让学生借助直观操作、观察、表达等方式,让学生经历从不同的角度认识鸽巢原理。
4、对“某个抽屉至少有书的本数”是除法算式中的“商+1”,而不是“商+余数”,适时挑出有针对性问题进行交流、引导、讨论,使学生从本质上理解了“抽屉原理”,总结出“抽屉原理”中总有一个抽屉里至少有的本数等于“商+1”。
5、本课教学中,学生对“总是”和“至少”的理解上没有进行结合具体的实例进行引导,学生在学习时理解有一些空难。
6、在数学语言表述上应该更加准确,使学生听起来更加明白。
在这堂课的难点突破处,也就是让学生借助直观操作发现,把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本。教学知识不光是让学生按照公式来套用公式,这样很容易造成学生的思维定势,所以在练习中,让学生充分说理的基础上,明确把什么当作“抽屉数”,把什么当作“物体数”并进行反复练习。
在这节课里部分学生判断不出谁是“物体”,谁是“抽屉”。因此,在今后的教学中,多下些功夫,以求在课堂上让学生更好地理解、消化所授知识。课后还要让多做相关的练习加以巩固。