小学三年级奥数学习计划

时间:2019-05-15 16:24:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学三年级奥数学习计划》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学三年级奥数学习计划》。

第一篇:小学三年级奥数学习计划

小学三年级奥数学习计划

三年级的奥数学习是小学奥数最重要的基础阶段,只有牢固掌握了三年级奥数最基本的知识技巧,才能有效的促进今后的数学学习。三年级是学习奥数至关重要的时期,三年级也是开拓思维的时间。孩子已经掌握了基本的计算能力,逻辑思维能力等,对图形也有一定的认识。

从三年级起,大量的奥数专题便开始有所接触,因此,在专题的学习初期一定要打下良好的基础,好多五六年级专题知识学习比较差的学生正是因为三四年级基础知识没有学好的缘故。

三年级不可小视——小升初的序幕开始慢慢拉开!它是考证的前奏、能力培养的起点、重点校培训班的开始,从三年级开始各个重点校开始通过培训班的形式筛选精英,好多孩子就会选择一些好的培训学校像新东方优能中学,提前进行培养,并且为考进重点校做准备。

1、打好计算基础

三年级奥数课本系统的介绍了四则运算及其巧算,关于数的计算是比较枯燥的内容,但它同时也是学好奥数的基础,是历次竞赛或选拔比赛中都必不可少的组成部分。

就我校各位老师教学经验表明,在二、三年级打下良好运算基础的同学,一方面使得学生今后的数学学习更加轻松,另一方面,在高年级竞赛或选拔中往往会有相当大的优势。

2、重视应用题

从三年级起,奥数课本中介绍了大量的奥数专题知识,尤其是应用题部分,是所有年级所有竞赛考试中必考的重点知识。学生一定要在各个应用题专题学习的初期打下良好的基础。

现在许多五六年级同学奥数水平提高非常困难,就是因为他们三年级的奥数专题知识掌握的不牢靠。

3、掌握正确方法

在学习计算的基础上,三年级逐步引入了基本应用题,简单图形问题等奥数知识,面对突然增大的奥数信息量,学生可以有意识的培养自己复习,总结等良好的学习习惯;

同时,三年级是学生培养自己的奥数学习方法的最好时间。在三年级接触学习大量奥数知识的前提下,有意识地培养自己的学习方法对今后的奥数学习有非常重要的帮助.

第二篇:三年级奥数

发到

三年级奥数--年龄问题

教学目标

1.掌握用线段图法来分析题中的年龄关系.2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.

知识点说明:

一、年龄问题变化关系的三个基本规律:

1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量; 3.两个人之间的年龄差不变

二、年龄问题的解题要点是:

1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系. 2.关键:抓住“年龄差”不变.

3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式. 4.陷阱:求过去、现在、将来。

年龄问题变化关系的三个基本规律: 1.两人年龄的差是不变的量; 2.两人年龄的倍数关系是变化的量;

年龄问题的解题正确率保证:验算!

例题精讲

【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁? 【解析】 这道题有两种解答方法:

方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612(岁);妈妈今年36岁,再过6年是(366)岁,也就是42岁,那时,妈妈比小卉大421230(岁).

列式:(366)(66)421

230(岁)

方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.

列式:36630(岁)

答:再过6年,小卉读初中时,妈妈比小卉大30岁.

【巩固】 小英比小明小3岁,今年他们的年龄和是老师年龄的一半,再过15年,他们的年龄和就等于老师的年龄,今年小英的年龄是多少岁?

【解析】 经过15年,小英和小明的年龄和比老师多增加15岁,所以老师今年年龄的一半是15岁,即小英和小明今年的年龄和是15岁,小英今年的年龄是(15-3)÷2=6(岁).【巩固】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?

【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”发到 的和差问题.

爸爸的年龄:(726)239(岁)妈妈的年龄:39633(岁)【巩固】 今年小宁9岁,妈妈33岁,那么再过多少年小宁的岁数是妈妈岁数的一半?

【解析】 今年小宁比妈妈小33924(岁),那么小宁永远比妈妈小24岁.几年后小宁是妈妈岁数的一半时,即妈妈年龄是小宁的2倍时,妈妈仍比小宁大24岁.这是个差倍问题.以小宁的年龄作为1倍量,妈妈年龄是2倍量,所以妈妈比小宁大的岁数也是1倍量,即1倍量代表着24岁.所以小宁24岁时是妈妈年龄的一半,因此再过24915(年).

【巩固】 6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁.问:母亲今年多少岁? 【解析】 6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66(岁).6年前母子年龄和是66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄.

母子今年年龄和: 78-6×2=66(岁),母子6年前年龄和: 66-6×2=54(岁),母亲6年前的年龄: 54÷(5+1)×5=45(岁),母亲今年的年龄: 45+6=51(岁).

【巩固】 学而思学校张老师和刘备、张飞、关羽三个学生,现在张老师的年龄刚好是这三个学生的年龄和;9年后,张老师年龄为刘备、张飞两个学生的年龄和;又3年后,张老师年龄为刘备、关羽两个学生的年龄和;再3年后,张老师年龄为张飞、关羽两个学生的年龄和.求现在各人的年龄.

【解析】 张老师刘备张飞关羽,张老师9刘备9张飞9,比较一下这两个条件,很快得到关羽的年龄是9岁;同理可以得到张飞是9312(岁),刘备是93315(岁),张老师是9121536(岁).

【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【例 2】 小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁? 【解析】 把小明的年龄看成是一份,那么爸爸的年龄是四份少2,根据和倍关系:

小明的年龄是:(53+2)÷(4+1)=11(岁),爸爸的年龄是:53-11=42(岁),小明与爸爸的年龄差是:42-11=31(岁).

【巩固】 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁? 【解析】 妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72÷(1+4+4)=8(岁),妈妈的年龄是:8×4=32(岁),爸爸和妈妈同岁为32岁.【例 3】 姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?

【分析】 用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.发到

弟弟的年龄:(404)218(岁),姐姐的年龄:18422(岁).

【例 4】 东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东、西西今年的年龄各是多少?

【分析】 东东3年后的年龄等于西西1年前的年龄,说明东东比西西小4岁; 东东3年前的年龄与西西4年后的年龄之和是25岁,所以今年东东和西西的年龄和是253424(岁),今年东东的年龄:(244)210(岁),今年西西的年龄:241014(岁).

【巩固】 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?

【解析】 兄弟二人现在的年龄和是27岁,两人的年龄差是27,哥哥现在3515(岁).(45)3(岁)

【巩固】 今年彬彬的年龄是表弟年龄的4倍,20年后,彬彬的年龄比表弟的年龄的2倍少l2岁,今年彬彬、表弟各多少岁?

【解析】 表弟今年年龄的4122(倍)对应的是:20220128(年),由此可以求出表弟今年的年龄,使问题得解.824(岁),4416(岁).所以表弟今年4岁,彬彬今年16岁.

【例 5】 父子年龄之和是45岁,再过5年,父亲的年龄正好是儿子的4倍,父子今年各多少岁?

【解析】 再过5年,父子俩一共长了10岁,那时他们的年龄之和是4510=55(岁),由于父亲的年龄是儿子的4倍,因而55岁相当于儿子年龄的41=5倍,可以先求出儿子5年后的年龄,再求出他们父子今年的年龄.

5年后的年龄和为:455255(岁)5年后儿子的年龄:55(41)11(岁)儿子今年的年龄:1156(岁),父亲今年的年龄:45639(岁)【巩固】 父子年龄之和是60岁,8年前父亲的年龄正好是儿子的3倍,问父子今年各多少岁?

【解析】 由已知条件可以得出,8年前父子年龄之和是608244(岁),又知道8年前父亲的年龄正好是儿子的3倍,由此可得:

儿子:(6082)(31)819(岁)父亲:601941(岁)【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【巩固】 王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是

18岁.王老师今年32岁,李老师今年多少岁? 【解析】 王老师比李老师大2031836(岁).故李老师今年的年龄为32626(岁).

第三篇:小学三年级奥数 29一笔画

小学三年级奥数 29一笔画

本教程共30讲

第29讲 一笔画(二)

利用一笔画原理,我们可以解决许多有趣的实际问题。例1 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由。如果能,应从哪开始走?

分析与解:我们将每个展室看成一个点,室外看成点E,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到右图。能否不重复地穿过每扇门的问题,变为右图是否一笔画问题。

右图中只有A,D两个奇点,是一笔画,所以答案是肯定的,应该从A或D展室开始走。

例1的关键是如何把一个实际问题变为判断是否一笔画问题,就像欧拉在解决哥尼斯堡七桥问题时做的那样。

例2 一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。怎样走才能使所走的行程最短?全程多少千米?

分析与解:图中共有8个奇点,必须在8个奇点间添加4条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画。在距离最近的两个奇点间添加一条连线,如左上图中虚线所示,共添加4条连线,这4条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米。走法参考右上图(走法不唯一)。

例3右图中每个小正方形的边长都是100米。小明沿线段从A点到B点,不许走重复路,他最多能走多少米?

分析与解:这道题大多数同学

都采用试画的方法,实际上可以用一笔画原理求解。首先,图中有8个奇点,在8个奇点之间至少要去掉4条线段,才能使这8个奇点变成偶点;其次,从A点出发到B点,A,B两点必须是奇点,现在A,B都是偶点,必须在与A,B连接的线段中各去掉1条线段,使A,B成为奇点。所以至少要去掉6条线段,也就是最多能走1800米,走法如下页上图。或

例2与例3的图中各有8个奇点,都是通过减少奇点个数,将多笔画变成一笔画的问题,但它们采用的方法却完全不同。因为例2中只要求走遍所有的线段,没有要求不能重复,所以通过添加线段的方法(实际是重复走添加线段的这段路),将奇点变为偶点,使多笔画变成一笔画。而在例3中,要求不能走重复的路,所以不能添加线段,只能通过减少线段的方法,将奇点变为偶点,使多笔画变成一笔画。区别就在于能否重复走!能“重复”就“添线”,不能“重复”就“减线”。

例4在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D。已知它们的爬速相同,哪只蚂蚁能获胜?

分析与解:许多同学看不出这

是一笔画问题,但利用一笔画的知识,能非常巧妙地解答这道题。这道题只要求爬过所有的棱,没要求不能重复。可是两只蚂蚁爬速相同,如果一只不重复地爬遍所有的棱,而另一只必须重复爬某些棱,那么前一只蚂蚁爬的路程短,自然先到达D点,因而获胜。问题变为从B到D与从E到D哪个是一笔画问题。图中只有E,D两个奇点,所以从E到D可以一笔画出,而从B到D却不能,因此E点的蚂蚁获胜。

练习29

1.邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?

2.有一个邮局,负责21个村庄的投递工作,右上图中的点表示村庄,线段表示道路。邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?

3.一只木箱的长、宽、高分别为5,4,3厘米(见右图),有一只甲虫从A点出发,沿棱爬行,每条棱不允许重复,则甲虫回到A点时,最多能爬行多少厘米?

答案与提示 练习29

1.50千米,走法见左下图。

2.见右上图。

3.最多爬行34厘米。

提示:8个点都是奇点,故至少要少爬4条棱。少爬3厘米的棱和4厘米的棱各两条是最合理的(见右图)。

第四篇:小学奥数三年级 抽屉原理

2012小学奥数三年级参考资料

抽屉原理

【知识与方法】

把4个苹果放到3个抽屉中去,那么,至少有一个抽屉中放有两个苹果。我们要重点理解什么叫至少?就是其中必有一个抽屉必须满足的最低条件。把它进一步推广,就可以得到数学里重要的抽屉原理。

用抽屉原理解决问题,小朋友一定要注意哪些是“抽屉”,哪些是“苹果”,并且要应用所学的数学知识制造抽屉,巧妙地加以应用,这样看上去十分复杂,甚至无从下手的题目才能顺利地解答。

例题1:把5个苹果任意放在4个抽屉里,其中一个抽屉至少放多少个苹果?

思维点拨: 把5个苹果放在4个抽屉里有6种不同的方法。

注:放的抽屉不同但个数相同时只算一种放法,一共有6种放法,分别是(0、0、0、5);(0、0、1、4);(0、1、1、3);(0、0、2、3);(0、l、2、2);(1、l、1、2)结论:发现总能找到一个抽屉里放了至少2个苹果。

模仿练习

1、(1)三个小朋友在一起玩,其中必有两个小朋友都是男孩或都是女孩,这是对的吗?为什么?

(2)学前班有40名小朋友,老师最少拿多少本书随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本书?

例题2:任意的25个人中,至少有几个人的属相相同?

思维点拨: 根据已知,生肖共12种,把12个月看成12个抽屉。有25个苹果,放进12个抽屉:25÷12-=2(人)„„1(人),所以至少有2+1=3(名)学生是同年同月出生的。

模仿练习2

(1)有27个五年级学生,他们都是1 1岁,至少有多少个学生在同一个月里过生日?

(2)四(3)班有50名学生,其中年龄最大的11岁,最小的l0岁,那么这个班至少有几名学生是同年同月出生的?

例题3:有40辆客车,各种客车座位数不同,最少的有26座,最多的有44座,这些客车中至少有多少辆车的座位是相同的?

思维点拨:已知汽车的座位最少的有26座,最多的有44座,共有44—26+l=19(种)不同座位数的汽车。把这l9种不同座位数的汽车看作l9个抽屉,40辆汽车看作40个苹果,每只抽屉中放2个苹果,l9个抽屉中共放38个苹果,还有40一38=2(个)苹果放入相应的抽屉中,至少有一个抽屉中有3个苹果,也就是说,至少有3辆客车的座位是相同的。

模仿练习

3、(1)有40名学生,在一次考试中,最少的考76分,最多的考95分,76分到95分之间每个分段都有人考,这些学生中至少有多少人的分是相同的?

(2)红、白、黑三色袜子各5双,散放在桌面上,闭上眼睛一次至少要拿多少只,才能保证得到同样颜色的一双袜子?

例题4: 黑色、白色、黄色的筷子各8根,混杂放在一起.黑暗中想从这些筷子中取出颜色不同的两双筷子,问至少要取多少根才能保证达到要求。

思维点拨:最坏的情况是连续取8根,都同色,还剩两种颜色,再取2根,最坏的情况是又不同色,只要再取1根,就可以保证取出的筷子中有两双不同色。

模仿练习4(1)一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只,才能保证每种颜色至少有一只?

(2)一布袋中有红、黄、黑、白四种颜色的小玻璃球各1 0个,每个小球的形状、大小完全相同,问一次至少取出多少个,才能保证其中至少有四个颜色相同的小球?

例题

5、盒子里混装着5个白色球和4个红色球,要想保证一次能拿出两个同颜色的球,至少要拿出多少个球?

思路点拨:如果每次拿2个球会有三种情况:(1)一个白球,一个红球;(2)两个白球;(3)两个红球。不能保证一次能拿出两个同颜色的球。

如果每次拿3个球会有四种情况:(1)一个白球,两个红球;(2)一个红球,两个白球;(3)三个白球;(4)三个红球。这样每次都能保证拿出两个同颜色的球,所以至少要拿出3个球。

模仿练习5:

1,箱子里装着6个苹果和8个梨,要保证一次能拿出两个同样的水果,至少要拿出多少个水果?

2,书箱里混装着3本故事书和5本科技书,要保证一次能拿出两本同样的

书,至少要拿出多少本书?

【巩固与提高】

A级

1、有人说:“把7个苹果,随意放在3个抽屉里,一定能找到一个抽屉里有3个或3个以上的苹果。”这句话对吗?

2、一只口袋里有“大白兔”和“金丝猴”两种糖若干粒,你至少要抓出多少粒,才会保证有一种糖不少于2粒?

3、五(3)班共有学生53人,他们年龄相同,请你证明,至少有两个小朋友出生在同一周内。

4,书箱里混装着3本故事书和5本科技书,要保证一次一定能拿出2本故事书,至少要拿出多少本书?

5,抽屉里放着红、绿、黄三种颜色的球各3只,一次至少摸出多少只才能保证每种颜色至少有一只?

B级

6、某小学学生的年龄最大为l 3岁,最小为6岁,至少需从中挑选多少位同学,就一定能使挑出的同学中有两位同学岁数相同?

7,书箱里放着4本故事书,3本连环画,2本文艺书。一次至少取出多少本书,才能保证每种书至少有一本?

8、参加数学竞赛的210名同龄同学中,一定有多少名同学是同一个月出生的?

C级

9、在一个布袋里装有塑料玩具若干个,其中小猪20件、小狗20件、小猫20件、小熊20件,一次要取出多少件玩具,才能保证其中至少有8件玩具相同?

第五篇:小学三年级奥数题及答案

小学三年级奥数题及答案

1、工程问题

绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天? 解答:200÷4=50(棵)

(200+400)÷50=12(天)

【小结】

归一思想.先求出一天种多少棵树,再求共需几天完成任务.单一数:200÷4=50(棵),总共的天数是:(200+400)÷50=12(天).

3、上楼梯问题

某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?

解答:上一层楼梯需要:48÷(4-1)=16(秒)从4楼走到8楼共走:8-4=4(层)楼梯

还需要的时间:16×4=64(秒)

答:还需要64秒才能到达8层。

4、楼梯问题

晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?

解:每一层楼梯有:36÷(3-1)=18(级台阶)

晶晶从1层走到6层需要走:18×(6-1)=90(级)台阶。答:晶晶从第1层走到第6层需要走90级台阶。

5、黑白棋子

有黑白两种棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的与有3枚黑子的堆数相等。那么在全部棋子中,白子共有多少枚?

解答:只有1枚白子的共27堆,说明了在分成3枚一份 中一白二黑的有27堆;有2枚或3枚黑子的共42堆,就是说有 三枚黑子的有42-27=15堆;所以 三枚白子的是15堆:还剩一黑二白的是 100-27-15-15=43堆:

白子共有:43×2+15×3=158(枚)。

6、找规律

有一列由三个数组成的数组,它们依次是(1,5,10);(2,10,20);(3,15,30);„„。问第 99个数组内三个数的和是多少?

解答:99×5=495 99×10=990 99+495+990=1584 【小结】观察每一组中对应位置上的数,每组第一个是1、2、3.....的自然数列,第二个是5、10、15......分别是它们各组中第一个数的5 倍,第三个10、20、30......分别是它们各组中第一个数的10 倍;所以,第99 组中的数应该是:99、99×5=495、99×10=990,三个数的和 99+495+990=1584

7、页码问题

一本书的页码从1至62,即共有62页.在把这本书的各页的页码累加起来时,有一个页码被错误地多加了一次.结果,得到的和数为2000 .问:这个被多加了一次的页码是几?

8、平均重量

小明家先后买了两批小猪,养到今年10月。第一批的3头每头重66千克,第二批的5头每头重42千克。小明家养的猪平均多重? 解答:两批猪的总重量为: 66×3+42×5=408(千克)。

两批猪的头数为3+5=8(头),故平均每头猪重 408÷8=51(千克)。答:平均每头猪重51千克。

注意,在上例中不能这样来求每头猪的平均重量:(66+42)÷2=54(千克)。

上式求出的是两批猪的“平均重量的平均数”,而不是(3+5=)8头猪的平均重量。这是刚接触平均数的同学最容易犯的错误!

9、平均数

有六个数,它们的平均数是25,前三个数的平均数是21,后四个数的平均数是32,那么第三个数是多少?

解答: 21×3+32×4=63+128=191 191-150=41 【小结】 6 个数的总和为25×6=150,前三个数的和加上后四个数的和为

21×3+32×4=63+128=191,第三个数重叠了,多算了一次,那么第三个数为 191-150=41

10、盈亏问题

三年级的老师给小朋友分糖果,如果每位同学分4颗,发现多了3颗,如果每位同学分5颗,发现少了2颗。问有多少个小朋友?有多少颗糖? 解答:(3+2)÷(5-4)=5÷1=5(位)„人数 4×5+3=20+3=23(颗)„„糖 或5×5-2=25-2=23(颗)

老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了 14本;如果每人分7本,则多了2本;优秀少先队员有几人?买来多少本练习本?

11、巧求面积

一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?

12、逻辑推理

装了神秘礼物的方形箱子上有一幅图画,要在图中的七个小区中分别涂上颜色,要求每个小区涂一种颜色,相邻的小区颜色不能相同,并且使用的颜色最少才能打开箱子,那么最少要用多少种颜色?

将原图编号如有上图,看周边的六个小区,奇数号区与偶数号区交替排列,那么可以用两种颜色将它们区分开来,而 号和周边小区都相邻,只能用第三种颜色。也就是说,最少需要三种颜色。

13、身高

三年级二班共有42名同学,全班平均身高为132厘米,其中女生有18人,平均身高为136厘米。问:男生平均身高是多少? 解答:全班身高的总数为 132×42=5544(厘米),女生身高总数为 136×18=2448(厘米),男生有42-18=24(人),身高总数为 5544-2448=3096(厘米),男生平均身高为 3096÷24=129(厘米)。

综合列式:

(132×42-136×18)÷(42-18)=129(厘米)。

答:男生平均身高为129厘米。

14、做题

一个学生为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞赛训练题。星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道。那么,星期日要做几道题才能达到自己规定的要求?

分析:要先求出每周规定做的题目总数,然后求出星期一至星期六已做的题目数。两者相减就是星期日要完成的题目数。

每周要完成的题目总数是4×7=28(道)。星期一至星期六已做题目3×3+13=22(道),所以,星期日要完成28-22=6(道)。

解:4×7-(3×3+13)=6(道)。

答:星期日要做6道题。

15、做题

有位小学生特别喜爱数学,他要求自己在一周内平均每天练8道数学题。星期一至星期四每天都已练9道,星期五参加钢琴比赛没有练数学,星期六练10道题,那么,这个星期日要练几道才达到要求?

分析 不妨先算出每周按要求完成的总数,然后据已练的题算出还缺的数目,这就是要在星期日完成的题数。

解每周的总数 8× 7=56(道)

已完成的数 9×4+10=46(道)

星期日的数 56-46=10(道)

答 按要求在星期日要练10道数学题。

16、平均年龄

有2个班,每班的学生数相等。其中一个班平均每人9岁,另一个班平均每人11岁。那么这两个班的学生平均每人几岁?

分析 “两个班的学生平均”年龄按理应把每个人的年龄加起来,这样才可算出总和。但是人数根本不知道,怎么办呢?所以要有新思路才能解此问题。

不妨假设每班有30人,则总岁数为9×30+11×30=600(岁),总人数为30+30=60(人),平均年龄为600÷60=10(岁)。

如果设每班有10人,就可列式计算如下:

(9×10+11×10)÷(10+10)=200÷20 =10(岁)

那么更简单些,可设每班1人,则

(9×1+11×1)÷(1+1)=20÷2 =10(岁)

三种假设得的结果都相等,因为其中有一个特殊条件,即:两班学生每班人数都相同。

这是一种求平均数的特殊情况。两班的人数要是不相同就不能简单地对两种年龄求平均数。

解 由于两班中每班人数相同,可在各班抽出一人,并且年龄为各班的平均数。

(9+11)÷(1+1)=20÷2 =10(岁)答 两班学生平均年龄为10岁。

17、平均速度

一条大河上游与下游的两个码头相距240千米,一艘航船顺流而下的速度为每小时航行30千米,逆流而上的速度为每小时航行20千米。那么这艘船在两码头之间往返一次的平均速度是多大?

分析航行中的速度有两种,然而所求的平均速度并非是这两种速度之和除以2。

按往返一次期间的平均速度,就要分别计算总航程与经历的总时间,然后按平均速度的意义求出答案来。

解总航程 240×2=480(千米)

总时间 240÷30+240÷20 =8+12 =20(小时)平均速度 480÷20=24(千米)

答 往返一次的平均速度为每小时航行24千米。

有一头母猪产下12头猪娃,先产下的6头恰好每头都重3.5千克,后产下的3头每头都重3千克,最后3头每头都重2千克。那么,这群猪娃平均每头重多少千克?

分析 虽然只有3种重量,却不是只有3头猪。所以要先计算12头猪娃的总重量,再平均分配成12份,这才是每头的平均重量。

解 3.5×6+3×3+2×3 =21+9+6 =36(千克)36÷12=3(千克)

答 这群猪娃平均每头重3千克。

18、平均成绩

小敏期末考试,数学92分,语文90分,英语成绩比这三门的平均成绩高4分。问:英语得了多少分?

分析:英语比平均成绩高的这4分,是“补”给了数学和语文,所以三门功课的平均成绩为(92+90+4)÷2=93(分),由此可求出英语成绩。

解:(92+92+4)÷2+4=97(分)。

答:英语得了97分。

#、一小组六个同学在某次数学考试中,分别为98分、87分、93分、86分、88分、94分。他们的平均成绩是多少?

总成绩=98+87+93+86+88+94=546(分)。平均成绩=546÷6=91(分)#、一条路长100米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?

路分成100÷10=10段,共栽树10+1=11棵。

#、12棵柳树排成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树? 3×(12-1)=33棵。

#、一根200厘米长的木条,要锯成10厘米长的小段,需要锯几次? 200÷10=20段,20-1=19次。

4、蚂蚁爬树枝,每上一节需要10秒钟,从第一节爬到第13节需要多少分钟? 从第一节到第13节需10×(13-1)=120秒,120÷60=2分。

5、在花圃的周围方式菊花,每隔1米放1盆花。花圃周围共20米长。需放多少盆菊花? 20÷1×1=20盆

6、从发电厂到闹市区一共有250根电线杆,每相邻两根电线杆之间是30米。从发电厂到闹市区有多远?

30×(250-1)=7470米。

8、一个人沿着大提走了全长的一半后,又走了剩下的一半,还剩下1千米,问:大提全长多少千米?

1×2×2=4千米

9、甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。问:这批零件有多少个?(25+10)×2=70个,(70+10)×2=160个。综合算式:【(25+10)×2+10】×2=160个

10、一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问它几天可以长到4厘米?

16÷2÷2=4(厘米),16-1-1=14(天)

11、一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出180千克,桶中还剩下80千克。桶里原来有水多少千克? 180+80=260(千克),260×2-30=490(千克),490×2=980(千克)。

12、甲、乙两书架共有图书200本,甲书架的图书数比乙书架的3倍少16本。甲、乙两书架上各有图书多少本? 答案:乙:(200+16)÷(3+1)=54(本);甲:54×3-16=146(本)。

13、小燕买一套衣服用去185元,问上衣和裤子各多少元? 裤子:(185-5)÷(2+1)=60(元); 上衣:60×2+5=125(元)。

14、甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?

如果每个人的年龄都扩大到2倍,那么三人年龄的和是94×2=188。如果甲再减少5岁,乙再减少19岁,那么三人的年龄的和是188-5-19=164(岁),这时甲的年龄是丙的一半,即丙的年龄是甲的两倍。同样,这时丙的年龄也是乙两倍。所以这时甲、乙的年龄都是164÷(1+1+2)=41(岁),即原来丙的年龄是41岁。甲原来的年龄是(41+5)÷2=23(岁),乙原来的年龄是(41+19)÷2=30(岁)。

15、小明、小华捉完鱼。小明说:“如果你把你捉的鱼给我1条,我的鱼就是你的2倍。如果我给你1条,咱们就一样多了。“请算出两个各捉了多少条鱼。小明比小华多1×2=2(条)。如果小华给小明1条鱼,那么小明比小华多2+1×2=4(条),这时小华有鱼4÷(2-1)=4(条)。原来小华有鱼4+1=5(条),原来小明有鱼5+2=7(条)。

16、小芳去文具店买了13本语文书,8本算术书,共用去10元。已知6本语文本的价钱与4本算术本的价钱相等。

问:1本语文本、1本算术本各多少钱? 8÷4×6=12,即8本算术本与12本语文体价钱相等。所以1本语文本值10×100÷(13+12)=40(分),1本算术本值40×6÷4=60(分),即1本语文本4角,1本算术本6角。

17、找规律,在括号内填入适当的数.75,3,74,3,73,3,(),()。答案:72,3。

18、找规律,在括号内填入适当的数.1,4,5,4,9,4,(),()。

奇数项构成数列1,5,9„„,每一项比前一项多4;偶数项都是4,所以应填13,4

19、找规律,在括号内填入适当的数.3,2,6,2,12,2,(),()。24,2。20、找规律,在括号内填入适当的数.76,2,75,3,74,4,(),()。答案:将原数列拆分成两列,应填:73,5。

21、找规律,在括号内填入适当的数.2,3,4,5,8,7,(),()。答案:将原数列拆分成两列,应填:16,9。

22.、规律,在括号内填入适当的数.3,6,8,16,18,(),()。

答案:6=3×2,16=8×2,即偶数项是它前面的奇数项的2倍;又8=6+2,18=16+2,即从第三项起,奇数项比它前面的偶数项多2.所以应填:36,38。

23、找规律,在括号内填入适当的数.1,6,7,12,13,18,19,(),()。答案:将原数列拆分成两列,应填:24,25。

24、找规律,在括号内填入适当的数.1,4,3,8,5,12,7,()。

答案:奇数项构成数列1,3,5,7,„,每一项比前一项多2;偶数项构成数列4,8,12,„,每一项比前一项多4,所以应填:16。

25、找规律,在括号内填入适当的数.0,1,3,8,21,55,(),()。答案:144,377。

26、A、B、C、D四人在一场比赛中得了前4名。已知D的名次不是最高,但它比B、C都高,而C的名次也不比B高。问:他们各是第几名?

答案:D名次不是最高,但比B、C高,所以它是第2名,A是第1名。C的名次不比B高,所以B是第3名,C是第4名。

27、一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。问:一头象的重量等于几头小猪的重量? 答案:4×3×3=36,所以一头象的重量等于36头小猪的重量。

28、甲、乙、丙三人,一个人喜欢看足球,一个人喜欢看拳击,一个人喜欢看篮球。已知甲不爱看篮球,丙既不喜欢看篮球又不喜欢看足球。现有足球、拳击、篮球比赛的入场券各一张。请根据他们的爱好,把票分给他们。

答案:丙不喜欢看篮球与足球,应将拳击入场券给丙。甲不喜欢看篮球,应将足球入场券给甲。最后,应将篮球入场券给乙。

29、有一堆铁块和铜块,每块铁块重量完全一样,每块铜块的重量也完全一样。3块铁快和5块铜块共重210克。4块铁块和10块铜块共重380克。问:每一块铁块、每一块铜块各重多少?

答案:4块铁块和10块铜块共重380克,所以2块铁块和5块铜块共重380÷2=190(克)。而3块铁块和5块铜块共重210克,所以1块铁块重210-190=20(克)。1铜块重(190-20×2)÷5=30(克)。

30、甲、乙、丙三人中有一人做了一件好事。他们各自都说了一句话,而其中只有一句是真的。甲说:“是乙做的。” 乙说:“不是我做的。” 丙说:“也不是我做的。” 问:到底是谁做的好事?

答案:如果是甲做的好事,那么乙、丙的话都是真的,与只有一句是真的矛盾。如果是乙做的好事,那么甲、丙的话都是真的,也产生矛盾。好事是丙做的,这时甲、丙的话都是错的,只有乙的话是真的,所以好事是丙做的。

31、一张长8分米、宽3分米的长方形纸板,在四个角落上各截去一个边长为2分米的正方形,所剩下的部分的周长是多少? 答:(8+3)×2=22(分米)

32、计算 :18+19+20+21+22+23 原式=(18+23)×6÷2=123

33、计算 :100+102+104+106+108+110+112+114 原式=(100+114)×8÷2=856 34、995+996+997+998+999 原式=(995+999)×5÷2=4985

下载小学三年级奥数学习计划word格式文档
下载小学三年级奥数学习计划.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学三年级奥数题001-100上海

    01、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。 02、7年前,***年龄是儿子的6倍,儿子今年12岁,妈妈今年( )岁。03、同学们进行广播操比赛,全班正好排......

    小学三年级奥数题100道

    三年级奥数集训 姓名 2016.3.5 1 练习1 1、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。 2、7年前,妈妈的年龄是儿子的6倍,儿子今年12岁,妈妈今年( )......

    小学数学奥数基础教程(三年级)--14

    小学数学奥数基础教程(三年级) --第14讲 本教程共30讲 第14讲 火柴棍游戏(二) 火柴棍游戏的另一种形式是摆算式。 用火柴棍可以摆出下列数字和符号: 这些数字和符号,在去掉或......

    三年级奥数活动总结

    三年级“智慧杯”数学兴趣活动总结 三年级:杨清 林明 这个学期的奥数小组活动,学生们的学习兴趣空前高涨,许多学生要求能有机会再进行学习,并且在这些兴趣者的指引下有不少学生......

    三年级奥数《有余除法》

    教学设计方案 XueDa PPTS Learning Center 第四讲:有余除法 【知识要点】: 把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全......

    三年级下册奥数教案

    三年级下册奥数教案 导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认......

    三年级奥数《重叠问题》

    教学设计方案 XueDa PPTS Learning Center 第九讲:重叠问题 【知识要点】: 三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将2......

    三年级奥数应用题教案

    2015.12.19 三年级周润泽 应用题(一) 教学目标:1、熟悉解答应用题的步骤; 读题,弄清题意,找出条件和问题; 分析题中的数量关系,找到解题方法; 列出算式,算出结果,写出答案2、掌握应用题......