三年级奥数教学方案

时间:2019-05-15 04:34:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《三年级奥数教学方案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《三年级奥数教学方案》。

第一篇:三年级奥数教学方案

小三奥数教学方案

选用教材:《举一反三(AB版)》 选用本教材的理由:

①畅销十年,获得各界良好的口碑;

②本书推崇融会贯通、触类旁通的学习方法; ③训练学生多角度思考问题的能力;

④各类专题难度梯度层次分明,使学生更容易接触,并以阶梯式深入;

⑤本书内容贴近学生日常生活,把对奥数的学习与真实生活情景相结合,使其融汇一体; ⑥新增近年来的热点题型,满足不同学习程度的学生的要求。课程安排说明:根据实际教学情况和考虑到学生们的学习能力,教师的教学不会完全按照书本目录的顺序进行,而是会进行微调,调整原则为“合并同类项”和难易相当,目的是使教学内容更加紧凑有律、有序可循,同时学生也会更容易进入教学过程中来。整个教学过程主要是由教师带领学生有计划、有规律地学习,抓住每章重点,找出章与章之间的联系,从而形成一个由点、线、面形成的知识体系。此外,在教授学生学习和解题技巧的过程中,不断开发和提升其思维与学习能力,使学生在今后能自主学习、思考,并且举一反三!关于本书中涉及到的已学知识,在本次教学中会作为旧知识点加以复习巩固。

教学步骤:书本知识(扩充必要的课外知识)+随堂练习+知识考核(主要以B版题目为主)具体教学安排:

1、数数图形 使学生有次序、有条理、有规律地弄清图形(线段、角、三角形)中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新图形,最后求出它们的总和。

2、寻找规律

使学生找到以一定的顺序排列的一列数中的排列规律。介绍该内容找规律的方法:不仅可以从相邻两数的和、差考虑,还能从积和商考虑。

3、填数游戏

此类趣味题的解题方法是:确定图形中关键位置应填几,一般是顶点或中间位置,同时把所填空与所给数字联系起来。

4、巧添符号

对于这类问题,介绍学生两种主要的解题方法:一是倒推法;一是凑数法。

5、周期问题

介绍此类问题的解决方法是利用余数的知识:先审题,后找出不断重复出现的规律,然后利用除法求出余数,最后根据余数求出正确结果。

6、植树(间隔)问题

间隔问题在这里以植树问题为主要讲解的例子。使学生掌握三个基本植树问题的公式:①棵树=段数+1;②棵树=段数-1;③棵树=段数

7、数学趣题

使学生充分读懂题意,并且进行分析思考,运用基础知识和聪明才智解决问题。

8、数字趣谈

该部分内容大都是关于自然数列方面的计数问题,其方法一般采用尝试探索法和分类统计法。

9、简单枚举

强调用枚举法解题时,要注意无重复、无遗漏,即有次序、有规律地进行枚举。

10、算式之谜

介绍此类解题方法是推理加尝试:把握已知数字与所缺数字之间的关系,然后进行先观察,后推理,再尝试等步骤。

11、文字之谜

让学生了解文字算式谜与添加运算符号、填竖式的步骤与方法基本上是一样的。

12、加减巧算

主要介绍巧算方法为“凑整法”。

13、有余除法

介绍此类解题关键是先确定余数,然后确定除数,最后根据被除数、除数、商和余数之间的关系求被除数。记住两个重要公式:①余数必须小于除数;②被除数=商×除数+余数

14、乘法速算

介绍多位数与一些特殊的数相乘的简便计算方法。特别介绍两种特殊方法:一是先拆数再扩整;一是两头一拉,中间相加。

14、乘除巧算

使学生牢记一些特殊计算结果,同时掌握乘法交换律、乘法结合律和乘法分配律等,让学生善于运用运算定律,提高计算能力。

16、和差问题

介绍此类问题的解决方法主要是假设法,同时结合线段图进行分析。此外,掌握数量关系式:①(和+差)÷2=大数;②(和—差)÷2=小数

17、和倍问题

介绍解决此类问题的关键是找出两数的和以及与其对应的倍数和,从而求出1倍数,再求出几倍数。掌握几个数量关系表达式:①两数和÷(倍数+1)=小数(1倍数); ②小数×倍数=大数(几倍数);③两数和—小数=大数

18、差倍问题(一、二)

使学生找出解决差倍问题与和倍问题的类似方法,充分利用线段图帮助分析。掌握几个数量关系式:①两数差÷(倍数—1)=小数(1倍数);②较小的数×倍数=大数(几倍数)

19、年龄问题

该类型的题目是和差及差倍问题的综合。解决该问题要让学生知道:两个不同年龄的人的年龄差始终不变,但两人年龄的倍数关系却在不断变化。故,使学生抓住“差不变”的特点,利用和差和差倍等知识解决此类问题。20、解决问题

(一)使学生在分析应用题的数量关系时,从条件出发,或者从问题出发找到必需的条件。在解答时,根据题目中的数量关系灵活运用以上两种方式。

21、平均数问题(一、二)

使学生了解平均数即“移多补少”,使其掌握公式:总数量÷总分数=平均数

22、解决问题

(二)在该部分内容中,涉及到了平均的概念,所以要让学生了解平均概念的同时,分析题目,掌握数量关系,判断条件和条件、条件和问题之间的关系。

23、错中求解

介绍此类问题的解决办法要采用倒推的方法,从错误的结果入手,并利用和差的变化求出加数或被减数、减数,利用积、商的变化求出因数或被除数、除数。

24、还原问题

介绍此类问题的方法一般采用倒推法,同时可以利用线段图、表格来帮助理解题意。

25、对应解题

介绍解决此类问题的方法:通常先把题目中的数量关系转化为等式,并按顺序编号,观察、比较对应关系的变化。

26、等量代换

介绍等量代换的基本方法:根据已知条件和未知条件之间的关系,用一个未知数量代替另一个未知数量,从而找出解决方法。

27、简单推理(一、二)

在简单推理

(一)中,使学生认真分析等式中几个图形之间的关系,再利用等量代换及消去法等方法进行解答;在简单推理

(二)中,解决问题的方法为:先假设一个结论正确,然后验证它是否符合所给条件,若没有矛盾,则证明推理正确,否则再换一个结论来验证。

28、假设解题

让学生了解解决此类题型的方法是:依照已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。

29、火柴游戏

使学生开动脑筋,从不同的角度进行对问题的充分思考。30、重叠问题

使学生掌握解决此类问题要运用到的一个重要原理——包含与排除原理,必要时可以借助示意图进行思考。

31、盈亏问题

使学生掌握解决此类问题的基本方法:份数=(盈+亏)÷两次分配数的差。此外,介绍解决特殊问题,如“两盈”的解决方法:两次盈数的差÷两次分配数的差=参与分配的对象的总数。

32、巧求周长(一、二)

让学生在面对复杂不规则图形求其周长时进行图形的割补,使复杂图形变成易于求其周长的长方形或正方形。并且使学生知道,分割(不补)后的周长比原周长长,反之,合成后的周长比原周长短。

33、面积计算

复习长方形和正方形面积计算的公式。此外使学生学会使用辅助线或运用割补、转化等技巧来计算复杂长方形和正方形的面积。

34、最佳安排

使学生在进行最佳安排时考虑以下几点:①要做哪几件事;②做每件事需要的时间;③弄清楚所做事情的先后顺序,即先做什么,后做什么,哪些事可以同时做。

35、抽屉原理

解决此类问题过程中,使学生注意哪些是“抽屉”,哪些是事物。

36、一题多解

该部分内容针对题目的具体情况,确定学生的思维起点,是他们沿着不同的思考方向,找到不同的解决办法。同时,在寻求一题多解时,还应该特别注意选择解决问题的简便方法和最佳途径。

第二篇:三年级奥数

发到

三年级奥数--年龄问题

教学目标

1.掌握用线段图法来分析题中的年龄关系.2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.

知识点说明:

一、年龄问题变化关系的三个基本规律:

1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量; 3.两个人之间的年龄差不变

二、年龄问题的解题要点是:

1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系. 2.关键:抓住“年龄差”不变.

3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式. 4.陷阱:求过去、现在、将来。

年龄问题变化关系的三个基本规律: 1.两人年龄的差是不变的量; 2.两人年龄的倍数关系是变化的量;

年龄问题的解题正确率保证:验算!

例题精讲

【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁? 【解析】 这道题有两种解答方法:

方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612(岁);妈妈今年36岁,再过6年是(366)岁,也就是42岁,那时,妈妈比小卉大421230(岁).

列式:(366)(66)421

230(岁)

方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.

列式:36630(岁)

答:再过6年,小卉读初中时,妈妈比小卉大30岁.

【巩固】 小英比小明小3岁,今年他们的年龄和是老师年龄的一半,再过15年,他们的年龄和就等于老师的年龄,今年小英的年龄是多少岁?

【解析】 经过15年,小英和小明的年龄和比老师多增加15岁,所以老师今年年龄的一半是15岁,即小英和小明今年的年龄和是15岁,小英今年的年龄是(15-3)÷2=6(岁).【巩固】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?

【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”发到 的和差问题.

爸爸的年龄:(726)239(岁)妈妈的年龄:39633(岁)【巩固】 今年小宁9岁,妈妈33岁,那么再过多少年小宁的岁数是妈妈岁数的一半?

【解析】 今年小宁比妈妈小33924(岁),那么小宁永远比妈妈小24岁.几年后小宁是妈妈岁数的一半时,即妈妈年龄是小宁的2倍时,妈妈仍比小宁大24岁.这是个差倍问题.以小宁的年龄作为1倍量,妈妈年龄是2倍量,所以妈妈比小宁大的岁数也是1倍量,即1倍量代表着24岁.所以小宁24岁时是妈妈年龄的一半,因此再过24915(年).

【巩固】 6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁.问:母亲今年多少岁? 【解析】 6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66(岁).6年前母子年龄和是66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄.

母子今年年龄和: 78-6×2=66(岁),母子6年前年龄和: 66-6×2=54(岁),母亲6年前的年龄: 54÷(5+1)×5=45(岁),母亲今年的年龄: 45+6=51(岁).

【巩固】 学而思学校张老师和刘备、张飞、关羽三个学生,现在张老师的年龄刚好是这三个学生的年龄和;9年后,张老师年龄为刘备、张飞两个学生的年龄和;又3年后,张老师年龄为刘备、关羽两个学生的年龄和;再3年后,张老师年龄为张飞、关羽两个学生的年龄和.求现在各人的年龄.

【解析】 张老师刘备张飞关羽,张老师9刘备9张飞9,比较一下这两个条件,很快得到关羽的年龄是9岁;同理可以得到张飞是9312(岁),刘备是93315(岁),张老师是9121536(岁).

【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【例 2】 小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁? 【解析】 把小明的年龄看成是一份,那么爸爸的年龄是四份少2,根据和倍关系:

小明的年龄是:(53+2)÷(4+1)=11(岁),爸爸的年龄是:53-11=42(岁),小明与爸爸的年龄差是:42-11=31(岁).

【巩固】 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁? 【解析】 妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72÷(1+4+4)=8(岁),妈妈的年龄是:8×4=32(岁),爸爸和妈妈同岁为32岁.【例 3】 姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?

【分析】 用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.发到

弟弟的年龄:(404)218(岁),姐姐的年龄:18422(岁).

【例 4】 东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东、西西今年的年龄各是多少?

【分析】 东东3年后的年龄等于西西1年前的年龄,说明东东比西西小4岁; 东东3年前的年龄与西西4年后的年龄之和是25岁,所以今年东东和西西的年龄和是253424(岁),今年东东的年龄:(244)210(岁),今年西西的年龄:241014(岁).

【巩固】 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?

【解析】 兄弟二人现在的年龄和是27岁,两人的年龄差是27,哥哥现在3515(岁).(45)3(岁)

【巩固】 今年彬彬的年龄是表弟年龄的4倍,20年后,彬彬的年龄比表弟的年龄的2倍少l2岁,今年彬彬、表弟各多少岁?

【解析】 表弟今年年龄的4122(倍)对应的是:20220128(年),由此可以求出表弟今年的年龄,使问题得解.824(岁),4416(岁).所以表弟今年4岁,彬彬今年16岁.

【例 5】 父子年龄之和是45岁,再过5年,父亲的年龄正好是儿子的4倍,父子今年各多少岁?

【解析】 再过5年,父子俩一共长了10岁,那时他们的年龄之和是4510=55(岁),由于父亲的年龄是儿子的4倍,因而55岁相当于儿子年龄的41=5倍,可以先求出儿子5年后的年龄,再求出他们父子今年的年龄.

5年后的年龄和为:455255(岁)5年后儿子的年龄:55(41)11(岁)儿子今年的年龄:1156(岁),父亲今年的年龄:45639(岁)【巩固】 父子年龄之和是60岁,8年前父亲的年龄正好是儿子的3倍,问父子今年各多少岁?

【解析】 由已知条件可以得出,8年前父子年龄之和是608244(岁),又知道8年前父亲的年龄正好是儿子的3倍,由此可得:

儿子:(6082)(31)819(岁)父亲:601941(岁)【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【巩固】 王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是

18岁.王老师今年32岁,李老师今年多少岁? 【解析】 王老师比李老师大2031836(岁).故李老师今年的年龄为32626(岁).

第三篇:三年级奥数活动总结

三年级“智慧杯”数学兴趣活动总结

三年级:杨清

林明

这个学期的奥数小组活动,学生们的学习兴趣空前高涨,许多学生要求能有机会再进行学习,并且在这些兴趣者的指引下有不少学生在学习中进行了小组学习。通过本学期学校的组织,我很快认识到组建兴趣小组的重要性,以下就近期的心得作如下总结:

一、培养了学生的对数学的极大兴趣

有参加兴趣小组的同学都有这么一个感受:就是以前做数学或许只是应付老师的作业,有时甚至是为了向爸爸妈妈“交差”。但通过学习他们意识到他们不再是被动的而是变成主动的学习,他们的学习能够自觉完成了而且还能头头是道地向同学介绍他所学习到的知识。在他们的指引下更多的学生参加了兴趣小组。

二、培养学生的知识面

在这次的兴趣小组中不但输入了数学的知识而且更多的是讲述一些数学的相关知识,很多同学在数学知识的学习过程中丰富了语文的功底,使他们的知识面得到很大的拓展。

三、增加了实践的机会

由于兴趣小组不仅有室内的理论学习而且还参与了实践,所以给很多同学以动手的机会,使他们认识到数学并不是仅仅用在“无聊”的计算上,而更大的就是“从实践中来,服务于实践”,使他们意识到学习数学的用处。当然也更增加他们的学习兴趣。

四、丰富了学生的第二课堂

从素质的角度丰富了学生的课余生活,他们的生活不在仅限于课堂上,让他们意识到学习的乐趣,更有兴趣学习了。

当然,我们的工作还存在不足,我们期待着我们的工作能够得到更快的完善,得到更好的发展。我们将本着为学生工作的思想更加努力地工作,使我们的学生的素质更好地得到提高。

第四篇:三年级奥数《有余除法》

教学设计方案 XueDa PPTS Learning Center

第四讲:有余除法

【知识要点】:

把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全部分完,还有一种是有剩余,并且剩余的本数必须比小朋友的人数少,否则还可以继续分下去。每次除得的余数必须比除数小,这就是有余数除法计算中特别要注意的。

解这类题的关键是要先确定余数,如果余数已知,就可以确定除数,然后再根据被除数与除数、商和余数的关系求出被除数。

有余数的除法中,要记住:(1)余数必须小于除数;(2)被除数=商×除数+余数。

【例1】 [ ]÷6=8……[ ],根据余数写出被除数最大是几?最小是几?

【思路导航】 除数是____,根据____________,余数可填_____________.根据____________,又已知商、除数、余数,可求出最大的被除数为6×8+5=53,最小的被除数为______________。列式如下:________________________________________。

答:被除数最大是53,最小是______。

【课堂反馈1】

(1)[ ]÷8=3……[ ],题中被除数最大可填________,最小可填_______。

(2)[ ]÷4=7……[ ],题中被除数最大可填________,最小可填_______。

【例2】 算式28÷[ ]=[ ]……4中,除数和商分别是______和______。【思路导航】根据“被除数=商×除数+余数”,可以得知“商×除数=被除数-余数”,所以本题中商×除数=28-4=24。这两个数可能是1和24,____和____,____和____,____和____,又因为余数为4,因此除数可以是24,12,8,6,商分别为____,____,____,____。_________________________________________________________________。

答:除数和商分别是24,1;____,____;____,____;____,____。

教学设计方案 XueDa PPTS Learning Center

【课堂反馈2】

1、下面算式中,除数和商可以是哪些数?

①22÷[ ]=[ ]……4

②65÷[ ]=[ ]……2 2、149除以一个两位数,余数是5,请写出所有这样的两位数。

【例3】 算式[ ]÷7=[ ]……[ ]中,商和余数相等,被除数可以是哪些数? 【思路导航】题目中告诉我们除数是7,商和余数相等,因为余数必须比除数,所以余数和商可为____,____,____,____,____,____。这样被除数就可以求出来了。

7×____+____=8 7×____+____=16 7×____+____=24 7×____+____=32 7×____+____=40 7×____+____=48 答:被除数可以是____,____,____,____,____,____。

【课堂反馈3】

1、下列算式中,商和余数相等,被除数可以是哪些数?

①[ ]÷6=[ ]……[ ]

②[ ]÷5=[ ]……[ ]

教学设计方案 XueDa PPTS Learning Center

2、一个三位数除以15,商和余数相等,请你写出五个这样的除法算式。

3、算式[ ]÷9=[ ]……[ ]中,商和余数相等,被除数最大是___ _。

【例4】 算式[ ]÷[ ]=[ ]……4中,除数和商相等,被除数最小是几? 【思路导航】题目中告诉我们余数是4,除数和商相等,因为余数必须比除数小,所以除数必须比4大,但其中要求最小的被除数,因而除数应填_______,商也是______。由算式____________________,所以被除数最小是__________。

【课堂反馈4】下面算式中,除数和商相等,被除数最小是几?

①[ ]÷[ ]=[ ]……6

②[ ]÷[ ]=[ ]……8

③[ ]÷[ ]=[ ]……3

【例5】

算式[ ]÷[ ]=8……[

]中,被除数最小是几?

【思路导航】题中只告诉我们商是8,要使被除数最小,那么只要除数和余数小就行。余数最小为______,那么除数则为______。

教学设计方案 XueDa PPTS Learning Center

根据这些,我们就可求出被除数最小为:8×______+______=_______。

【课堂反馈5】

1、下面算式中,被除数最小是几?

①[ ]÷[ ]=4……[ ]

②[ ]÷[ ]=7……[ ]

1、下面算式中商和余数相等,被除数最小是几?

①[ ]÷[ ]=3……[ ]

【课后作业】

1、[ ]÷5=8……[ ],题中被除数最大可填________,最小可填_______。

2、下面算式中,除数和商可以是哪些数?

①37÷[ ]=[ ]……7

②48÷[ ]=[ ]……6

教学设计方案 XueDa PPTS Learning Center

3、下列算式中,商和余数相等,被除数可以是哪些数?

①[ ]÷4=[ ]……[ ]

②[ ]÷3=[ ]……[ ]

4、算式[ ]÷8=[ ]……[ ]中,商和余数都相等,那么被除数最大是__

__。

5、下面算式中,除数和商相等,被除数最小是几?

①[ ]÷[ ]=[ ]……9

②[ ]÷[ ]=[ ]……7

6、[ ]÷[ ]=9……[ ],算式中,被除数最小是几?

7、[ ]÷[ ]=6……[ ],算式中商和余数相等,被除数最小是几

第五篇:三年级下册奥数教案

三年级下册奥数教案

导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认真做题哦!第一课时

1、一只树蛙爬树,每次往上爬5厘米,又往下滑2厘米,这只青蛙这样上下了5次,实际往上爬了多少厘米? 答案与解析:

实际上青蛙每爬行一次只前进了5-2=3(厘米),5次共前进了3×5=15(厘米).导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认真做题哦!

2、有两桶油,从第一桶倒20千克给第二桶,两桶就同样多了。已知第一桶原有50千克油,求两桶油共重多少千克? 答案与解析:

第一桶油倒20千克给第二桶,两桶就同样多,说明第一桶比第二桶多了2个20千克的油,一共多20*2=40千克油,他们一共有:50+50+40=140千克油。

第二课时

3、有一个班的同学去划船。他们算了一下,如果增加1条船,正好每条船坐6人;如果减少1条船,正好每条船坐9个人。问:这个班共有多少名同学? 答案与解析:

增加一条和减少一条,前后相差2条,也就是说,每条船坐6人正好,每条船坐9人则空出两条船。这样就是一个盈亏问题的标准形式了。

增加一条船后的船数=9*2/(9-6)=6条,这个班共有6*6=36名同学。4、7辆“黄河牌”卡车6趟运走336吨沙土.现有沙土560吨,要求5趟运完,求需要增加同样的卡车多少辆? 答案与解析:

要想求增加同样卡车多少辆,先要求出一共需要卡车多少辆;要求5趟运完560吨沙土,每趟需多少辆卡车,应该知道一辆卡车一次能运多少吨沙土。

解:①一辆卡车一次能运多少吨沙土?

336÷6÷7=56÷7=8(吨)

②560吨沙土,5趟运完,每趟必须运走几吨?

560÷5=112(吨)

③需要增加同样的卡车多少辆?

112÷8-7=7(辆)

列综合算式:560÷5÷(336÷6÷7)-7=7(辆)答:需增加同样的卡车7辆。

第三课时

5、在两座楼中间每隔3米种一棵树,共种了20棵,这两座楼之间距离是多少米? 答案与解析:

在两座楼中种树,首、尾两头都不种树。

(1)一共有多少个间隔?

20+1=21(个)

(2)两座楼之间的距离是多少?

3×21=63(米)

答:两座楼之间的距离是63米。

6、一条小道两旁,每隔5米种一棵,共种202棵,这条路长多少米? 答案与解析:

202÷2=101(棵)

101-1=100(段)

5×100=500(米)

答:这条小道长500米。

第四课时

7、某校三年级同学参加植树活动,每种4棵树之间的距离是9米。照这样计算,种18棵树的距离是多少米? 答案与解析:4棵树之间的距离是9米,相当于在9米长的距离上平均分成3段,那么一段长的距离是9÷(4-1)=3(米)。种18棵树,相当于把一段路平均分成17段,再根据“总路线长=株距×段数”把这个数量关系求出总路线长。

解:种4棵树,把9米分成了几段:

4-3=1(段)

每段的长是几米:

9÷3=3(米)

18棵树的距离分成了几段:18-1=17(段)

18棵树的全长是多少米:3×17=51(米)

答:18棵树的距离是51米。

8、有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。原来每根绳子长多少米? 答案与解析:

第一根剪成的每段比第二根剪成的每段长2米。那么,如果同样是5段的话,第二种就要比第一种少5*2=10米,现在第二种7段和第一种5段一样长,说明第二种的两段长是10米,也就是说每一段为10/2=5米。所以,绳子长为5*7=35米。

原来每根绳子长为7*(2*5/2)=35米。

第五课时

9、一笔奖金分一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。如果评一、二、三等奖各两人,那么每个一等奖的奖金是308元;如果评一个一等奖,两个二等奖,三个三等奖,那么一等奖的奖金是多少元? 答案与解析:

分析:每个一等奖的奖金是每个二等奖奖金的2倍,每个二等奖的奖金是每个三等奖奖金的2倍。每个一等奖就是每个三等奖的4倍,如果评一、二、三等奖各两人,我们把每个三等奖的奖金看成1份,那么,总奖金就相当于分成了2*4+2*2+2=14份,因为这时的一等奖奖金是3080元,也就是说三等奖奖金是每个308/4=77元,所以总奖金等于14*77=1078元,如果评一个一等奖,两个二等奖,三个三等奖,还是以每个三等奖的奖金看成1份,那么这时总奖金就被分成了1*4+2*2+3=11份,每份三等奖奖金就等于1078/11=98元,所以,这时的一等奖奖金等于980*4=392元。

10、甲乙两队共同挖一条长8250米的水渠,乙队比甲队每天多挖150米。已知先由甲队挖4天后,余下的由两队共同挖了7天,便完成了任务。那么甲队每天挖多少米? 答案与解析:

分析:余下的由两队共同挖了7天,这7天中,乙队比甲队多挖了150*7=1050米,那么,我们可以把总数减去1050米,然后看成甲和乙每天挖同样多,这样,就相当于甲队一个队挖7*2+4=18天,共挖了8250-1050=7200米,说明甲每天挖7200/18=400米。

第六课时

11、华侨小学某班有60人,在收看“邓小平同志追悼大会”实况时,他们着装白色或黑色上衣,黑色或蓝色裤子。其中有12人穿白上衣蓝裤子,有34人穿黑裤子,29人穿黑上衣,那么穿黑上衣黑裤子的有多少人? 答案与解析:

分析:有34人穿黑裤子,那么穿蓝裤子的有60-34=26人,有12人穿白上衣蓝裤子,说明还有26-12=14人是穿黑上衣蓝裤子,有29人穿黑上衣,那么,有29-14=15人穿黑上衣黑裤子。

12、三年级一班选举班长,每人投票从甲、乙、丙三个候选人中选择一人。已知全班共有52人,并且在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。如果得票比其它两人都多的候选人将成为班长,那么甲最少再得到多少票就能够保证当选? 答案与解析:

分析:在计票过程中的某时刻,甲得到17票,乙得到16票,丙得到11票。说明一共统计了17+16+11=44张选票,还有52-44=8帐没有统计,因为乙得到的票数只比甲少一张,所以,考虑到最差的情况,即后8张中如果没有任何一张是投给丙的,那么甲就必须得到4张才能确保比乙多。因此,甲最少再得到4票就能够保证当选了。

(这里特别要注意到“保证”两个字,必须从最坏的情况考虑)

第七课时13、3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名? 答案与解析:

分析:3名工人5小时加工零件90个,就是说每人每小时加工(90/3)/5=6个,那么一个人10小时可以加工6*10=60个,540个零件在10小时做完就需要540/60=9个人。

14、有20人修筑一条公路,计划15天完成。动工3天后抽出5人植树,留下的人继续修路。如果每人工作效率不变,那么修完这段公路实际用多少天? 答案与解析:

分析:有20人修筑一条公路,计划15天完成,说明这条公路的工作量按每天计算有20*15=300人次,动工3天后抽出5人植树,20人修3天完成了20*3=60人次,那么总工作量还剩下300-60=240人次,这些剩下的工作给15人做,每人就还需要工作240/15=16天,这样,前后加起来,实际工作就有3+16=19天。

第八课时

15、小明一家五口人去登山,带了2个包,五人轮流背,走了15千米,则平均每人背包走了多少千米? 答案与解析:15×2÷5=6(千米)

16、在若干盒卡片,每盒中卡片数一样多。把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。现在把所有卡片都分完,每人都分到60张,而且还多出4张。问共有小朋友多少人? 答案与解析:

60/7=8......4,60/8=7......4,说明卡片的盒数是8盒,“若都分8张则还缺少5张”,即如果我们在每盒中加5张(8盒共加40张),每人就可以得到8*8=64张,现在实际每人得到60张,即每人需要退出4张,其中要有4张是每人60张后多下来的,还有40张是我们一开始借来的要还出去,即要退出44张,44/4==11,说明有11人。

60/7=8......4,60/8=7......4,卡片有8盒,小朋友人数有(4+5*8)/4=11人。导语:三年级正是拓展思维的好时机,多做奥数题有助于我们这方面能力的锻炼,所以同学们要每天坚持做奥数练习。

第九课时

17、小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○„你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢? 答案与解析:

第90个球为白球,第100个球为黑球

18、张老师出了两道题,做对第一题的有13人,做对第二题的有22人,两道题都做对的有8人,这个班一共有多少人? 答案与解析:

做对第一题的13个人里,有8个人也做对第二题,那么做对第二题的22个人里这8个人就又重复数了一次,因此把做对第一题的人数和做对第二题的人数和起来,再减去重复数的这8个人。算式:13+22-8=27(人)。所以这个班一共有27人。

第十课时

19、一只鸡有1个头2条腿,一只兔子有1个头4条腿,如果笼子里的鸡和兔子共有10个头和26条腿,你知道鸡和兔子各有几只吗? 答案与解析:假设10个动物都是兔子,那么就有10X4=40(条)腿。但实际是26条腿,与实际相差40-26=14(条)腿。每将一个兔子变成一只鸡总的腿数就减少两只,需要转化14(4-2)=7(只)那么鸡就有7只,兔子就有10-7=3(只)。

导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给希望同学们能够认真做题哦!20、明明给在外地工作的妈妈发一封信,要贴2角钱的邮票。他手中的邮票有1张1角的、2张8分的、5张4分的和2张1分的。那么明明要把这些邮票经过搭配选出2角钱的邮票来,一共有多少种不同的搭配的方法。

答案与解析:明明手中的邮票可以按下面的几种搭配方法,得到2角钱的邮票。

1张1角的、1张8分的、2张1分的,合起来是2角。

1张1角的、2张 4分的、2张 1分的,合起来也是2角。

2张8分的、1张4分的,合起来也是2角。

1张8分的、3张4分的,合起来也是2角。

5张4分的也是2角。

由以上分析得出:贴2角钱邮票,共有5种不同的搭配方法。

第十一课时

21、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。问参加栽树的有多少名同学?原有树苗多少棵? 答案与解析:

当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。通过这一句话,我们可以知道参加种树的同学一共有12+8=20人,加上再拿来的8棵,一共有20*10=200棵。所以,原有树苗=200-8=192棵。有同学12+8=20名,原有树苗20*10-8=192棵。

22、“六一”儿童节,小明到商店买了一盒花球和一盒白球,两盒内的球的数量相等。花球原价1元钱2个,白球原价1元钱3个。因节日商店优惠销售,两种球的售价都是2元钱5个,结果小明少花了4元钱,那么小明共买了多少个球? 答案与解析:

花球原价1元钱2个,白球原价1元钱3个。即花球原价10元钱20个,白球原价10元钱30个。那么,同样买花球和白球各30个,花球要比白球多花10/2=5元,共需要30/2+30/3=25元。现在两种球的售价都是2元钱5个,花球和白球各买30个需要(30/5)*2*2=24元,说明花球和白球各买30个能省下25-24=1元。现在共省了4元,说明花球和白球各有30*4=120个,共买了120*2=240个。

花球和白球各买30个时,可比原来省下=(30/2+30/3)-(30/5)*2*2=1元,省下4元,花球和白球各买30*4=120个。所以,小明共买了240个球。

第十二课时

23、红红、聪聪和颖颖都戴着太阳帽去参加野炊活动,他们戴的帽子一个是红的,一个是黄的,一个是蓝的。只知道红红没有戴黄帽子。聪聪既不戴黄帽子,也不戴蓝帽子,请你判断红红、聪聪和颖颖分别戴的是什么颜色的帽子? 答案与解析:

先确定聪聪既不戴黄帽子,也不戴蓝帽子,那么他戴的只能是红帽子,红红没有戴黄帽子,而红帽子已经是聪聪戴的,因此红红戴的是蓝帽子,最后剩下黄帽子肯定是颖颖戴的。

24、一条大河上游与下游的两个码头相距240千米,一艘航船顺流而下的速度为每小时航行30千米,逆流而上的速度为每小时航行20千米。那么这艘船在两码头之间往返一次的平均速度是多大? 答案与解析:航行中的速度有两种,然而所求的平均速度并非是这两种速度之和除以2。

按往返一次期间的平均速度,就要分别计算总航程与经历的总时间,然后按平均速度的意义求出答案来。

解 总航程 240×2=480(千米)

总时间 240÷30+240÷20

=8+12

=20(小时)

平均速度 480÷20=24(千米)

答 往返一次的平均速度为每小时航行24千米。

第十三课时

25、一个三位数,它的个位上的数是百位上的数的3 倍,它的十位上的数是百位上的数的 2倍.这个数可能是多少? 答案与解析:

如果百位是 1,个位上的数是百位上的数的 3倍,个位就是3;十位上的数是百位上的数的 2倍,十位就是 2,这个数就是 123.如果百位是2,个位上的数是百位上的数的3 倍,个位就是6;十位上的数是百位上的数的2 倍,十位就是4,这个数就是246.如果百位是3,个位上的数是百位上的数的 3倍,个位就是9;十位上的数是百位上的数的 2倍,十位就是6,这个数就是369.这样的数有3 个,分别是123、246、369

26、某部队战士排成方阵行军,另一支队伍共17人加入他们的方阵,正好使横竖各增加一排,现共有多少战士? 答案与解析:

后来的战士加入方阵时,是在原方阵外侧横竖方向各增加一排,那么有一个战士要站在这两排的交界处,计算横排竖排的人数时,对他进行了重复计算,也就是说现在每一排实际人数是(17+1)÷2=9(人),因此可以求出总人数:9×9=81(人).第十四课时

导语:多做奥数题有助于我们数学思维的拓展,也能让我们的数学成绩得到提升,所以同学们要勤加练习哦!现在就开始做奥数老师给我们带来的这道题吧!

27、小明、小华和小光三个人都是少先队的干部。他们中一个是大队长,一个是中队长,一个是小队长。在一次体育比赛中,他们的一百米赛跑的结果是:

(1)小光比大队长的成绩好;

(2)小明和中队长的成绩不相同;

(3)中队长比小华的成绩差。

根据以上情况,你能知道小明、小华、小光三个人中,谁是大队长吗? 答案与解析:

根据(2)小明和中队长的成绩不相同,(3)中队长比小华成绩差,我们可以知道,小明和小华都不是中队长,那小光一定是中队长。

又根据(1)小光比大队长成绩好,也就是中队长比大队长成绩好。还根据(3)中队长比小华成绩差,我们可以知道,小华不是大队长,那么小华一定是小队长,当然小明就是大队长了。

28、小花猫钓到了鲤鱼、草鱼、鲫鱼,三种鱼一共12条,放在小桶里往家走。路上遇到小白猫。小花猫问小白猫:“你最爱吃哪种鱼?”小白猫说:“那当然是鲤鱼了。”小花猫说:“好,你只要从我的桶里,随便拿出3条鱼来,一定会有你最爱吃的鲤鱼。不过,你可要先告诉我,我钓到了几条鲤鱼?”这下可难住小白猫了。小花猫钓了几条鲤鱼呢?不过聪明的小白猫,稍稍动了动脑筋,就说出来了。小白猫到底怎样想的呢? 答案与解析:

小花猫一共钓了12条鱼,只要知道草鱼、鲫鱼各几条,那么要求出钓了几条鲤鱼就容易了,难就难在不知道有几条草鱼,也不知道有几条鲫鱼。别忙,想想小花猫还说了什么话?对!小花猫说,随便拿出三条鱼,就一定会有鲤鱼。解答这题就从这里突破。

小花猫的话可以这样理解:至少有一条鲤鱼,含意是也可能有2条鲤鱼,或者3条都是鲤鱼。这就是说,小花猫钓到的三种鱼中,草鱼、鲫鱼是各有1条,其余的12-1-1=10条都是鲤鱼。

要是钓到的草鱼和鲫鱼合起来是3条或是比3条多行吗?不行!要是合起来是3条或是比3条多,那么随便拿3条就不一定有鲤鱼了。你说对吗?

29、把一根线绳对折,对折,再对折,然后从对折后的中间处剪开,这根线绳被剪成了多少段? 答案:对折一次: 2*2-1=3段

对折二次:4*2-3=5段

对折三次:8*2-5=11段

绳子被折成8股,因此相当于未对折时被剪8刀,应该成9段吧

一方面三折以后成8股,中间一剪成16;

另一方面,第一折产生1个弯头,第二折产生2个弯头,第三折产生4个弯头;

最后剪成:16-1-2-4=9根。

第十五课时

30、用数字1,1,2,2,3,3拼凑出一个六位数,使两个1之间有1个数字,两个2之间有2个数字,两个3之间有3个数字 答案:312132 231213

31、树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原 来每棵树上各落多少只鸟? 答案与解析:

分析 倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16-6=10(只).同理,第二棵树上原有鸟16+6-8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.解:①现在三棵树上各有鸟多少只?48÷3=16(只)

②第一棵树上原有鸟只数.16+8=24(只)

③第二棵树上原有鸟只数.16+6-8=14(只)

④第三棵树上原有鸟只数.16-6=10(只)

答:第一、二、三棵树上原来各落鸟24只、14只和10只

第十六课时

32、一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空? 答案与解析:

分析:要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。

解:①进水速度:480÷8=60(吨/小时)

②排水速度:480÷6=80(吨/小时)

③排空全池水所需的时间:480÷(80-60)=24(小时)

列综合算式:

480÷(480÷6-480÷8)=24(小时)

答:两管齐开需24小时把满池水排空。

33、妈妈上楼,从1楼走到3楼需要走40级台阶,如果各层楼之间的台阶数相同,那么妈妈从第1层走到第6层需要走多少级台阶? 答案与解析: 要求妈妈从第1层走到第6层需要走多少级台阶,必须先求出每一层楼梯有多少台阶,还要知道从一层走到6层需要走几层楼梯。

从1楼到3楼有3-1=2层楼梯,那么每一层楼梯有40÷2=20(级)台阶,而从1层走到6层需要走6-1=5(层)楼梯.解:每一层楼梯有:40÷(3-1)=20(级台阶)

妈妈从1层走到6层需要走:20×(6-1)=100(级)台阶。

答:妈妈从第1层走到第6层需要走100级台

第十七课时

导语:今天奥数老师为同学们带来了一道有趣的试题,希望同学们在找到乐趣的同时也能提升我们的数学能力,同学们加油吧!

34、今有101枚硬币,其中有100枚同样的真币和1枚伪币,伪币与真币和重量不同。现需弄清楚伪币究竟比真币轻,还是比真币重,但只有一架没有砝码的天平。那么怎样利用这架天平称两次,来达到目的? 答案与解析:

答案:分成50、50、1三堆:

第一次称两个50,如果平了,第二次从这100个任意拿1个(当然是真的)与第三堆的1个称,自然会出结果;

第一次称两个50不平是正常的,第二次我们把其中的一堆(或重的或轻的都行)分成25、25、称第二次:

1、把轻的分成25、25,如果平了,说明那堆重的有假,当然假的是超重;如果不平,说明这50个轻的有假,假的是轻了;

2、把重的分成25、25,道理同上。

所以两次可以发现轻重,但是找不出哪个是假的。

35、小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远? 答案与解析:假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是

50×10÷(75-50)=20(分钟)·

因此,小张走的距离是

75×20=1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法

下载三年级奥数教学方案word格式文档
下载三年级奥数教学方案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三年级奥数《重叠问题》

    教学设计方案 XueDa PPTS Learning Center 第九讲:重叠问题 【知识要点】: 三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将2......

    三年级奥数应用题教案

    2015.12.19 三年级周润泽 应用题(一) 教学目标:1、熟悉解答应用题的步骤; 读题,弄清题意,找出条件和问题; 分析题中的数量关系,找到解题方法; 列出算式,算出结果,写出答案2、掌握应用题......

    三年级奥数 盈亏问题

    第4讲盈亏问题 教学目标 本讲主要学习三种类型的盈亏问题: 1. 理解掌握条件转型盈亏问题: 2. 理解掌握关系互换性盈亏问题; 3. 理解掌握其他类型的盈亏问题, 本节课要求老师首......

    三年级数学奥数应用题

    1.39个同学在操场上跳绳,每3人一组,可以分成多少组?2.4棵杨树苗48元,3棵松树苗63元,哪种树苗每棵的价钱贵一些?3.三(1)班小朋友做玩具,一共做了48个,送给幼儿园15个,其余的平均分给一年级3......

    三年级奥数天天练

    三年级奥数天天练 1、小华在计算一道题时,把一个数加上4乘2看作了乘2加上4,得数为40。正确的得数是多少? 2、小红在计算有余数除法时,把被除数113错写成131,这样商比原来多2,但余......

    奥数教学反思

    0.00„„045÷0.00„„09=()100个0 101个0 思维训练反思 学习奥数,可以提升学生的数学能力,以及思维能力。 我们班的情况是这样, 在家长方面:跟他们沟通的过程中,学生家长挺支持学......

    小学三年级奥数学习计划

    小学三年级奥数学习计划 三年级的奥数学习是小学奥数最重要的基础阶段,只有牢固掌握了三年级奥数最基本的知识技巧,才能有效的促进今后的数学学习。三年级是学习奥数至关重要......

    小学三年级奥数 29一笔画

    小学三年级奥数 29一笔画 本教程共30讲 第29讲 一笔画(二) 利用一笔画原理,我们可以解决许多有趣的实际问题。 例1 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一......