第一篇:小学三年级奥数 第十三讲 合理安排时间(学生版)
第十三讲
合理安排时间
学习内容:合理安排时间 学习目标:
1、通过简单的生活事例,让学生学会选择合理、快捷的方法解决问题。
2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
3、感受生活与数学的联系,使学生逐渐养成合理安排时间的良好习惯。
课题引入
同学们,我给你们讲个故事。丁丁和冬冬是双胞胎兄弟。他们同时起床,起床后都要做同样的几件事情(洗脸刷牙,盛粥,等粥凉,喝粥),假设他们俩做每件事情的时间都是是相等的,为什么丁丁上课不迟到,而冬冬会迟到呢?
同样的事情,开动脑筋想一想做出合理的安排,可以节省很多的时间。今天我们就一起来探讨怎样合理安排时间。
例题精讲
例
1、明明早晨起来要完成以下几件事情:洗水壶1分钟,烧开水12分钟,把水灌入水瓶要2分钟,吃早点要8分钟,整理书包2分钟。应该怎样安排时间最一物长来真奇怪,肚皮下面长口袋,孩子袋里吃和睡,跑得不快跳得快。【谜底】袋鼠
第1页
少?最少要几分钟?
思路导航:经验表明:能同时做的事尽量要同时去做,这样节省时间。
例
2、红红早晨起来刷牙洗脸要4分钟,读书要8分钟,烧开水要10分钟,冲牛奶1分钟,吃早饭5分钟。红红应怎样合理安排?起床多少分钟就能上学了?
例
3、贴烧饼的时候,第一面需要烘3分钟,第二面需要烘2分钟,而贴烧饼的架子上一次最多只能放2个烧饼。要贴3个烧饼至少需要几分钟?
例
4、甲、乙、丙、丁四人各有一块麦地,他们同时用一台收割机进行收割,甲的麦地需要收割4小时,乙的麦地需要收割1小时,丙的麦地需要收割3小时,丁的麦地需要收割2小时。怎样安排四人的顺序,他们花的总时间最少?最少时间是多少?
一物长来真奇怪,肚皮下面长口袋,孩子袋里吃和睡,跑得不快跳得快。
【谜底】袋鼠
第2页
例
5、小红要小红用平底锅烙饼,锅中每次最多放2个饼。烙一个饼需要2分钟,(正反面各1分钟),为了节约时间,小红烙7个饼需要几分钟?
变式训练
1、小李阿姨要出门,出门之前她要完成以下几件事:整理房间5分钟,把衣服和水放入洗衣机要1分钟,洗衣服自动洗涤要12分钟,擦鞋要3分钟。怎样合理安排,小李阿姨在多少分钟后就可以出发了?
一物长来真奇怪,肚皮下面长口袋,孩子袋里吃和睡,跑得不快跳得快。
【谜底】袋鼠
第3页
2、烤面包的架子上一次最多只能放两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?
3、三个顾客到同一个柜台去买东西,甲需要用4分钟,乙需要用6分钟,丙需要用2分钟。怎样安排他们购买的顺序,使他们所花的总时间最少?最少是多少?
1、玲玲想给客人烧水沏茶。洗水壶要2分钟,烧开水要12分钟,买茶叶5分钟,洗茶杯要1分钟,冲茶要1分钟。要让客人尽早喝上茶,你认为最合理的安排需要多少分钟客人就能喝上茶了?
一物长来真奇怪,肚皮下面长口袋,孩子袋里吃和睡,跑得不快跳得快。
【谜底】袋鼠
第4页
2、用一个平底锅烙饼,锅上只能同时放两个饼。烙第一面需要2分钟,烙第二面需要1分钟。现在在烙三个饼,最少需要多少分钟?
3、甲、乙、丙三人都要到同一水龙头下取水,甲需要用2分钟,乙需要用4分钟,丙需要用1分钟。怎样安排,他们花的总时间最少?最少时间是多少?
家长签字:
****年**月**日
一物长来真奇怪,肚皮下面长口袋,孩子袋里吃和睡,跑得不快跳得快。【谜底】袋鼠
第5页
第二篇:二年级奥数之---合理安排时间
合理安排时间
【合理安排时间】
时间对于每个人来讲都是宝贵的,因此,怎样合理地安排时间,才能在最节省资源的情况下,把事情做好呢?要合理地安排时间,需要考虑以下问题: 1.要做哪些事情? 2.做每件事情要多少时间? 3.做每件事情的步骤? 4.同一个时间里面可以做的事情有哪些?
例1.星期天,妈妈要小贝在家打扫卫生,要做的家务有:擦桌椅,要12分钟;擦地,要18分钟;浸泡衣服(要用温水),要15分钟;烧开水,要20分钟;搓衣服,要15分钟;清洗衣服,要15分钟;晾衣服,要5分钟。小贝如何安排这些事,才能使总时间最少,最少要多长时间可以把这些事情完成?(1)思维导图:
(2)分析与解答:
解:由题意可知,小贝有 件事情要做,分别是、、、、、、。有 和 两件事情不需要人持续地进行操作,所以做这两件事情的同时可以做其他的事情。所以小贝可以先烧水,同事擦地,需要 分钟;水开后,再用温水浸泡衣服,同时擦桌椅,需要 分钟;接着搓衣服 分钟;清洗衣服 分钟;晾衣服 分钟。按这样的顺序来完成这些事情用的总时间最少,一共用了 分钟。
即学即练:
1.晶晶放学到家后要做几件事:淘米3分钟,用电饭煲烧饭30分钟,抄写语文单词15分钟,背诵新教的乘法口诀5分钟,读英语6分钟,帮妈妈削土豆皮4分钟。他至少要用 分钟才能完成所有的任务。
2.爸爸做炒蛋给明明吃,切葱花1分钟,打蛋10秒,搅蛋50秒,洗锅2分钟,烧热油2分钟,炒蛋5分钟,装盘30秒。爸爸至少要用 分钟才能让明明吃上这道菜。
3.早晨6点钟起床,到7点钟上学的一小时里面,小红必须完成以下工作:叠被子3分钟,刷牙洗脸要8分钟,读外语要20分钟,吃完早饭要10分钟,收碗筷要5分钟,收听广播30分钟。请你帮她合理地安排时间,帮她设计一个合理的方案,用最少的时间完成以上工作。
例2.佳佳给客人沏茶,洗开水壶要用1分钟,烧开水要15分钟,洗茶壶用1分钟,洗茶杯用2分钟,拿茶叶用2分钟,泡茶要2分钟。你认为最合理的安排要 分钟才能让客人最快喝上茶。(1)思维导图:
(2)分析和解答:
解:最合理的安排需要 分钟,客人就能喝上茶了。即学即练:
1.多多早晨起来要完成以下几件事情:洗水壶要1分钟,烧开水要12分钟,把开水灌入水瓶要2分钟,吃早点要8分钟,整理书包要2分钟。多多应该怎样安排时间,使时间用的最少?最少要 分钟。
2.小李阿姨要出门,出门前她要完成以下几件事:整理房间要5分钟,把衣服和水放入洗衣机要1分钟,洗衣服自动洗涤要12分钟,擦鞋要3分钟。怎样合理安排时间,小李阿姨在 分钟后就可以出发了?
例3.学校要大扫除,小军、小明和小刚同时到同一个水龙头前接水。小军接满一小盆水需要2分钟,小明接满一桶水需要5分钟,小刚接满一大盆水需要3分钟,应该怎样安排接水的顺序才能使三人等候的时间总和最少?这个最少时间是多少?(1)思维导图:
(2)分析与解答:
盛水快的先取,慢的后取,这样等候的时间就可以节省到最少。所以顺序为小军→小刚→小明。
①小军第一个接水,要2分钟。小明和小刚也要等2分钟。此时等候的时间总和为 分钟。
②小刚第二个接水,要3分钟。小明也要等3分钟。此时等候时间总和为 分钟。
③最后小刚接满一桶水需要5分钟。
④所以总共等候时间为 分钟。
答:小军接2分钟,小刚接3分钟,小明接5分钟,这样安排他们花的时间最少,最少是 分钟。
即学即练:
1.三个顾客一起到同一柜台买东西,甲需要4分钟,乙需要6分钟,丙需要2分钟。
(1)怎样安排他们的购买顺序,使他们所花的总时间最少?
安排顺序为: → →(2)最少是 分钟。
2.公司总经理通知甲、乙、丙三人去办公室谈话,甲谈完要5分钟,乙谈完要7分钟,丙谈完要6分钟。(1)怎样安排他们的谈话顺序,使他们所花的总时间最少?
安排顺序为: → →
三人花的总时间(包括等候)最少是 分钟。
3.甲、乙、丙三人分别拿着2个,3个,1个热水瓶同时到达开水供应点打开水,热水水龙头只有一个,要怎样安排他们打开水的顺序,可以使他们打开水用去的总时间(包括等的时间)最少?总时间最少是多少?(假设打满一瓶水(包括等候)要1分钟。)
安排顺序为: → →
甲、乙、丙三人花的总时间(包括等候)最少是 分钟。
例4.武大郎做烧饼,每只烧饼正面需要烤3分钟,反面需要烤2分钟,而平锅内一次只能放两只烧饼,要用最短的时间烤好3只烧饼,武大郎最少需要多少分钟?(1)思维导图:
3分钟
3分钟 2分钟
(2)分析与解答:先放第一、二两只烧饼正面,过3分钟后,拿下第二个,把第一个反过来,并放上第三个烧饼,过 分钟后拿下第一个烧饼,并放上第二个烧饼,过1分钟把第三个烧饼反过来,再过1分钟取下第一个烧饼,再过1分钟三个烧饼全部拷完,只用了 分钟。
即学即练:
1.烤面包的架子上一次最多只能放两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要 分钟。
2.小红的妈妈用平锅烙饼,锅中每次最多放4个饼,烙一个饼一面2分钟,另一面要1分钟,妈妈烙6个饼要用 分钟。
3.在平底锅上煎鸡蛋,每次能同时放2个,煎鸡蛋的时候煎第一面要3分钟,但是第二面只要2分钟。现在要煎5个鸡蛋,一共要 分钟。
例5.小明骑在牛背上赶牛过河,共有甲、乙、丙、丁4头牛,甲牛过河需1分钟,乙牛过河需2分钟,丙牛过河需5分钟,丁牛过河需6分钟,每次只能赶2头牛过河。请问要把4头牛都赶过对岸去,最少要几分钟?(1)思维导图:
(2)分析与解答:
要使过河时间最少,应当抓住以下两点:
①同时过河的2头牛的时间差应尽可能小些,才能使花时间少的牛在过河时少浪费时间;
②过河后应骑花时间少的那头牛回来。答:把分钟。
即学即练: 4头牛都赶到对岸去的最少总时间是:
1.小明骑在马背上赶马过河,共有甲、乙、丙、丁4匹马,甲马过河需2分钟,乙马过河需3分钟,丙马过河需6分钟,丁马过河需7分钟,每次只能赶2匹马过河。请问要把4匹马都赶过对岸去,最少要 分钟。
【极限挑战】
例6.17名同学坐船去对岸,只有一条小船,船上只能坐5个人。问最少用几次可以把人全部运到河对岸。
例7.在平底锅上煎鸡蛋,每次能同时放2个,煎鸡蛋的时候煎第一面要3分钟,但是第二面只要2分钟。现在要煎5个鸡蛋,一共要多少时间?
【能力提升】
1.给一块木板的两面涂上油漆,涂一面要1分钟,但是必须等5分钟后才能涂另一面。现在要尽快涂完6块木板至少要多少时间?
2.小乔在一个早晨要完成下工作:(1)起床穿衣服要4分钟,(2)刷牙洗脸整理书包要10分钟,(3)在煤气炉上煮鸡蛋要10分钟,(4)吃完早餐要5分钟。你觉得她最少要多少时间久能吃完早餐去上学?
3.妈妈早晨要做的事情:烧开水15分钟,檫桌子4分钟,准备暖瓶1分钟,灌开水2分钟,买早饭10分钟,煮牛奶7分钟。家里面只允许同时煮一件东西,做完这些事情最少要多少时间?
4、中午,爸爸做炒鸡蛋这道菜,要做的事情及时间是:敲蛋10秒,切葱花20秒,搅蛋20秒,洗锅30秒,烧热油1分,炒蛋3分,装盘10秒。爸爸最少要用多长时间才能把鸡蛋炒好?
第三篇:三年级奥数详解答案 第十三讲 火柴棍游戏1
第十三讲 火柴棍游戏
(一)用火柴棍可以摆成一些数字和运算符号,如、、、;还可以摆出几何图形如正三角形、正方形、菱形、正多边形和一些物品的形状.通过移动火柴棍,可进行算式的变化,可以用它来做有趣的图形变化游戏.这一讲将就这些问题进行讨论。
知识点:在用火柴棍摆数学算式时,应注意以下两点:
(1)在考虑使等式成立的数时,注意数字只限于、就缩小了可讨论的数的范围,而运算符号也只限于、、、、。
.这
(2)要使算式成立,经常要添加、去掉和移动几根火柴,从而达到目的,而“添”、“去”、“移”的一般规律是:
添,添加一根火柴,可变为,变
为,变
为,还可以在数前、”变为“
”数后添上,另外,可以把“号,在两个数之间增加“
”号变为“”号,把“
”号等。
”为“”,变“
”,”
去,“去”是“添”的反面,要去掉一根火柴棍,常可以变“变“”为“”,变“
”为“
”,变“
”为“为“”.还可以去掉数字前面或后面的“”,以及数字之间的“”号等.移,“移”是“去”和“添”的结合,移动火柴棍时,要保证火柴的根数没有变化.如““
”与“
”之间,“
”与“
”之间,“”与
”之间都可 ”之间,“ ”与“ ”之间,“ ”与“以互相转化。
例1 在下面由火柴棍摆成的算式中,添加或去掉一根火柴,使等式成立。
分析 ①题中,只有一个四位数1244,且它是减数,其余的数都是三位数,所以,我们首先想到,要把1244千位上的1去掉,使它变成三位数.这时,等式左边是:772-244-417,计算的结果恰好就是111.等式成立.①题中,由于减数是四位数1244,我们又可以想到在被减数的前面添加一根火柴,使它变成1772.这样,算式左边变为1772-1244-417,计算的结果也是111,等式仍然成立.所以①题有两个答案。
②题中,原式左边的计算结果是四位数,右边的运算结果是109.所以,使左边减小是做这道题的想法,左边,12×7= 84,所以,应该有4421变成25,注意到拿掉百位4上的一根火柴即可变为“4+21”,从而满足等式。
解:①(1)去掉一根火柴棍:
(2)添加一根火柴棍:
②去掉一根火柴棍:
例2 在下面火柴棍摆成的算式中,移动一根火柴,使等式成立。
分析 ①题中,观察算式两边,等号左边计算的结果是641,右边计算的结果是141,所以基本想法是通过移动火柴棍,使左边减小而右边增加.注意到,如果把左边的减数121变成21,则左边的计算结果是741,且被拿掉一根火柴,右边141中,添上这根火柴,恰好变成741,于是等式成立。
②题中,左边的计算结果是三位数,而右边是五位数,既使将右边万位上的1或十位上的1移到左边422的前面,算式也不能成立.所以想到,应该把右边的五位数变成三位数与一位数的和,只能是“177+2”或“1+712”,从而使右边变为三位数.计算左边,结果是287,所以,将17712变成“1+712”不行,只能考虑从左边移一根火柴到右边,使右边变成“177+2”,即179.这需要把左边减小一些.试着把左边的“+”号变为“-”号,则左边为422—27×7—27×2,计算得179,满足算式。
例3 在下面由火柴摆成的算式中,移动一根火柴棍,使算式变成等式。
分析 题目中的两个小题只是两个四则运算式子,并没有等号,而题目要求移动一根火柴使它变成等式.所以,我们一定是要在数字或“+”号上去掉一根火柴,添在“—”号上或改“+”为减号。
①题中,112 × 7=784,而784—72=712,剩下的部分还有 7+ 2,可变成 712.所以,可以把最后面一个“+”号中“—”移到7前面的“—”号上,变成等号,即:
112×7—72=712,得到一个答案。
②题中,前面 111+111=222,最后面一个数是 224.所以,如果能在 222后面再加 2(或加两个1),则可变成等式,这可以把11中的一个1移到224前的“—”号上,变成“=”号就得到答案:11l+111+1+1=224。
解:①题的答案是:
②题的答案是:
例4 用火柴棍摆出所有的千位为1的四位数,且每个数位上的数字各不相同,计算它们的和,并用火柴棍摆出这个等式。
分析 解决这个问题分两步:
先用火柴摆出所有的以1开头的四位数,由于火柴棍可摆的数字只有1、2、4、7,为保证不重、不漏地写出它们摆出的所有的以1开头的四位数,可以按从小到大(或从大到小)的顺序来写,它们是1247、1274、1427、1472、1724、1742共六个,计算它们的和为8886。
再用火柴棍摆出这个等式,要把它们用火柴棍摆出来,关键是把8886用1、2、4、7表示,观察发现:8886= 4444× 2—2
解:用火柴棍摆出所有以1开头的四位数是:
求它们和的等式可以表示为:
在用火柴棍摆图形时,可以通过移动一根或几根火柴棍,使图形发生有趣的变化。
例5 仓库中有一把如左下图所示的椅子,且椅子翻倒还掉了一条腿,请移动2根火柴,使椅子翻过来,且看上去也不缺少腿。
分析 要把椅子翻过来,就要使下面有四条腿,上面有
椅子的靠背,故可以移动成(前页右下图所示)的样子。
解:移动的结果如前页右下图(虚线表示移走的火柴)。
例6 用火柴棍摆成头朝上的龙虾如下左图所示,移动它上面的三根火柴,使它头朝下。
分析 要把龙虾的头变成朝下的,需要把上面的“头”拆掉,并摆出“尾”.还要在下面摆出“头”.由上面的分析,可移火柴摆成上右图的样子。
解:可移火柴成上右图,即把虚线向左移动。
例7 由九根火柴棍组成的天平处于不平衡状态,(左下图),移动其中五根火柴,使它变为平衡。
分析 要把天平摆平,应先确定水平的天平臂,再把整个天平摆好,而天平臂可利用一个天平盘的底,另一个天平盘不移动,如右下图。
解:本题可移走右图中虚线所示的火柴棍,摆成实线的样子。
习题十三
1.在下面由火柴棍摆成的算式中,添上或去掉一根火柴棍,使算式成立。
2.在下面由火柴棍摆成的算式中,移动一根火柴棍,使算式成立。
3.在下面由火柴棍摆成的算式中,只移动一根火柴棍,使算式变成等式。
4.下面是由火柴棍组成的四个数字和三个运算符号:
(1)移动一根火柴,使下列等式成立。
(2)添一根或去一根火柴,使等式成立。
(3)移动每个式子中的一根或两根火柴使下列每个算式成为一个等式。
5.由火柴棍摆了两只倒扣着的杯子,如右图,请移4根火柴棍,把杯口正过来。
6.由火柴棍摆成的定风旗如右图,移动四根火柴,使它成为一座房子.7.用6根火柴可以组成哪些三位数?其中最大、最小的三位数各是多少?摆一摆。
第四篇:三年级奥数
发到
三年级奥数--年龄问题
教学目标
1.掌握用线段图法来分析题中的年龄关系.2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.
知识点说明:
一、年龄问题变化关系的三个基本规律:
1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量; 3.两个人之间的年龄差不变
二、年龄问题的解题要点是:
1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系. 2.关键:抓住“年龄差”不变.
3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式. 4.陷阱:求过去、现在、将来。
年龄问题变化关系的三个基本规律: 1.两人年龄的差是不变的量; 2.两人年龄的倍数关系是变化的量;
年龄问题的解题正确率保证:验算!
例题精讲
【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁? 【解析】 这道题有两种解答方法:
方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612(岁);妈妈今年36岁,再过6年是(366)岁,也就是42岁,那时,妈妈比小卉大421230(岁).
列式:(366)(66)421
230(岁)
方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.
列式:36630(岁)
答:再过6年,小卉读初中时,妈妈比小卉大30岁.
【巩固】 小英比小明小3岁,今年他们的年龄和是老师年龄的一半,再过15年,他们的年龄和就等于老师的年龄,今年小英的年龄是多少岁?
【解析】 经过15年,小英和小明的年龄和比老师多增加15岁,所以老师今年年龄的一半是15岁,即小英和小明今年的年龄和是15岁,小英今年的年龄是(15-3)÷2=6(岁).【巩固】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?
【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”发到 的和差问题.
爸爸的年龄:(726)239(岁)妈妈的年龄:39633(岁)【巩固】 今年小宁9岁,妈妈33岁,那么再过多少年小宁的岁数是妈妈岁数的一半?
【解析】 今年小宁比妈妈小33924(岁),那么小宁永远比妈妈小24岁.几年后小宁是妈妈岁数的一半时,即妈妈年龄是小宁的2倍时,妈妈仍比小宁大24岁.这是个差倍问题.以小宁的年龄作为1倍量,妈妈年龄是2倍量,所以妈妈比小宁大的岁数也是1倍量,即1倍量代表着24岁.所以小宁24岁时是妈妈年龄的一半,因此再过24915(年).
【巩固】 6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁.问:母亲今年多少岁? 【解析】 6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66(岁).6年前母子年龄和是66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄.
母子今年年龄和: 78-6×2=66(岁),母子6年前年龄和: 66-6×2=54(岁),母亲6年前的年龄: 54÷(5+1)×5=45(岁),母亲今年的年龄: 45+6=51(岁).
【巩固】 学而思学校张老师和刘备、张飞、关羽三个学生,现在张老师的年龄刚好是这三个学生的年龄和;9年后,张老师年龄为刘备、张飞两个学生的年龄和;又3年后,张老师年龄为刘备、关羽两个学生的年龄和;再3年后,张老师年龄为张飞、关羽两个学生的年龄和.求现在各人的年龄.
【解析】 张老师刘备张飞关羽,张老师9刘备9张飞9,比较一下这两个条件,很快得到关羽的年龄是9岁;同理可以得到张飞是9312(岁),刘备是93315(岁),张老师是9121536(岁).
【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).
【例 2】 小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁? 【解析】 把小明的年龄看成是一份,那么爸爸的年龄是四份少2,根据和倍关系:
小明的年龄是:(53+2)÷(4+1)=11(岁),爸爸的年龄是:53-11=42(岁),小明与爸爸的年龄差是:42-11=31(岁).
【巩固】 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁? 【解析】 妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72÷(1+4+4)=8(岁),妈妈的年龄是:8×4=32(岁),爸爸和妈妈同岁为32岁.【例 3】 姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?
【分析】 用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.发到
弟弟的年龄:(404)218(岁),姐姐的年龄:18422(岁).
【例 4】 东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东、西西今年的年龄各是多少?
【分析】 东东3年后的年龄等于西西1年前的年龄,说明东东比西西小4岁; 东东3年前的年龄与西西4年后的年龄之和是25岁,所以今年东东和西西的年龄和是253424(岁),今年东东的年龄:(244)210(岁),今年西西的年龄:241014(岁).
【巩固】 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?
【解析】 兄弟二人现在的年龄和是27岁,两人的年龄差是27,哥哥现在3515(岁).(45)3(岁)
【巩固】 今年彬彬的年龄是表弟年龄的4倍,20年后,彬彬的年龄比表弟的年龄的2倍少l2岁,今年彬彬、表弟各多少岁?
【解析】 表弟今年年龄的4122(倍)对应的是:20220128(年),由此可以求出表弟今年的年龄,使问题得解.824(岁),4416(岁).所以表弟今年4岁,彬彬今年16岁.
【例 5】 父子年龄之和是45岁,再过5年,父亲的年龄正好是儿子的4倍,父子今年各多少岁?
【解析】 再过5年,父子俩一共长了10岁,那时他们的年龄之和是4510=55(岁),由于父亲的年龄是儿子的4倍,因而55岁相当于儿子年龄的41=5倍,可以先求出儿子5年后的年龄,再求出他们父子今年的年龄.
5年后的年龄和为:455255(岁)5年后儿子的年龄:55(41)11(岁)儿子今年的年龄:1156(岁),父亲今年的年龄:45639(岁)【巩固】 父子年龄之和是60岁,8年前父亲的年龄正好是儿子的3倍,问父子今年各多少岁?
【解析】 由已知条件可以得出,8年前父子年龄之和是608244(岁),又知道8年前父亲的年龄正好是儿子的3倍,由此可得:
儿子:(6082)(31)819(岁)父亲:601941(岁)【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).
【巩固】 王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是
18岁.王老师今年32岁,李老师今年多少岁? 【解析】 王老师比李老师大2031836(岁).故李老师今年的年龄为32626(岁).
第五篇:启新教育三年级奥数第十三讲火柴棍游戏一
启新教育三年级奥数第十三讲火柴棍游戏一
火柴除了可作火种外,人们常用它来摆图形、算式,做出许多有趣的游戏。它不受场地和时间的限制,只要有几根火柴(或几根长短一样的细小木棍)就可以进行。火柴游戏寓知识、技巧于游戏之中,启迪你的智慧,开阔你的思路,丰富你的课余生活。
火柴游戏大体分为两种:一种是摆图形和变换图形;一种是变换算式。这一讲我们先介绍变换图形的游戏。1.摆图形游戏
游戏1用8根火柴棍可以摆成一个正方形。现添两根,即用10根火柴能摆出与这个正方形同样大小的图形吗?
分析与解:8根火柴摆一个正方形,每边必是两根火柴。它可以分成四个小正方形(如右图)。因此,只要用10根火柴摆出有四个同样大小的小正方形的图形即可。下面的四个图形都符合题意。
游戏2用8根火柴棍摆出八个大小一样的三角形和两个一样大小的正方形。
分析与解:4根火柴可摆出一个正方形,另4根火柴又可摆出一个同样大小的正方形。把这两个正方形如右图所示交叉放在一起,就形成八个相同的三角形。
2.移动火柴,变换图形游戏
游戏3右图是用10根火柴棍摆成的一座房子。请移动2根火柴,使房子改变方向。
解:如左下图所示,除虚线表示的2根火柴外,其余火柴是左、右对称的,所以改变房子的方向与这些火柴无关,应移动虚线表示的2根火柴(见右下图)。
游戏4在左下图中移动4根火柴棍,使图形成为只有三个正方形的图形。
解:因为只能移动4根火柴,所以图中较长的边(3根或4根火柴的边)都不能动。把图中最里面的4根火柴移补到右上图的相关位置上即可。
游戏5在左下图中移动4根火柴棍,使它变成3个三角形,并且这3个三角形的面积之和与原来的六边形面积相同。
解:原图中有6个三角形,变化后剩下3个三角形,这3个三角形与原来的6个三角形的面积相同,必然有一个三角形的面积要增大。如右上图所示,移动虚线表示的4根火柴。图中下面的大三角形面积等于小三角形面积的4倍。
3.去掉火柴,变换图形游戏
游戏6在左下图中去掉尽量少的火柴棍,使得图中不存在任何正方形。
解:拿掉的火柴应能尽量多的“破坏”正方形。如右上图,拿掉虚线处的4根火柴即可。拿法不唯一。
游戏7 在左下图中,去掉4根火柴棍,使它变成两个完全相同的图形组合。
解:左上图的面积等于七个边长为1根火柴棍的小正方形的面积之和。要达到规定要求,必须去掉一个小正方形。剩下的部分划分成两个
面积等于三个小正方形面积的图形。去掉右上图中虚线所示的火柴棍即可。练习
1.用9根火柴棍摆出一个图形,使它含有五个等边三角形。2.用9根火柴棍摆出一个图形,使它含有三个正方形和七个长方形(不含正方形)。
3.在左下图中移动3根火柴棍,使“井”字形变成“品”字形图形。
4.右上图是用24根火柴棍摆出的两个正方形。(1)请你移动4根,把它变成三个正方形;
(2)再移动8根,把(1)中所得图形变成九个完全相同的正方形;(3)在(2)中所得图形上拿走8根火柴,使它变成五个完全相同的正方形。5.用13根火柴棍摆成含有6个、7个和8个等边三角形的图形。各给出一种摆法。
6.右图中共有13个三角形,从中拿掉尽量少的火柴棍,使得图中没有三角形。
启新教育奥数天天练火柴棒游戏
小朋友,火柴棒是我们家家都有的生活用品,用火柴棒做游戏简便易学。用火柴棒可以摆成一列数字和运算符号:
你们喜欢这样的游戏吗?在这一讲里,我们要用火柴棒去探索变化无穷的数字世界,在有趣的游戏中,变得更聪明。
例1:右面是用火柴棒摆成的算式,但这个算式是不成立的。只要移动1根火柴棒,算式就成立了。你会移动吗?
例2:用4根火柴棒可能分别表示一些加减运算符号,然后把这4根火柴棒放到数字1至9中间去,使最终的运算结果等于100。
例3:请你下面算式再加上一根火柴棒,使它成立。
例4:右面方格里的数字,都是用火柴棒组成的。请你移动其中的1根火柴,使每一横行和竖行里的数字相加的和都相等。
练习与思考
1.移动1根火柴,使下面各题的等式成立。
2.移动两根火柴棒,使下面各等式成立。
用火柴棒可以组成一些算式,用长短一样的火柴棒也可以摆成各种图形。如果拿掉或是移动火柴,变成其他图形,非常有趣。你可以试一试。
例5:用6根火柴,照右上图摆成1个三角形。
要把这个三角形变成六角形,只准移动4根火柴,应该怎样移动? 例6:用24根火柴棒组成右边的图形。拿掉几根火柴棒可变成新的图形。
例4:上图是由4个小正方形组成的正方形。现在要移动3根火柴,使它变成3个相等的正方形,应该怎样移动?
练习与思考
1.有3个正方形都是由8根火柴组成。现在只有把这3个正方形的位置变成一下,就可以多出4个小正方形。应该如何移动?
2.用9根火柴,怎样摆放,才能摆出6个正方形来?
3.下面是用18根火柴组成的6个同样的正方形。
4.上图是由15根火柴组成的图形。请你移动2根火柴,使它变成5个同样的正方形。
5.下面是用12根火柴组成的图形。请你移动其中的3根火柴,使
它变成3个正方形。
6.上图是用11根火柴组成的房子图,移动其中的4根火柴,使它变成15个大小不等的正方形。
7.右图是用16根火柴组成的4个正方形,现在要用15根、14根、13根火柴各组成4个同样大小的正方形,应该怎样摆?
8.用12根火柴组成6个正三角形,请按下列要求移动:(1)移动2根,变成5个正三角形。(2)再移动2,变成4个正三角形。(3)再移动2,变成3个正三角形。
(4)再移动2,变成2个正三角形
答案与提示练习13
提示:有多种拿法,但至少要拿掉6根火柴。