三年级奥数习题3月25日

时间:2019-05-15 12:29:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《三年级奥数习题3月25日》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《三年级奥数习题3月25日》。

第一篇:三年级奥数习题3月25日

第五讲 上楼梯问题

本课学习目标:通过本课学习,使孩子学会与上楼梯类似的问题,增强孩子的思维活跃性

例1 裁缝有一段16米长的呢子,每天剪去2米,第几天剪去最后一段?

例2 一根木料在24秒内被切成了4段,用同样的速度切成5段,需要多少秒?

例3 三年级同学120人排成4路纵队,也就是4个人一排,排成了许多排,现在知道每相邻两排之间相隔1米,这支队伍长多少米?

例4 时钟4点钟敲4下,12秒钟敲完,那么6点钟敲6下,几秒钟敲完?

例5.某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?

例6 晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?

习题

1.一根木料截成3段要6分钟,如果每截一次的时间相等,那么截7段要几分钟?

2.有一幢楼房高17层,相邻两层之间都有17级台阶,某人从1层走到11层,一共要登多少级台阶?

3.从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?

4.一座楼房每上1层要走16级台阶,到小英家要走64级台阶,小英家住在几楼?

5.一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20 米的速度通过81米长的隧道,需要几分钟?

6.时钟3点钟敲3下,6秒钟敲完,12点钟敲12下,几秒钟敲完?

7.某人到高层建筑的10层去,他从1层走到5层用了100秒,如果用同样的速度走到10层,还需要多少秒?

8.A、B二人比赛爬楼梯,A跑到4层楼时,B恰好跑到3层楼,照这样计算,A跑到16层楼时,B跑到几层楼?

9.铁路旁每隔50米有一根电线杆,某旅客为了计算火车的速度,测量出从第一根电线杆起到经过第37根电线杆共用了2分钟,火车的速度是每秒多少米?

第六讲一般智力题

本课学习目标:通过本课学习,激发孩子学习数学的兴趣,培养爱动脑的好习惯。

A组:

1.常见的大挂钟每逢半点响一下,走到几点就响几下,明明家的挂钟也是这样。一个星期天,明明一进屋就听到响了一下,过半小时又响了一下,又过半小时又响了一下,再过半小时又响了一下,你知道这4次响各是什么时刻吗?

2.6个盒子里装着同样多的乒乓球,如果从每个盒子里拿出4个乒乓球,6个盒子里剩下的乒乓球个数就正好等于原来2个盒子里的乒乓球数。原来每个盒子里有几个乒乓球?

3.小红替数学小组的同学去买《趣味数学》一书,她到书店一问书价,发现自己带的钱如果买5本,就剩5角,如果买6本,就缺1角。问《趣味数学》每本多少钱?

4.小丽的储蓄箱里,壹分、贰分、伍分的硬币个数正好同样多。她算了算,一共有4元钱。你知道三种硬币各有多少个吗?

5.小华种花,小花画花,种的、画的一百零八,画的比种的多一倍,小华种了多少花?小花画了多少花?

6.明明常犯粗心的毛病。一天老师让他算一道文字题,本来应该把某数除以7,他却乘以7,结果得98。你能帮助明明写出这道题的正确算式吗? B组:

7.阿宝是个小猎手,他和两个叔叔去打猎,出发时每个人分得同样多的子弹。上午每人打了4枪,这时三人剩下子弹的总和,恰好等于出发时一个人的子弹数。你知道他们一共带去多少子弹吗?

8.把8分成几个数的和(不包括0),再求出这几个数的乘积,要使得到的乘积尽可能大,那么这个乘积是多少?

9.一条长2米4分米的绸带,只许剪一刀,要分成7段,要求有5段长是4分米,两段长是2分米。应该怎样剪?

10.从3、6、9、15、17、33、36、42、51、53、63、72这十二个数中选出五个数,使他们的和等于100。

11.把1~9九张卡片分成两组,一组4张,另一组5张,使一组各数之和等于另一组各数之和的2倍。怎么分?

12.把1~9九张卡片分成两组,一组4张,另一组5张,使一组各数之和等于另一组各数之和的3倍。怎么分?

C组:

13.把1,2,3,4,…,99,100放在一起,组成一个很大的数12345…99100,这个大数是几位数?

14.从10到10000这一系列的数中,一共有多少个相同数字组成的数?

第二篇:三年级奥数

发到

三年级奥数--年龄问题

教学目标

1.掌握用线段图法来分析题中的年龄关系.2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.

知识点说明:

一、年龄问题变化关系的三个基本规律:

1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量; 3.两个人之间的年龄差不变

二、年龄问题的解题要点是:

1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系. 2.关键:抓住“年龄差”不变.

3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式. 4.陷阱:求过去、现在、将来。

年龄问题变化关系的三个基本规律: 1.两人年龄的差是不变的量; 2.两人年龄的倍数关系是变化的量;

年龄问题的解题正确率保证:验算!

例题精讲

【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁? 【解析】 这道题有两种解答方法:

方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612(岁);妈妈今年36岁,再过6年是(366)岁,也就是42岁,那时,妈妈比小卉大421230(岁).

列式:(366)(66)421

230(岁)

方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.

列式:36630(岁)

答:再过6年,小卉读初中时,妈妈比小卉大30岁.

【巩固】 小英比小明小3岁,今年他们的年龄和是老师年龄的一半,再过15年,他们的年龄和就等于老师的年龄,今年小英的年龄是多少岁?

【解析】 经过15年,小英和小明的年龄和比老师多增加15岁,所以老师今年年龄的一半是15岁,即小英和小明今年的年龄和是15岁,小英今年的年龄是(15-3)÷2=6(岁).【巩固】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?

【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”发到 的和差问题.

爸爸的年龄:(726)239(岁)妈妈的年龄:39633(岁)【巩固】 今年小宁9岁,妈妈33岁,那么再过多少年小宁的岁数是妈妈岁数的一半?

【解析】 今年小宁比妈妈小33924(岁),那么小宁永远比妈妈小24岁.几年后小宁是妈妈岁数的一半时,即妈妈年龄是小宁的2倍时,妈妈仍比小宁大24岁.这是个差倍问题.以小宁的年龄作为1倍量,妈妈年龄是2倍量,所以妈妈比小宁大的岁数也是1倍量,即1倍量代表着24岁.所以小宁24岁时是妈妈年龄的一半,因此再过24915(年).

【巩固】 6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁.问:母亲今年多少岁? 【解析】 6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66(岁).6年前母子年龄和是66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄.

母子今年年龄和: 78-6×2=66(岁),母子6年前年龄和: 66-6×2=54(岁),母亲6年前的年龄: 54÷(5+1)×5=45(岁),母亲今年的年龄: 45+6=51(岁).

【巩固】 学而思学校张老师和刘备、张飞、关羽三个学生,现在张老师的年龄刚好是这三个学生的年龄和;9年后,张老师年龄为刘备、张飞两个学生的年龄和;又3年后,张老师年龄为刘备、关羽两个学生的年龄和;再3年后,张老师年龄为张飞、关羽两个学生的年龄和.求现在各人的年龄.

【解析】 张老师刘备张飞关羽,张老师9刘备9张飞9,比较一下这两个条件,很快得到关羽的年龄是9岁;同理可以得到张飞是9312(岁),刘备是93315(岁),张老师是9121536(岁).

【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【例 2】 小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁? 【解析】 把小明的年龄看成是一份,那么爸爸的年龄是四份少2,根据和倍关系:

小明的年龄是:(53+2)÷(4+1)=11(岁),爸爸的年龄是:53-11=42(岁),小明与爸爸的年龄差是:42-11=31(岁).

【巩固】 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁? 【解析】 妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72÷(1+4+4)=8(岁),妈妈的年龄是:8×4=32(岁),爸爸和妈妈同岁为32岁.【例 3】 姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?

【分析】 用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.发到

弟弟的年龄:(404)218(岁),姐姐的年龄:18422(岁).

【例 4】 东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东、西西今年的年龄各是多少?

【分析】 东东3年后的年龄等于西西1年前的年龄,说明东东比西西小4岁; 东东3年前的年龄与西西4年后的年龄之和是25岁,所以今年东东和西西的年龄和是253424(岁),今年东东的年龄:(244)210(岁),今年西西的年龄:241014(岁).

【巩固】 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?

【解析】 兄弟二人现在的年龄和是27岁,两人的年龄差是27,哥哥现在3515(岁).(45)3(岁)

【巩固】 今年彬彬的年龄是表弟年龄的4倍,20年后,彬彬的年龄比表弟的年龄的2倍少l2岁,今年彬彬、表弟各多少岁?

【解析】 表弟今年年龄的4122(倍)对应的是:20220128(年),由此可以求出表弟今年的年龄,使问题得解.824(岁),4416(岁).所以表弟今年4岁,彬彬今年16岁.

【例 5】 父子年龄之和是45岁,再过5年,父亲的年龄正好是儿子的4倍,父子今年各多少岁?

【解析】 再过5年,父子俩一共长了10岁,那时他们的年龄之和是4510=55(岁),由于父亲的年龄是儿子的4倍,因而55岁相当于儿子年龄的41=5倍,可以先求出儿子5年后的年龄,再求出他们父子今年的年龄.

5年后的年龄和为:455255(岁)5年后儿子的年龄:55(41)11(岁)儿子今年的年龄:1156(岁),父亲今年的年龄:45639(岁)【巩固】 父子年龄之和是60岁,8年前父亲的年龄正好是儿子的3倍,问父子今年各多少岁?

【解析】 由已知条件可以得出,8年前父子年龄之和是608244(岁),又知道8年前父亲的年龄正好是儿子的3倍,由此可得:

儿子:(6082)(31)819(岁)父亲:601941(岁)【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【巩固】 王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是

18岁.王老师今年32岁,李老师今年多少岁? 【解析】 王老师比李老师大2031836(岁).故李老师今年的年龄为32626(岁).

第三篇:小学四年级奥数习题

1、两个自然数相除的商是47.余数是3.被除数.除数.商及余数的和等于629,你知道除数是多少吗?

2、一个化肥厂计划12天生产一批化肥,由于每天多生产3吨,结果9天就完成了这批化肥的生产任务,这批化肥一共有多少吨?

3、15年前父亲的年龄是儿子的7倍,10年后父亲的年龄是儿子的2倍。父亲、儿子现在的年龄各是多少?

4、一笔奖金芬一等奖、二等奖和三等奖。每个一等奖的奖金是每个二等奖的2倍,每个二等奖的奖金是每个三等奖的2倍。如果评一、二、三等奖各两个,那么每个一等奖的奖金是308元。如果只评一个一等奖、两个二等奖和三个三等奖,那么一等奖的奖金是多少元?

5、某市居民自来水收费标准如下:每户每月用水4吨以下,每吨1.80元。当超过四吨时,超过部分每吨3元。某月甲乙两户共交水费26.40元,用水量之比为5:3。甲乙两户各应交水费多少元?

6、一个山清水秀的村子里有三个好朋友:小明、小刚和小强,他们常在一起合伙打鱼。一次,他们忙碌了大半天,打了一堆鱼。实在太累了,就坐在河边的柳树下休息,一会儿都睡着了。小明醒了想起家里有事,看小刚和小强睡得正香,没有吵醒他们。他把鱼分成三份,自己拿一份走了。不一会儿小刚也醒了,要回家。他也把鱼分成三份,自己拿一份走了。太阳快落山了,小强才醒来。他想,小明和小刚上哪去了?这么晚了,我得回家劈柴去。于是,他又把鱼分成三份,自己拿走一份。最后还剩下8条鱼。

第二天,他们又合伙到河边打鱼,才知道昨天分的鱼不合理。小明立即把剩下的8条鱼给小刚3条,小强5条。你能算出他们原来共打多少条鱼吗

7、一次,小明从山里来了一筐山梨,他把小刚和小强找来,对他们说:“我把这筐梨先分给你们一些,剩下的便是我的。”于是,他把山梨的一半给了小刚,然后又给小刚加了1个。接着,他又把剩下的给了小强一半,也同样给小强加了1个,最后剩下5个山梨,他自己留下了。

你来算算,小明这一筐山梨共有多少个?

8、机场上停着10架飞机,第一架飞机起飞后,每隔4分有一架飞机接着起飞。在第一架起飞后2分,有一架飞机在机场上降落,以后每隔6分,有一架飞机在机场上降落,降落在机场上的飞机依次相隔4分在原有的10架飞机之后起飞。问:从第一架飞机起飞以后,经过多少时间,机场上才没有飞机停留?

9、甲、乙、丙三艘船共运货9400箱,甲船比乙船多运300箱,丙船比乙船少运200箱。求三艘船各运多少箱货?

10、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?

11、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

12、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?

1.设除数是x,则被除数是47x+3

x+(47x+3)+47+3=629

48x+53=629

48x=576

x=12

除数是12

2.12x=9,则x=9 一共有108吨

3.设15年前父亲的年龄是7x,则15年前儿子的年龄是x.现在父亲的年龄是7x+15,儿子的年龄是x+15

10年后父亲的年龄是7x+15+10,儿子的年龄是x+15+10

根据题意,得

7x+15+10=2(x+15+10)

5x=50-25

x=5

现在父亲的年龄是7*5+15=50岁,儿子的年龄是5+15=20岁

1.一等奖的奖金是308元

308÷2=154元,二等奖的奖金是154元

154÷2=77元,三等奖的奖金是77元

(308+154+77)*2=1078元,总奖金额1078元

一等奖=2倍二等奖=4倍三等奖

所以2个二等奖=1个一等奖,3个三等奖=3/4个一等奖

1078÷(1+1+3/4)=392元,一等奖的奖金是392元

方程:

如果按第一种分配方法每个一等奖的奖金是308元时,则可知总金额是(308+154+77)*2=1078元。按另一种设置办法后,设三等奖奖金为x元,则有2*2x+2*2x+3x=1078 则x =98

则可算得是:三等奖是98元,二等奖是196元,一等奖是392元。

2.由于最后剩的8条是小强分的三份中的两份,所以小强拿走的鱼是8÷2条。那么小刚拿走自己分的一份鱼后剩下的鱼是8÷2×3条,这占小刚分的三份中的两份,所以小刚拿走的鱼是(8÷2×3)÷2;同样可得知小明拿走的鱼是〔(8÷2×3)÷2×3〕÷2条。所以打的鱼一共是〔(8÷2×3)÷2×3〕÷2×3=27(条)。

当然,我们还可以从小强第一天拿走的鱼是8一条和第二天又拿了5条知道,每人平均拿了8÷2+5条,所以打的鱼一共是(8÷2+5)×3=27(条)。

然后列出算式:

〔(5+l)×2+1]×2

=[6×2+1〕×2

=26(个)

答:筐里一共有26个山梨。

36+24+16+12+8+4+4+4=108(分)

或者为:

4×〔(10-l)+6+4+3+2+l+l+l〕=108(分)

这道题就可以这样来思考:根据已知甲船比乙船多运30O箱,假设甲船同乙船运的一样多,那么甲船就要比原来少运300箱,结果三船运的总箱数就要减少300箱,变成(9400-300)箱。

又根据丙船比乙船少运200箱,假设丙船也同乙船运的一样多,那么丙船就要比原来多运200箱,结果三船总箱数就要增加200箱,变成(9400-300+200)箱。

经过这样调整,三船运的总箱数为(9400-300+200)。根据假设可知,这正好是乙船所运箱数的3倍,从而可求出动船运的箱数。

解:典型的和差问题,铁路桥=(11270+2270)÷2=6770米公路桥=11270-6770=4500米

解:先把第一、二小组看成一个整体,他们与第三小组和为180,差为20,三小组人数=(180-20)÷2=80

一二小组合起来为180-80=100人,一小组与二小组的差为2,一小组人数=(100-2)÷2=49二小组人数=100-49=51

解:因为甲乙现在筐里的苹果数量未知,所以可以直接设数,就设甲筐有19千克苹果,那么乙筐有0千克苹果。此时甲乙和为19千克。变动后,和仍然为19千克,此时乙筐与甲筐的差为3,则乙筐=(19+3)÷2=11千克

第四篇:小学三年级奥数_植树问题_习题

植树问题姓名

1,一条河堤长420米,从头到尾每隔3米栽一棵树,要栽多少棵树?

2.肖林家门口到公路边有一条小路,长40米。肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?

3,一个圆形水池的围台圈长60米。如果在此台圈上每隔3米放一盆花,那么一共能放多少盆花?

4,在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。这段路长多少米?

5,小明要到高层建筑的11层,他走到5层用了100秒,照此速度计算,他还需走多少秒?

6.学校有一条长60米的走道,计划在道路一旁栽树。每隔3米栽一棵。

(1)如果两端都各栽一棵树,那么共需多少棵树苗?

(2)如果两端都不栽树,那么共需多少棵树苗?

(3)如果只有一端栽树,那么共需多少棵树苗?

7.一个长100米,宽20米的长方形游泳池,在离池边3米的外围圈(仍为长方形)上每隔2米种一棵树。共种了多少棵树?

8.一根90厘米长的钢条,要锯成9厘米长的小段,一共要锯几次?

9.测量人员测量一条路的长度。先立了一个标杆,然后每隔40米立一根标杆。当立杆10根时,第1根与第10根相距多少米?

10.学校举行运动会。参加入场式的仪仗队共180人,每6人一行,前后两行间隔120厘米。这个仪仗队共排了多长?

11.在一条长1200米的河堤边等距离植树(两端都要植树)。已挖好每隔6米植一棵树的坑,后要改成每隔4米植一棵树。还要挖多少个坑?需要填上多少个坑?

第五篇:六年级奥数教案3

第二课堂

牛吃草问题(2)练习课

一、课堂例题:

5.快、中、慢三车同时从A地出发,追赶一辆正在行驶的自行车。三车的速度分别是每小时24千米、20千米、19千米。快车追上自行车用了6小时,中车追上自行车用了10小时,慢车追上自行车用()小时。

注释:12 自行车的速度是:(20×10-24×6)÷(10-6)=14(千米/小时)

三车出发时自行车距A地:(24-14)×6==60(千米)

慢车追上自行车所用的时间为:60÷(19-14)=12(小时)

6.一水池中原有一些水,装有一根进水管,若干根抽水管。进水管不断进水,若用24根抽水管抽水,6小时可以把池中的水抽干,那么用16根抽水管,()小时可将可将水池中的水抽干。

注释:18 设1根抽水管每小时抽水量为1份。(1)进水管每小时卸货量是:(21×8-24×6)÷(8-6)=12(份)(2)水池中原有的水量为:21×8-12×8=72(份)

(3)16根抽水管,要将水池中的水全部抽干需:72÷(16-12)=18(小时)

8.有一片草地,每天都在匀速生长,这片草可供16头牛吃20天,可供80只羊吃12天。如果一头牛的吃草量等于4只羊的吃草量,那么10头牛与60只羊一起吃可以吃多少天?

注释:8天

(1)按牛的吃草量来计算,80只羊相当于80÷4=20(头)牛。(2)设1头牛1天的吃草量为1份。(3)先求出这片草地每天新生长的草量:(16×20-20×12)÷(20-12)=10(份)

(4)再求出草地上原有的草量:16×20-10×20=120(份)(5)最后求出10头牛与60只羊一起吃的天数:120÷(10+60÷4-10)=8(天)

9.某水库建有10个泄洪闸,现在水库的水位已经超过安全警戒线,上游的河水还在按一不变的速度增加。为了防洪,需开闸泄洪。假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30小时水位降到安全线,若打开两个泄洪闸,10小时水位降到安全线。现在抗洪指挥部要求在5.5小时内使水位降到安全线,问:至少要同时打开几个闸门?

注释:4个 设1个泄洪闸1小时的泄水量为1份。(1)水库中每小时增加的上游河水量:(1×30-2×10)÷(30-10)=0.5(份)

(2)水库中原有的超过安全线的水量为:1×30-0.5×30=15(份)(3)在5.5小时内共要泄出的水量是:15+0.5×5.5=17.75(份)(4)至少要开的闸门个数为:17.75÷5.5≈4(个)(采用“进1”法取值)

二、学生课后练习:

1.一个水池有一根进水管,有若干相同的抽水管,进水管不间断的进水,若用24根抽水管抽水,6小时可以把池中的水抽干;若用21根抽水管抽水,8小时可以将池中的水抽干。用16根抽水管,多少小时可以将池中的水抽干?

2.甲、乙、丙三人同时从同一个地点出发,沿同一路线追赶前面的小明,他们分别用9分钟、15分钟、20分钟追上小明,已知甲每小时行24千米,乙每小时行20千米,丙每小时行多少千米?

下载三年级奥数习题3月25日word格式文档
下载三年级奥数习题3月25日.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三年级奥数活动总结

    三年级“智慧杯”数学兴趣活动总结 三年级:杨清 林明 这个学期的奥数小组活动,学生们的学习兴趣空前高涨,许多学生要求能有机会再进行学习,并且在这些兴趣者的指引下有不少学生......

    三年级奥数《有余除法》

    教学设计方案 XueDa PPTS Learning Center 第四讲:有余除法 【知识要点】: 把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全......

    三年级下册奥数教案

    三年级下册奥数教案 导语:三年级的同学们你们现在已经不是小小的孩子了,你们要理解学习的真正含义,所以才要更加努力的学习,老师给同学们整理了三年级的奥数题,希望同学们能够认......

    三年级奥数《重叠问题》

    教学设计方案 XueDa PPTS Learning Center 第九讲:重叠问题 【知识要点】: 三(1)班准备给参加班级绘画比赛的16位同学和参加朗读比赛的12位同学每人发一份纪念品,当中队长玲玲将2......

    三年级奥数应用题教案

    2015.12.19 三年级周润泽 应用题(一) 教学目标:1、熟悉解答应用题的步骤; 读题,弄清题意,找出条件和问题; 分析题中的数量关系,找到解题方法; 列出算式,算出结果,写出答案2、掌握应用题......

    三年级奥数 盈亏问题

    第4讲盈亏问题 教学目标 本讲主要学习三种类型的盈亏问题: 1. 理解掌握条件转型盈亏问题: 2. 理解掌握关系互换性盈亏问题; 3. 理解掌握其他类型的盈亏问题, 本节课要求老师首......

    三年级数学奥数应用题

    1.39个同学在操场上跳绳,每3人一组,可以分成多少组?2.4棵杨树苗48元,3棵松树苗63元,哪种树苗每棵的价钱贵一些?3.三(1)班小朋友做玩具,一共做了48个,送给幼儿园15个,其余的平均分给一年级3......

    三年级奥数教学方案

    小三奥数教学方案 选用教材:《举一反三(AB版)》 选用本教材的理由: ①畅销十年,获得各界良好的口碑; ②本书推崇融会贯通、触类旁通的学习方法; ③训练学生多角度思考问题的能力; ④......