微分中值定理的证明与应用分析五篇

时间:2019-05-14 17:18:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《微分中值定理的证明与应用分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《微分中值定理的证明与应用分析》。

第一篇:微分中值定理的证明与应用分析

本科生毕业论文(设计)

微分中值定理的证明与应用分析

马华龙

学号

2009145154

电气与自动化学院

测控与仪器技术

指导教师

魏春玲

职称

教授

2012 年 5月 20日 曲阜师范大学教务处制

目录

摘要............................................................................................................................................1 Abstract.......................................................................................................................................1 1 引言........................................................................................................................................1 2 微分中值定理及其相关概念.............................................................................................1 3 微分中值定理的证明方法....................................................................................................2 3.1 费马定理............................................................................................................................2 3.2 罗尔定理............................................................................................................................3 3.3 柯西中值定理....................................................................................................................4 4 定理的推广............................................................................................................................5 5 定理的应用............................................................................................................................6 5.1 利用微分中值定理证明等式与恒等式............................................................................6 5.2 利用微分中值定理证明不等式........................................................................................7 5.3 讨论根的存在性................................................................................................................8 6 总结........................................................................................................................................9 致谢..........................................................................................................................................10 参考文献..................................................................................................................................10

微分中值定理的证明与应用分析

测控与仪器专业学生 马华龙

指导教师

魏春玲

摘要:本文首先介绍了微分中值定理的基本内容极其几何意义然后又分别介绍了三个微分中值定理,最后有介绍了中值定理的推广和应用。详细介绍了中值定理在证明等式和不等式以及性态等方面的应用。

关键词:微分中值定理 推广 应用

Differential Mean Value Theorem Proof and Application Analysis Student majoring in Measurement and control technology and instrument

Ma Hualong

Tutor

Wei Chunling

Abstract:This paper first introduces the basic content of the Differential Mean Value Theorem extremely geometric meaning, then introduced the three differential mean value theorem, and finally introduced the promotion and application of the mean value theorem.The detailed explained differential mean value theorem in proving the equality and inequality.Key Words : differential mean value theorem Promotion application.1引言

在数学研究与分析中,微分学占有极其重要的地位,它是组成数学分析的重要部分。而通过对微分学整体的学习,我们可以知道微分中值定理在它所有定理中是最基本的,而且是最重要的定理之一,微分中值定理是构成微分学的主要组成部分。因此学好微分中值定理,对我们以后的继续在数学方面的研究是非常重要的。

人们对微分中值定理的研究从微积分的建立之始就开始了,微分中值定理分为:罗尔中值定理、拉格朗日中值定理和柯西中值定理,它出现的过程聚集了众多数学家的研究成果。而且从费马引理到柯西中值定理使微积分不断发展,理论知识也不段的丰富和完善,是自从引进微积分来数学研究的重要工具之一,并且中值定理的应用也越来越广泛。本文将首先讨论微分中值定理的证明,然后讨论它的应用,并且主要是讨论微分中值定理在证明等式、不等式、函数为常数、函数的性态等方面的应用。微分中值定理及其相关概念

微分中值定理是一系列中值定理的总称,是研究函数的有力工具,其中最重要的内容是拉格朗日中值定理,可以说其他中值定理都是拉格朗日中值定理的特殊情况或者推广。也可以说微分中值定理就是包括罗尔定理、拉格朗日中值定理、以及柯西中值定理在内的定理的总称,而中值定理的证明会用到以下的概念。

limf(x)limg(x)xx0xx0极限的局部保号性: 若,则存在Δ≥0,任意x(x0,x0),使得f(x)g(x)。

函数的单调性: 函数f(x)在定义域内,当x1x2时,有f(x1)f(x2),则称f(x)单调递增。当x1x2时,有f(x1)f(x2),则称f(x)单调递减。

凹凸性: 若函数曲线位于其每一点处切线的上方(下方),则称函数曲线时下凸(上

'yf(x)f凸)的,或称函数向下凸(上凸).而若的一阶导数(x)在(a,b)上单调递增(或递减),则称f(x)在(a,b)是向上凹(下凹)的,或称函数曲线向上凹(下凹).最值:设f(x)在I上有定义,若存在x0I使任意xI,f(x0)f(x)(f(x0)f(x)),则称f(x0)为f(x)的最小值(最大值)。x0为最小值点(最大值点)。

极值:设f(x)在任意xI上有定义,若存在x0I,0,任意x(x0,x0)都有f(x)f(x0)(f(x0)f(x)),则称f(x0)为f(x)的一个极小值(极大值),x0成为极小值点(极大值点)。

除此之外,我们还应该看到罗尔定理、拉格朗日中值定理、柯西中值定理的联系。这三个定力的关系:层层递进,步步深入,前者是后者的特殊情况,后者是前者的推广。拉格朗日中值定理和柯西中值定理都是通过构造辅助函数,然后用罗尔定理加以证明的;拉格朗日中值定理是柯西中值定理的特例;而罗尔定理有是拉格朗日中值定理的直接推论。微分中值定理的证明方法

3.1 费马定理

费马引理是是实分析中的一个定理,以皮埃尔·德·费马命名。通过证明函数的每一个极值都是驻点(函数的导数在该点为零),该定理给出了一个求出可微函数的最大值和最小值的方法。因此,利用费马引理,求函数的极值的问题便化为解方程的问题。需要注意的是,费马引理仅仅给出了函数在某个点为极值的必要条件。也就是说,有些驻点不是极值,它们是拐点。要想知道一个驻点是不是极值,并进一步区分最大值和最小值,我们需要分析二阶导数(如果它存在)。当该点的二阶导数大于零时,该点为极小值点;当该点的二阶导数小于零时,该点为极大值点。若二阶导数为零,则无法用该法判断,需列表判断。

xx费马引理的内容:函数f(x)在点0的某邻域U(x0)内有定义,并且在0处可导,如

'xU(x)f(x)f(x)f(x)f(x)f(x0)=0。0,都有0或者0,那么果对于任意的费马定理的几何意义:若将函数f(x)的曲线置于平面直角坐标系XOY,则费马定

x(x,f(x0))理具有几何意义:对曲线yf(x)上,若有一点0存在切线,且0为f(x)极值点.则这一点处的切线平行于x轴.证明方法:x0x为f(x)的极值点.不妨设0为极小值点,则

0,x(x0,x0),有f(x0)f(x).f(x)f(x0)0xx0xx0若,则;f(x)f(x0)0xx0xx0若,则;取极限:xx0limf(x)f(x0)f(x)f(x0)lim-xxxx0xx0与0分别为T、S

limf(x)f(x0)xx0.xx0x由于f(x)在0处可导,则T=S=由极限的局部保号性有:T0, S0.故 T=S=0.f(x)f(x0)lim0xx0f(x0)0 xx0所以有 即3.2 罗尔定理

若f(x)在[a,b]上连续,在内(a,b)可导,且f(a)f(b),则至少存在一点a,b使f()0。

罗尔定理的几何意义:罗尔定理的三个已知条件的意义:

⒈f(x)在a,b上连续表明曲线连同端点在内是无缝隙的曲线;

⒉f(x)在a,b内可导表明曲线yf(x)在每一点处有切线存在; ⒊f(a)f(b)表明曲线的割线(直线AB)平行于x轴

'f 罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点,使()0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。

罗尔定理的证明:根据f是闭区间a,b上连续函数的性质,由极值定理得在

a,b 上有最大值(M)和最小值(m)。

1.如果Mm,此时f(x)在a,b上恒为常数,结论显然成立。

2.如果Mm,由条件f(a)f(b)知,两个数M,m中至少有一个不等于端点的函数值f(a)f(b),不妨设Mf(a)(如果设mf(a),证法完全类似),那么必定在开区间(a,b)内有一点使f()M。

'f(x)f()xa,bf法1:因此,有,由费马引理可知()0。

法2:由于f(x)在ξ处最大,故不论x是正或负,总有

f(x)f()0, 因此,当x0时,{f(x)f()}/x0,故由极限的保号性有

f'()lim{f(x)f()}/x0x0(1)

而当x0时,{f(x)f)}/x0,故

f_'()lim{f(x)f()}/x0x0(2)

''f()f由(1),(2)两式及存在知,必有()0。

拉格朗日中值定理

拉格朗日中值定理的内容: 若函数f(x)满足:(1)在闭区间a,b上连续;(2)在开区间a,b内可导;则至少存在一点(a,b)使得

f(b)f(a)ba.拉格朗日定理的几何意义:如图所示,过A(a,f(a)),B(b,f(b))两点的直线斜率

f()f(b)f(a)ba,而拉格朗日定理则表明了存在于曲线上的A,B两点某点的切线必定平行于直线AB.KAB拉格朗日中值定理的证明:

利用罗尔中值定理,构造辅助函数.f(b)f(a)F(x)f(x)f(a)(xa)ba.证明 作辅助函数

f(b)f(a)F(x)f(x)f(a)(xa)ba

显然,F(x)在a,b上连续, 在a,b内可导,且f(a)f(b)0,由罗尔定理可知,存

在一点(a,b)使得F()0 即

f(b)f(a)ba

推论 设f(x)、g(x)都在区间K上可导,且f(x)g(x),则

f(x)g(x)c f()3.3 柯西中值定理

柯西中值定理的内容: 设函数f(x)、g(x)满足:(1)在闭区间a,b上连续;

(2)在开区间a,b内可导,且g(x)0;则至少存在一点(a,b)使得

f()f(b)f(a)g()g(b)g(a).柯西中值定理的证明:由定理条件可知g(b)g(a),则存在(a,b)使得g(x)0,因此,只需证

 f()g(b)g(a)g()f(b)f(a)0.为此,构造函数

F(x)f(x)g(b)g(a)g(x)f(b)f(a),xa,b 显然,F(x)在a,b上连续,在a,b内可导,且F(a)F(b)根据罗尔定理,存在(a,b)使得

F()0f()g(b)g(a)g()f(b)f(a)0

f()f(b)f(a)所以,g()g(b)g(a).即 定理的推广

前面我们已经讨论了定理之间的关系,接下来我们来看它们的推广。从前面的内容

a,b我们知道,这三个定理都要求函数fx在a,b上是连续,在内是可导。那么我们如果把定理中的闭区间a,b,把它推广到无限区间a,或,,再把开区间a,b推广到无限区间a,或,的话,则这些定理是否还能满足条件,或者我们能得出哪些相应的定理呢?

通过讨论研究我们知道,按照以上的想法把中值定理的区间,推广到无限区间上可以得到几个相应的定理,本文在此只提到其中的三个,下面给出定理以及证明。

limfxfafxa,a,x定理1 若在上连续,在内可导,且,则至少

f0a,存在一点,使成立。

证明:

111xa1tta1t令xa1,则t,即可得到关于t参数函数

t0,1当xa,时,则

limtfxftgt 即1a,t0,再令gtlimffxfaftxlim1g1limt0t0 g0limgtt0 g0g1  gt0,10,1在上连续,在内可导,且g0g1,由Rolle定理可得到,使g0成立 至少存在一点0,1令,使f0成立

证毕

limfxlimfx,,fxx定理2 若在上连续,在内可导,并且x,至

f0,少存在一点,使成立。

定理2的证明可以参照定理1。

limfxMa,a,定理3 若fx在上连续,在内可导,并且x,则至少存在,有至少存在一点a,f0,而

120.一点a,,使 成立。Mfaf21a证明:设t111xa1ta1xa1,则tt,即可得到关于t参数函数

当xa,时,则t0,1 limtfxftgt 即1a,t0,再令limgtlimtlimfxM t0t0xg0limgtMt0 gt在0,1上连续,在

0,1内可导,由Lagrange定理得

g1g010成立 至少存在一点0,1,使

g即gfaM

1令,有gf,而至少存在一点a,,使

Mfaf21a21a2,成立.证毕 定理的应用

5.1 利用微分中值定理证明等式与恒等式

在证明一些出现导数的等式时,进行适当的变形后,考虑应用微分中值定理加以证明.还有,就是我们在证明一些与中值定理有关的题目时,构造辅助函数是解决问题的关键。在证明题中巧妙选用和构造辅助函数,进行系统分析和阐述,从而证明相关结论。我们一下面一个例题来讲解。

1f(0)f(1)0,f12例:设函数f(x)在[0, 1]上连续,在(0, 1)内可导,且,1(,1)2,使f();

试证(1)存在(2)对任意实数λ,必存在(0,),使

f'()[f()]1

分析(1)欲证等式可写成 f()0

1(,1)则只需设(x)f(x)x在2上存在零点.(2)欲证等式可改写成 [f'()1][f()]0

''x(x)f(x)x,(x)f(x)1F(x)e(x),再对 由于,则只需取辅助函数

F(x)在[0,]上用罗尔定理.1110,(1)10[,1](x)f(x)x(x)证(1),因在2上连续,22,1(,1)2,使得 故由零点定理,存在()0,即f()

(2)令F(0)= 0 ,,因F(x)在[0,]上连续,在(0,)内可导,且,故由罗尔定理,存在,使得

由于,故得

f'()[f()]1

例:设0ab,f(x)在a,b连续可导,则存在a,b使得

f(b)f(a)f()ln证明 令

ba.g(x)lnx

则g(x)0,且f(x),g(x)在a,b上连续在a,b内可导

根据柯西定理,存在a,b使得

f()f(b)f(a)g()lnblna

f(b)f(a)f()ln即,5.2 利用微分中值定理证明不等式

微分中值定理在不等式的证明中同样起到重要的作用,因此在证明不等式的时候,可以考虑从中值定理入手,从而解决问题。首先我们给出利用中值定理证明不等式的步(1)构造辅助函数f(x);骤:(2);构造微分中值定理需要的区间[a,b];(3)利用(a,b),'对f()进行适当的收缩。下面我们给出几个证明不等式的例子。

ba.例1: 证明对任何正数a、b(ab)有

baabalnba.b证明 令f(x)lnx,xa,b.则f(x)在a,b上连续,在a,b内可导,根据拉格朗日中值定理,存在a,b使得

1lnblnaba

111由于a,b,所以ba,即有

baabalnba

b例2:设x0,对01的情况,求证xx1。

分析:证明不等式最常用的方法有做差,做商,对于该题目如果直接应用做差或者做商的话显然是不行的。那我们是否能通过变形是,他们可以应用做差或是做商呢?我们来看下不等式,不难发现当x1时,等式两边就相等了,所以接下来排除x1,分两步讨论。在观察不等式两边的代数式,不难看出左边的代数式比较复杂,则是否可以把

fxx左边的代数式构造辅助函数,是题目可以运用中值定理解题呢?不妨设,Fxx。利用Cauchy定理即可证明。

fxxx,11,xx1x1证明:当时结论显然成立,当时,取或,在该区间设,Fxx,由柯西定理得:

fxf1fx,11,xFxF1F 或

x111即x

当x1时,x,1,x11即x

11

又xx10

故x1x,即x11

1,x11当x1时,则xx10

故x1x,即x11 由此,不等式得证。5.3 讨论根的存在性

在证明根的存在性问题时,当遇到满足微分中值定理的相关条件时,就能够从中值定理的角度来解决问题。因此我们可以说,微分中值定理可以应用在解决根的存在性的问题上。我们从下面的例题来看中值定理在这方面的应用。

例1:设a1,a2,,an为任意n个实数,证明函数: 在(0,)必有零点.f(x)a1cosxa2cos2xancosnx  证法 利用罗尔定理,令F(x)f(x),只需F(x)在0,上满足罗尔定理条件.证明 作辅助函数

11a2cos2xancosnx,x0,2n ,则

F(x)a1cosxa2cos2xancosnxf(x)

容易验证F(x)在0,上连续,在(0,)可导,且 F(x)a1cosxF()F(0)0,所以存在(0,)使得  F()0,即f()0.所以,f(x)在(0,)必存在零点.例2: 设aiR且满足a0a1x1a2x2...anxn0在(0,1)内至少有一个实根.x2x3xn1F(x)a0xa1a2...an23n1, 证明: 引进辅助函数显然F(0)F(1)0,F(x)又是多项式函数在[0,1]上连续,在(0,1)可导,F(x)满足罗尔中值定理的条件,故存在(0,1)使

F()0 而

F(x)a0a1x1a2x2...anxn 故方程

a0a1x1a2x2...anxn0 在(0,1)内至少有一个实根.注:本题构造F(x)的依据是使F(x)得导数恰好是所证方程的左边.a0aa1a2...n023n1,证明方程 总结

本文是研究主要是通过在大学阶段对有关数学方面的知识的分析和学习得到的,并参考了一些图书资料。从整个世界来看,人们对中值定理的研究从微积分的建立之时就开始了,至今有关微分中值定理问题的研究非常活跃,且已有丰富的成果。本文通过与老师同学的讨论,介绍了微分中值定理的主要证明方法和在数学方面的应用分析,分析了费马引理、罗尔定理、拉格朗日中值定理、柯西中值定理的证明方法;在应用方面主要通过例题的形式讨论研究了中值定理在证明等式、不等式、恒等式以及在讨论方程根的存在性等方面的应用。

深入研究微分中值定理,有助于加深对这些定理的理解;清楚这些定理的证明,能促使我们掌握微分中值定理的具体应用。

致谢

完成本论文,我要特别感谢我的指导老师魏老师的热怀和指导。在我撰写论文的过程中,魏老师倾注了大量的心血和汗水,无论是在论文的选题、构思和资料的收集方面,还是在论文的研究方法以及成文定稿方面,我都得到了魏老师教诲和帮助在此表示真诚地感谢和深深的谢意。

最后,向在百忙中抽出时间对本文进行评审并提出宝贵意见的各位专家表示感谢!参考文献

[1] 张勇.微分中值定理的认识及推广[J].消费导刊·时空教育.2009(02)166

[2] 朱美玉。微分中值定理的进一步探讨[J].湖北广播电视大学学报.2009(08)158-159.[3] 邢建平;徐湘云.微分中值定理的解题应用[J].中小企业管理与科技(上旬刊).2010(08)158

[4] 邓乐斌编.数学分析的理论、方法与技巧[M].武汉:华中科技出版社,2005.[5] 王宝艳.微分中值定理的应用[J].雁北师范学院学报,2005,2:59~61.[6] 党艳霞.浅谈微分中值定理及其应用[J].廊坊师范学院学报(自然科学版),2010,1:28-31

第二篇:微分中值定理的证明题

微分中值定理的证明题

1.若f(x)在[a,b]上连续,在(a,b)上可导,f(a)f(b)0,证明:R,(a,b)使得:f()f()0。

证:构造函数F(x)f(x)ex,则F(x)在[a,b]上连续,在(a,b)内可导,(a,b),使F()0 且F(a)F(b)0,由罗尔中值定理知: 即:[f()f()]e0,而e0,故f()f()0。

2.设a,b0,证明:(a,b),使得aebbea(1)e(ab)。

1111 证:将上等式变形得:ee(1)e()

baba1x11b11a111111作辅助函数f(x)xe,则f(x)在[,]上连续,在(,)内可导,baba 由拉格朗日定理得:

11f()f()baf(1)1(1,1),11baba11b1a1ee1a(1)e

1(1,1),即 b11baba

即:

aebbea(1)e(ab)

(a,b)。

3.设f(x)在(0,1)内有二阶导数,且f(1)0,有F(x)x2f(x)证明:在(0,1)

内至少存在一点,使得:F()0。

证:显然F(x)在[0,1]上连续,在(0,1)内可导,又F(0)F(1)0,故由罗尔定理知:x0(0,1),使得F(x0)0

又F(x)2xf(x)x2f(x),故F(0)0,于是F(x)在[0,x0]上满足罗尔定理条件,故存在(0,x0),使得:F()0,而(0,x0)(0,1),即证 4.设函数f(x)在[0,1]上连续,在(0,1)上可导,f(0)0,f(1)1.证明:(1)在(0,1)内存在,使得f()1.

(2)在(0,1)内存在两个不同的点,使得f/()f/()1

【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】(I)

令F(x)f(x)1x,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在(0,1), 使得F()0,即f()1.(II)在[0,]和[,1]上对f(x)分别应用拉格朗日中值定理,存在两个不同的点(0,),(,1),使得f()于是,由问题(1)的结论有

f()f()f()1f()11.11f()f(0)f(1)f(),f()

015.设f(x)在[0,2a]上连续,f(0)f(2a),证明在[0,a]上存在使得

f(a)f().【分析】f(x)在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。辅助函数可如下得到

f(a)f()f(a)f()0f(ax)f(x)0

【证明】令G(x)f(ax)f(x),x[0,a].G(x)在[0,a]上连续,且

G(a)f(2a)f(a)f(0)f(a)

G(0)f(a)f(0)

当f(a)f(0)时,取0,即有f(a)f();

当f(a)f(0)时,G(0)G(a)0,由根的存在性定理知存在(0,a)使得,G()0,即f(a)f().

6.若f(x)在[0,1]上可导,且当x[0,1]时有0f(x)1,且f(x)1,证明:在(0,1)内有且仅有一个点使得f() 证明:存在性

构造辅助函数F(x)f(x)x

则F(x)在[0,1]上连续,且有F(0)f(0)00,F(1)f(1)10,由零点定理可知:F(x)在(0,1)内至少存在一点,使得F()0,即:f()

唯一性:(反证法)

假设有两个点1,2(0,1),且12,使得F(1)F(2)0

F(x)在[0,1]上连续且可导,且[1,2][0,1] 

F(x)在[1,2]上满足Rolle定理条件

必存在一点(1,2),使得:F()f()10

即:f()1,这与已知中f(x)1矛盾

假设不成立,即:F(x)f(x)x在(0,1)内仅有一个根,综上所述:在(0,1)内有且仅有一个点,使得f()

17.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f()=1。试

2(x)=1。证至少存在一个(0,1),使f¢分析:f'()=1f'(x)=1f(x)=xf(x)x=0 令 F(x)= f(x)x 证明: 令 F(x)= f(x)x

F(x)在[0,1]上连续,在(0,1)内可导,F(1)= f(1)110(f(1)0)F(11111)= f()0(f()1)222221由介值定理可知,一个(,1),使 F()=0 又 F(0)=f(0)0=0 对F(x)在[0,1]上用Rolle定理,一个(0,)(0,1)使

F'()=0 即 f'()=1 8.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)试证存在和.满足01,使f()f()0。

证 由拉格朗日中值定理知,1f()f(0)12f()(0,)

12021f(1)f()12f()(,1)

121211f()f(0)f(1)f()20 f()f()211229.设f(x)在[a,b]上连续,(a,b)内可导(0ab),f(a)f(b), 证明: ,(a,b)使得 f()abf().(1)2证:(用(ba)乘于(1)式两端,知)(1)式等价于

f()f()2(ba)(ba2).(2)12

为证此式,只要取F(x)f(x),取G(x)x和x在[a,b]上分别应用Cauchy中值定理,则知

2f()f()2(ba)(ba2), f(b)f(a)12其中,(a,b).10.已知函数f(x)在[0 ,1]上连续,在(0,1)内可导,0ab,证明存在,(a,b),使32f/()(a2abb2)f/()

f/()f(b)f(a)解:利用柯西中值定理 2333ba而f(b)f(a)f/()(ba)

f/()f(b)f(a)f/()(ba)f/()(后面略)22333323babaaabb/11.设f(x)在xa时连续,f(a)0,当xa时,f(x)k0,则在(a,af(a))k内f(x)0有唯一的实根

/解:因为f(x)k0,则f(x)在(a,af(a))上单调增加 kf(a)f(a)f/()/f(a)f(a)f()f(a)[1]0(中值定理)

kkk而f(a)0故在(a,af(a))内f(x)0有唯一的实根 k12t0tsin12.试问如下推论过程是否正确。对函数f(t)在[0,x]上应用拉tt00格朗日中值定理得:

1x2sin0f(x)f(0)111xxsinf()2sinc(0sx)

ox0x0x

即:cos12sin1xsin1)

(0x

x1xsin limx00,il2nsi0

因0x,故当x0时,由m010 x

得:limcosx0

10,即limcos010

解:我们已经知道,limcos010不存在,故以上推理过程错误。

首先应注意:上面应用拉格朗日中值的是个中值点,是由f和区间[0,x]的

端点而定的,具体地说,与x有关系,是依赖于x的,当x0时,不 一定连续地趋于零,它可以跳跃地取某些值趋于零,从而使limcosx010成

立,而limcos010中要求是连续地趋于零。故由limcosx010推不出

0limcos10

13.证明:0x2成立xtgxx。cos2x

证明:作辅助函数f(x)tgx,则f(x)在[0,x]上连续,在(0,x)内可导,由拉格朗日定理知:

f(x)f(0)tgx1(0,x)f()x0xcos2即:tgx1x(0,)(0,),因在内单调递减,故在cosx22cosx22cos111xxx即: cos20cos2cos2xcos2cos2x内单调递增,故

即:xtgx1。cos2x

注:利用拉格朗日中值定理证明不等式,首先由不等式出发,选择合适的函数f(x)及相应的区间[a,b],然后验证条件,利用定理得

f()(ba(a,b)

f(b)f(a),再根据f(x)在(a,b)内符号或单调

证明不等式。14.证明:当0x时,sinxtgx2x。

证明:作辅助函数(x)sinxtgx2x

则(x)cosxsec2x2

12 cos2x1cos2x2 2cosxcosxx(0,)

2

(cosx0

12)cosx

故(x)在(0,)上单调递减,又因(0)0,(x)在(0,)上连续,22

故 (x)(0)=0,即:sinxtgx2x0,即:sinxtgx2x。

注:利用单调性证明不等式是常用方法之一,欲证当xI时f(x)g(x),常用辅助函数(x)f(x)g(x),则将问题转化证(x)0,然后在I上

讨论(x)的单调性,进而完成证明。

15.证明:若f(x)二阶可导,且f(x)0,f(0)0,则F(x),内单调递增。)

(0

f(x)在 x证明:因F(x)xf(x)f(x),要证F(x)单调递增,只需证F(x)0,2x

即证xf(x)f(x)0。

设G(x)xf(x)f(x),则G(x)xf(x)f(x)f(x)xf(x),因为

f(x)0,x0,故G(x)是单调递增函数,而G(0)0f(x)00,因此G(x)G(0),即:xf(x)f(x)0,即:F(x)0,即F(x)当x0时单调递增。

第三篇:高等数学 极限与中值定理 应用

(一)1.xsinlimxlimxsin2xx1 22xx1(洛必达法则)1x2

=lim2x22xx1

2

2.xx limxlimsinxcosx1

1

3.x0sinxlimcosxx0limtanxsinxx3

sinx3limx sinx(1cosx)x0xcosx3

x3lim23x0x12

4.limxsinx3x0lim16x1cosx3x2 x0

(二)1.若

limsinxeaxx0(cosxb)5,求常数a,b

lim(cosxb)xea sinx(cosxb)limxx0ea x0sinx由等价无穷小可得a=1

=lim(cosxb)xsinxexx05

b4

2.若x0,(x)kx,(x)21xarcsinxcosx

是等价无穷小,求常数K lim1xarcsinxkx2cosxx01

lim1xarcsinxcosxkx(1xarcsinx1xarcsinxcosx2kx2x02cosx)

limx0

x2arcsinxlimx0sinx1x4kx1x)cosx'lim31x2(x01x4k2

4k3k41

3.证明当X>02

时,(x1)lnx(x1)222

f(x)(x1)lnx(x1)则f(x)2xlnxx2xlnxx'''

1x2(x1)1x2

1x2f(x)2(lnx1)1

2lnxln1x21x211

x210'再倒推可得:f(x)0

22f(x)0f(x0),所以(x1)lnx(x1)

(三)1.设f(x)在[0,a]上连续,在(0,a)内可导,且

f(a)0,证明:(0,a),使得f()f()0。

'求原函数F(x)xf(x)

F(0)F(a)0满足罗尔定律,所以F(x)0

'即 f()f()0'

2.设f(x)在[0,1]上连续,在(0,1)上可导。且

f(0)0,f(1)1,证明

(1)c(0,1).推出f(c)1c(2),(0,1)有f()f()=1()''

(1)F(x)f(c)c1

F(0)1,F(1)1

由零点定理得c(0,1)有F(c)=0

所以c(0,1).推出f(c)1c(2)设(o,c),(c,1)得

f()f()''f(c)f(0)c0f(1)f(c)1c1ccc1c'

'所以 ,(0,1)有f()f()=1()

第四篇:高等数学考研大总结之五 微分中值定理

第五章微分中值定理

一,罗尔(Rolle)中值定理费马(Fermat)引理:设fx在点x0取得极值,且f/x0存在则f/x0=0。解析:几何意义:曲线在极值点处的切线是平行于x轴的。

2罗尔(Rolle)中值定理:函数fx在闭区间a,b上连续,在开区间a,b内可导(每一点都具有导数)并且在闭区间a,b的端点函数值相等,即:fafb,那么在开区间a,b内至少有一点使得f/0。

解析:⑴该定理是奠定一系列中值定理的基础。

⑵此定理反映了由区间端点函数值的情况来表现区间内导函数值的变化情况,给出了点的具体位置和计算方法(与Lagrange中值定理的区别)。

⑶几何意义:若连接曲线两端点的弦是水平的,则曲线上至少有一点的切线是水平的。⑷两个推论:①推论1:如果函数fx在区间a,b内的导数恒等于零,那么函数fx在区间a,b内是一个常数。②推论2:如果函数fx在区间a,b内处处有

。f/xg/x,则在此区间内fxgxC(常数)

二,拉格朗日(Lagrange)中值定理

设函数fx在闭区间a,b上连续且在开区间a,b内可导(每一点都具有导数)那么在开区间a,b内至少有一点ab使等式fbfaf

该定理的其它几种表示形式:⑴f//ba成立。fbfa ba

AB解析:反映其几何意义:如果连接曲线yfx的弧上除端点外处处具有不垂直于x轴的切线,那么这弧上至少有一点,使曲线在处的切线平行于弦AB。

⑵令aba,01则fbfaf/ababa,01。解析:由于的特定取值范围,所以在证明不等式时较常用,若令ax0,bx0h那么有:fx0hfx0f/x0hh,01。

⑶有限增量公式:如果用x表示ba则函数增量yfbfa,这时该定理变成yf/x。

解析:⑴从理论上与微分的区别:该公式准确的表明了函数增量与自变量增量(不要求其趋第1页

于零或比较小而仅要求其为有限增量)的关系,而微分只能近似的表示这一关系,并且要求

x比较小,而且当x0时dy表示y的误差才趋于零。但在实际应用中仍常用微分去

近似表示函数值的改变量。⑵类比与上式,则还可表示为yf三,柯西(Cauchy)中值定理

设两个函数fx和gx在闭区间a,b上连续且在开区间a,b内可导(每一点都具有导数)且g/x在a,b内每一点均不为零,则在a,b内至少存在一点使得

/

xxx,01。

fbfaf/,ab成立。gbgag/解析:⑴要求分子与分母中的是同一个值。⑵

Lagrange

理,此

fx0hfx0f/x0h

,01。

gx0hgx0g/x0h四,Rolle,Lagrange,Cauchy中值定理间的关系

xxfafb

CauchygLagrangeRolle

五,泰勒(Taylor)中值定理定义:若fx在a,b上有直到n阶连续的导数,在开区间a,b上n1阶导数存在,则

意的x,x0a,b

有:

fxfx0

f

/

x0

1!

xx0

f

//

x0

2!

xx0

fnx0xx0nRnx其中

n!

fn1称为余项(与误差估计有关)。其中当x0xx0n1(介于x与x0之间)Rnx

n1!

取零时的泰勒(Taylor)公式称为麦克劳林(Maclaurin)公式。

解析:使复杂函数成为简单函数的有效方法。2 各种形式的泰勒(Taylor)公式

⑴带有皮亚诺(Peano)余项的泰勒

(Taylor)公式:

f/x0f//x0fnx02nn

Taylor:fxfxxxxxxxxx,xx000000

1!2!n!///n

Maclaurin:fxf0f0xf0x2f0xnxn,x01!2!n!





⑵带有Lagrange余项的泰勒(Taylor)公式:

f/x0f//x0fnx0fn12nn1

Taylor:fxfxxxxxxxxx00000

n11!2!n!

///nn1

xxn1,01Maclaurin:fxf0f0xf0x2f0xnf

n11!2!n!

Cauchy

项的泰

(Taylor)

nfkx0

xx0kfxn1

xnm,xxm!fk!k0Taylor:0m

gkx0n!gn1k

xx0gx 

k!k0

nxx0xnn1fkx0k

xx0fCauchy:令gxx,m0则fxk!n!k0

⑷带有积分余项的泰勒(Taylor)公式:

n

fkx01xn1kn

Taylor:fxxxftxtdt0x0

k!n!k0

kn1n1f0kxnn1Maclaurin:fxxfxt1tdt0k!n!k0常见函数的麦克劳林(Maclaurin)展式

⑴带有皮亚诺(Peano)余项的麦克劳林(Maclaurin)展式:

n

x3x5x2n1x2k1n1k12n

sinxx1x1x2n

2n12k13!5!!k1



2n2kn

x2x4nxkx2n

cosx11x1x2n

2n2k2!4!!k0



kn

xx2xnk1xn

e1x1xn

1!2!n!k!k0x





nkn

x2x3n1xk1xn

ln1xx1x1xn

23nkk1



1x

n

1212n1nnkk

1xxxx1Cxxn2!n!k1

⑵带有Langrange余项的麦克劳林(Maclaurin)展式:

sinx1

k1n

n

k1

x2k1ncosx

1x2n1,012k12n1!

x2kn1cosx

cosx11x2n2,01

2k2n2!k0

k

xkex

exn1,01

!k0k!n1x

n

ln1x1`

k1

n

k1

xkxn1n

1,x1,01n1kn11x

1x

kk

1Cx

k1

n

1n1xn1xn1,x1,01

n1!Taylor公式的应用

⑴求极限。⑵近似计算,误差估计。⑶与幂级数的关系。⑷不等式证明。六,罗比塔(L”Hospital)法则解决问题的情况:

00

。

解析:不是以上两种型的转化为以上型。例如:

“0”型,“”型,“00”型,“0”型,“1”型。需注意的问题:⑴只有未定式才能应用罗比塔(L”Hospital)法则,不是未定式,则不能用罗比塔(L”Hospital)法则,且分子与分母分别求导。

⑵只有

法则。

00

未定式才能直接应用罗比塔(L”Hospital)

00

未定

⑶求其他类型未定式的值时,就首先将其转化为

式,然后才能应用罗比塔(L”Hospital)法则。

⑷可以对未定式反复应用罗比塔(L”Hospital)法则,直到求出确定的极限值为止。⑸用对数方法求极限时还要将结果还原为指数形式。

⑹有些未定式若用罗比塔(L”Hospital)法则求不出它的值时,就改用其它方法计算。

第五篇:中值定理在不等式证明中的应用

摘 要

本文主要写在不等式证明过程中常用到的几种中值定理,其中在拉格朗日中值定理证明不等式的应用中讲了三种方法:直接公式法、变量取值法、辅助函数构造法.在泰勒中值定理证明不等式的应用中,给出了泰勒公式中展开点选取的几种情况:区间的中点、已知区间的两端点、函数的极值点或最值点、已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好的运用泰勒中值定理证明不等式.并对柯西中值定理和积分中值定理在证明不等式过程中的应用问题作简单介绍.关键词:拉格朗日中值定理;泰勒公式;柯西中值定理;积分中值定理;不等式

Abstract

This paper idea wrote in inequality proof of use frequently during several of the mean value theorem, which in the Lagrange mean value theorem proving inequality in the application of the three methods to speak: direct formula method, variable value method, the method to construct auxiliary function.in the application of proof inequalities of the Taylor mean value theorem , which gave Taylor formula on the point in several ways: the point of the interval, the interval of two known extreme, the function extreme value point or the most value point, the interval of known at any point.And the application range of of all kinds of situation and characteristics that were explained, in order to better use Taylor of the mean value theorem to testify inequality.And Cauchy mid-value theorem and integral mean value theorem in the application process to prove the inequality were briefly discussed

Key words :The Lagrange Mean Value Theorem;Taylor's Formula;Cauchy Mean Value Theorem;Inequality;The Mean Value Theorem for Integrals

目 录

摘要 ………………………………………………………………………………(I)Abstract …………………………………………………………………………(I)1 引言 ……………………………………………………………………………(1)2 拉格朗日中值定理在不等式证明中的应用 …………………………………(2)

2.1 拉格朗日中值定理…………………………………………………………(2)2.2 利用拉格朗日中值定理证明不等式………………………………………(2)2.2.1 直接公式法 „„„„„„„„„„„„„„„„„„„„„„„(2)2.2.2 变量取值法 „„„„„„„„„„„„„„„„„„„„„„„(4)2.2.3 辅助函数构造法 ………………………………………………………(5)3 泰勒中值定理在不等式证明中的应用 ………………………………………(7)3.1 泰勒中值定理…………„„„„„„„„„„„„„„„„„„„„(7)3.2 利用泰勒公式证明不等式„„„„„„„„„„„„„„„„„„„(7)3.2.1 中点取值法 „„„„„„„„„„„„„„„„„„„„„„„(7)3.2.2 端点取值法 „„„„„„„„„„„„„„„„„„„„„„„(9)3.2.3 极值取值法 „„„„„„„„„„„„„„„„„„„„„„„(9)3.2.4 任意点取值法 „„„„„„„„„„„„„„„„„„„„„„(11)4 柯西中值定理在不等式证明中的应用………………………………………(14)

4.1 柯西中值定理………………………………………………………………(14)4.2 利用柯西中值定理证明不等式……………………………………………(14)5 积分中值定理在不等式证明中的应用 ………………………………………(16)

5.1 积分中值定理„„„„„„„„„„„„„„„„„„„„„„„„(16)5.2 利用积分证明不等式………………………………………………………(16)结束语 ……………………………………………………………………………(18)参考文献 …………………………………………………………………………(19)致谢 ………………………………………………………………………………(20)引言

不等式也是数学中的重要内容,也是数学中重要方法和工具.中值定理包括罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理以及积分中值定理等.以拉格朗日中值定理(也称微分中值定理)为中心,介值定理是中值定理的前奏,罗尔定理是拉格朗日中值定理的特殊情形,而柯西中值定理、泰勒中值定理及定积分中值定理则是它的推广.利用中值定理证明不等式,是比较常见和实用的方法.人们对中值定理的研究,从微积分建立之后就开始了以罗尔定理,拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的理论基础,它们建立了函数值与导数值之间的定量联系,中值定理的主要作用在于理论分析和证明;应用导数判断函数上升、下降、取极值、凹形、凸形和拐点等项的重要性态.此外,在极值问题中有重要的实际应用.微分中值定理是数学分析乃至整个高等数学的重要理论,它架起了利用微分研究函数的桥梁.微分中值定理从诞生到现在的近300年间,对它的研究时有出现.特别是近十年来,我国对中值定理的新证明进行了研究,仅在国内发表的文章就近60篇.不等式的证明不仅形式多种多样,而且证明方式多变,常见的方法有:利用函数的单调性证明,利用微分中值定理证明,利用函数的极值或最值证明等,在众多方法中,利用中值定理证明不等式比较困难,无从下手,探究其原因,一是中值定理的内容本身难理解,二是证明不等式,需要因式而变,对中值定理的基础及灵活性要求较高.我们在日常教学中常常遇到不等式的证明问题,不等式是初等数学中最基本的内容之一,我们有必要把这类问题单独拿出来进行研究,找出它们的共性,以方便我们日后的教学研究工作的开展.拉格朗日中值定理在不等式证明中的应用

2.1 拉格朗日中值定理

拉格朗日(J.L.Lagrange,1736-1813,法国数学家,力学家,文学家).拉格朗日中值定理 设函数fx在闭区间[a,b]上连续,在开区间a,b内可导,则在开区间(a,b)内至少存在一点x0,使得

f'x0f(a)f(b)(1)

ba或

fbfaf'x0ba.(2)拉格朗日中值定理是罗尔定理的推广,即罗尔定理是拉格朗日定理当fafb时的特殊情形.拉格朗日定理中,由于ax0b,因而可将x0表示为

x0a(ba),01.这样(1)式还可表示为

fbfaf'aba,01.(3)若令bah,则有

fahfaf'ahh,01.(4)一般称式(1)、(2)、(3)、(4)式为拉格朗日公式.2.2 利用拉格朗日中值定理证明不等式 2.2.1 直接公式法

例2.1 证明不等式sinx1-sinx2x1-x2成立.分析 首先要构造一个辅助函数fx;a 由欲证形式构成“形似”的函数区间.b 运用拉格朗日公式来判断.证明 设fxsinx,xx1,x2.由拉格朗日公式(2)可得

sinx1-sinx2f'x1x2,x1,x2.等式两边同取绝对值,则有

sinx1sinx2f'x1-x2.而

fsin'xxcos.又因为 0cos1.因此,就得到

sinx1-sinx2x1-x2.证毕.评注 此题如果单纯地应用初等数学的方法来证明,会难以得出结论,而应用了拉格朗日公式,再利用三角函数的简单知识,问题就游刃而解了.例2.2 证明不等式arctanx2arctanx1x2-x1,(x2x1)成立.分析 此题利用反三角函数的有关知识,构造一个辅助函数fxarctanx,再利用拉格朗日中值定理就可以轻轻松松地解出此题.证明 设fxarctanx,fx在x1,x2上满足拉格朗日定理的全部条件,因此有

arctanx2arctanx11(x2x1),x0x1,x2.21x0因为11,可得 21x0arctanx2arctanx1x2x1.例2.3[3] 证明pbp1(ab)apbppap1ab,(p1,ab0).证明 设函数,f(x)xp,则,f(a)f(b)apbp.不难看出f(x)在区间b,a上满足拉格朗日定理条件,于是存在b,a,使

f(a)f(b)(ab)f'().由于f'xpxp1,所以f'()pp-1,上式为

apbp(ab)pp1.因为xp当p1时为单调增函数,ba,所以

bp-1p-1ap-1.两边同时乘以pab,则得

pbp1(ab)pp1(ab)pap1(ab),即

pbp1(ab)apbppap1(ab),证毕.2.2.2 变量取值法

例2.4 证明不等式

babb-aln 成立,其中ba0.baa分析(1)根据题中式子构造一个相似函数,fxlnx和定义区间a,b.(2)利用对数的四则运算法则,将对数式整理成拉格朗日中值定理所满足的形式,从而得出结论.证明 设fxlnx,xa,b.由拉格朗日公式(3),则有

lnbb-alnb-lna.(1)aab-a由不等式01,可推得

aab-ab及代入(1),即

babb-aln.证毕.baab评注 解此题关健在于观察要证明的不等式中把对数式ln拆开成ab-abab-a.ba(ba)alnb-lna,再利用拉格朗日的公式来轻松地得出结论.例2.4 证明不等式

hln1hh,对一切h-1,h0成立.1h分析 此题首先利用对数的有关知识,构造了一个辅助函数lnx,再利用拉格朗日中值定理解出此题.证明 由拉格朗日公式(4),令a1,f(x)lnx.则有

ln1hln1h-ln1h1h01.,(1)

当h0时,由不等式 01,可推得

11h1h及

hhh.(2)1h1h当-1h0时,由不等式01,可知

11h1h0.由于h0,可推(2)式成立,将(2)式代入(1)式,就可知不等式成立.评注 证明此种不等式的关健是构造一个辅助函数,再利用初等数学的有关知识来证明不等式.例2.5 证明若x0,则ex1x.证明 令f(x)ex,则f(x)在R上连续、可导,且f'(x)ex.(0,x)情形一 当x0时,由拉格朗日定理知使

exe0e(x0).整理有exex.因为e1,所以有exx.(x,0)情形二 当x0时,由拉格朗日中值定理知,使

e0exe(0x).整理有exxe.因为此时0e1,三边同时乘以x,0xex 所以exx成立.综上所述,当x0时,exx成立.从以上例题可以发现:灵活构造“a,b”的取值,不仅可使证明过程简单,有时甚至是解题的关键.2.2.3 辅助函数构造法

例2.6[4] 设函数f(x)在a,b上连续,在a,b内可导,又f(x)不为形如,使f'()AxB的函数.证明至少存在一点(ab)证明 做辅导函数

g(x)f(a)则gx为形如AxB的函数.

因为f(x)不为形如AxB的函数,所以至少存在一点c(a,b),使

f(b)f(a)(xa),baf(b)f(a).ba

f(c)g(c),但f(a)g(a),f(b)g(b).情形一 f(c)g(c),此时

f(b)f(a)f(a)(ca)f(a)f(c)f(a)g(c)g(a)f(b)f(a)ba

cacacaba即

f(c)f(a)f(b)f(a).caba(a,c)因为a,ca,b,所以由中值定理知1,使

f(c)f(a),caf(b)f(a)从而有 f'(1).ba f'(1)情形二 f(c)g(c),此时

f(b)f(a)f(b)f(a)(ca)f(b)f(c)g(b)g(c)baf(b)f(a),bcbcbaba即

f(b)f(c)f(b)f(a).bcba因为c,ba,b,所以由拉格朗日中值定理,2(c,b)使得

f'2从而有

f'2fbfc,bcfbfa.ba综上所述,在a,b内至少有一点使原式成立.证毕.许多证明题都不能直接应用定理进行证明.利用拉格朗日中值定理证明问题时,如何构造辅助函数,是证明的关键.泰勒中值定理在不等式证明中的应用

3.1 泰勒中值定理

泰勒中值定理 如果函数f(x)在含有x0的开区间a,b内有直到n1阶导数,则对任一点x0(a,b),有

f''(x0)f(n)(x0)f(n1)()2nf(x)f(xo)f'(xo)(xx0)(xx0)(xxo)(xx0)n12!n!(n1)!其中是x0与x之间的某个值,上式称为f(x)按(xx0)的幂展开的n阶泰勒公式.下面就泰勒中值定理中函数展开点x(a,b)的不同情况来证明不等式.3.2 利用泰勒公式证明不等式 3.2.1 中点取值法

选区间中点展开是较常见的一种情况,然后在泰勒公式中取x为适当的值,通过两式相加,并对某些项进行放缩,便可将多余的项去掉而得所要的不等式.下面以实例说明.例3.1[5] 设在区间a,b内,f''(x)> 0,试证:对于a,b内的任意两个不同点x1和x2,有 f(x1x2f(x1)f(x2)).22f''xx02,2!证明 将f(x)分别在a及b处展开,得

fxfx0f'x0xx0其中是x0与x之间的某个值.上式中分别取xx1及x2,f''1x1x02,x1,x0; 2!f''2x2x02,x0,x2.fx2fx0f'x0x2x02!fx1fx0f'x1x0上面两式相加,得

fx1fx22fx0f''1x1x02f''2x2x02.2!2!因为f''(x)0,所以,fx1fx22fx0,即

xxfx1fx2 f12.22注(1)若题中条件“f''(x)0”改为“f''(x)0”,而其余条件不变,则结论改为

xxfx1fx2 f12.22(2)若例1的条件不变,则结论可推广如下:

对a,b内任意n个不同点x1,x2xn及1,2,,n(0,1)且11,有

i1nnn fixiifxi.i1i1例3.2 设函数f(x)在区间[a,b]上二阶连续可导,且f(ab)0,证明 2abMbafxdx,其中Mmaxf''x.axb243证明 将f(x)在x0ab处展开,得 2 fxfx0f'x0xx0其中是 x0与x之间的某个值.因为f(f''xx02.2!ab)0,所以有 2 fxf'x0xx0上式在a,b作定积分,然后取绝对值

f''xx02,2!abfxdxf''2f'xxxxx000dx a2!b1 2baf''x-x02Mdx2M3x-xdxb-a.0ab224 即

bafxdxMba3.2

3.2.2 端点取值法

当条件中出现f'(a)f'(b)0,而欲证式中出现厂f(a),f(b),f''(),展开点常选为区间两端点a,b,然后在泰勒公式中取x为适当的值,消去多余的项,可得待证的不等式.例3.3 函数f(x)在区间[a,b]上二阶可导,且f'(a)f'(b)0,证明:在a,b内至少存在一点,使得f''4fbfaba2.证明 将f(x)分别在a及b处展开,得

f''1xa2,1a,x; 2!f''2xb2,2x,b.fxfbf'bxb2!ab上面两式中取x,fxfaf'axabaf''1baab ffaf'a;

22!222baf''2baba ffbf'b.222!22上面两式相减,并由f'(a)f'(b)0,得

2bafbfa8(ba)2f''2f''1.f''2f''18 记

f''maxf''1f''2.其中,1或2.于是,有

2bafbfa4f'',即f''4fbfaba2.3.2.3 极值取值法

当题中不等式出现函数的极值或最值项,展开点常选为该函数的极值点或最

值点.例3.4[6] 设函数f(x))在区间a,b内二阶可导,且存在极值f(c)及点p(a,b),使f(c)f(p)0,试证:至少存在一点(a,b),使f'(c)f''()0.证明 将f(x)在x0c处展开,得

fxfcf'cxc其中, 介于c与x之间.上式取xp,并由f'(c)0,得

fpfcf''pc2,2!f''pc2,2!其中介于c与p之间.两边同乘以f(c),得

fpfcf2cf''2fcpc,2!ab(1)当x0a,时,上式取xa,得

2fx0即

f''ax02baf'',a,x0.2!82f''8ba2fx0.ab(2)当x0a,时,上式取xb,同理可得

2f''8ba2fx0,x0,b.由(1)及(2)得,存在(a,b),使得

f''8maxfx.ba2xa,b再由f''(x)的连续性,得

maxf''xxa,b8ba2xa,bmaxfx

注(1)当题中条件“连续”去掉,而其他条件不变时,结论可改为在a,b内至少存在一点,使得

f''8ba2xa,bmaxfx成立

(2)当题中条件添加maxf(x)0时,结论可改为:在a,b内至少存在一点

xa,b,使得f''()8maxf(x)成立.2xa,b(ba)3.2.4 任意点取值法

当题中结论考察f(x),f'(x),f''(x)的关系时,展开点常选为该区间内的任意点,然后在泰勒公式中取x为适当的值,并对某些项作放缩处理,得所要的不等式.例3.5[7] 函数f(x)在区间a,b上二阶可导,且f(x)≤A,f''(x)≤ B,其中A,B为非负常数,试证:f'x2ABba,其中x(a,b).ba2f''xx02,2!证明 将f(x)在x0(a,b)处展开,fxfx0f'x0xx0其中介于x0与x之间.上式中分别取xa及b,fafx0f'x0xx0fbfx0f'x0xx0f''1ax02,1a,x0; 2!f''2bx02,2x0,b.2!上面两式相减,得

fbfaf'x0ba122f''2bx0f''1ax0.2

f'x0fbfa122f''2bx0f''1ax0.ba2ba故

f'x01fbfa1f''2bx02f''1ax02 ba2ba2ABbx02x0a2 ba2ba  2ABb-a.b-a22AB即f'xba,再由x0的任意性,ba2故有

f'x2ABba,其中x(a,b).ba2例3.6 函数f(x)在区问a,b上二阶可导,且f(a)f(b)0,Mmaxf''(x),试证x[a,b]baMbafxdx.123证明 将f(x)在ta,b处展开,fxftf'txt其中车于t与x之间.上式中分别取xa及b,faftf'txtf''1at2,1a,t; 2!f''2bt2,2t,b.fbftf'txt2!f''xt2,2!

上边两式相加,得

ft1122f'tab2tf''1atf''2bt.24上式两端在a,b上对t作积分,ba1b1b22ftdtf'tab2tdtf''1atf''2btdt

2a4ab1b22ftdtf''1atf''2btdt.a4a于是有

ba1b22ftdtf''1atf''2btdt,8aba1b2ftdtaf''1atdt8b2 [f''bt]dt2abMb2 aatdt8即

Mba.btdta1232baMbafxdx.123注 从不等式的特点出发,应用实际范例给出了泰勒公式中展开点选取的几种情况:区间的中点,已知区间的两端点,函数的极值点或最值点,已知区间的任意点.同时对各种情况的运用范围和特点作了说明,以便更好地运用泰勒中值定理证明不等式.柯西中值定理在不等式证明中的应用

4.1 柯西中值定理

柯西中值定理 设函数fx,gx满足

(1)在闭区间a,b上连续;

(2)在开区间a,b内可导;

(3)对任一xa,b有gx0,则存在a,b,使得fbfa/gbga=f'/g'.4.2 利用柯西中值定理证明不等式

例4.1 设函数fx在-1,1内可微,f00,f'x1,证明:在-1,1内,fx1.证明 引入辅助函数gxx,在0,x或x,o上x1,1应用柯西中值定理,得

fx-f0f'f'.gx-g01

因为f00,g00,且fx1,所以

fxf1fxx1.gx例4.2[8] 证明不等式1xlnx1x21x2x0.证明 令fxxlnx1x2,gx1x21,则上式转化为fxgxx0.由于上应用柯西中值定理,得



fxfxf0f,gxgxg0g于是fxgx又转化为f'g'.因为

2ln1fg1212112ln12

1而当x0时,12ln120,所以

f1fgfxgx, g即

1xlnx1x21x2.例4.3[9]

若0x1x2x2x1

2,求证:ex2ex1cosx1cosx2ex1.x1ex2ex1ex1,证明 证明eecosx1cosx2e,实际上只需证

cosx1cosx2设ftet,gtcost,则ft,gt在x1,x2上,满足柯西中值定理条件,所以

fx2fx1f'c cx1,x2.gx2gx1g'cex2ex1ee即

0x1cx2.cosx2cosx1sinc2ex2ex1cosx1cosx2ec1cosx1cosx2eccosx1cosx2ex1.sinc其中用到11及ex是单调增加函数.sinc 积分中值定理证明不等式

5.1积分中值定理

定理5.1(积分第一中值定理)若fx在区间a,b上连续,则在a,b上至少存在一点使得

fxdxfba,ab.

ab 定理5.2(推广的积分第一中值定理)若fx,gx在闭区间a,b上连续,且gx在a,b上不变号,则在a,b至少存在一点,使得

fxgxdxfgxdx,ab.aabb5.2 利用积分中值定理证明不等式

例5.1[11]

11x91dx.证明

1010201xb 证明 估计积分fxgxdx的一般的方法是:求fx在a,b的最大值Ma和最小值m,又若gx0,则

mgxdxfxgxdxMgxdx.aaabbb本题中令

fx因为

111,x0,1.21x10x1.,gxx90,1x所以

111119x919dxxdxdxx.0001010221x例5.2 证明2e14ex2xdx2e2.02 证明 在区间0,2上求函数fxex2x的最大值M和最小值m.fx2x1ex2x,令fx0,得驻点x1.21112上的最小值,而f2e2为比较f,f0,f2知fe4为fx在0,222上的最大值.由积分中值定理得 fx在0,e即

14200exxdxe220,222eex2xdx2e2.0142注 由于积分具有许多特殊的运算性质,故积分不等式的证明往往富有很强的技巧性.在证明含有定积分的不等式时,也常考虑用积分中值定理,以便去掉积分符号,若被积函数是两个函数之积时,可考虑用广义积分中值定理.如果在证明如1和2例题时,可以根据估计定积分的值在证明比较简单方便.结束语

深入挖掘渗透在这一定理中的数学思想,对于启迪思维,培养创造能力具有重要 意义.伟大的数学家希尔伯特说“数学的生命力在于联系” .数学中存在着概念之间的亲缘关系,存在着理论结构各要素之间的联系,存在着方法和理论之间的联系,存在着这一分支邻域与那一分支邻域等各种各样的联系,因此探索数学中各种各样的联系乃是指导数学研究的一个重要思想.实际上,具体地分析事物的具体联系,是正确认识和改造客观世界必不可少的思维方式在一定的意义上说,数学的真正任务就在于揭示数学对象之间、数学方法之间的内在固有联系,这一任务的解决不断推动数学科学向前发展.

中值定理在一些等式的证明中,我们往往容易思维定式,只是对于原来的式子要从哪去证明,很不容易去联系其它,只从式子本身所表达的意思去证明.今后应当注重研究中值定理各定理之间的联系,更好的应用中值定理解决不等式的证明.中值定理是一条重要定理,它在微积分中占有重要的地位,起着重要的作用,参考文献

[1] 高尚华.华中师范大学第三版.数学分析(上)[M].北京:高等教育出版社,2001,(06).[2] 董焕河、张玉峰.高等数学与思想方法[M].陕西:西安出版社,2000,(09).[3] 高崚峰.应用微分中值定理时构造辅助函数的三种方法[J].四川:成都纺织高等专科学校学报.2007,(07):18-19.[4] 张太忠、黄星、朱建国.微分中值定理应用的新研究[J].江苏:南京工业职业技术学院学报.2007,(8):12-14.[5] 张元德、宋列侠.高等数学辅导30讲[M].清华大学出版社,1994,(6).[6]AI Jing-hua.Characters Equal Definitions and application of Convex Function[J].Journal of Kaifeng University,Vol.17,No.2,Jun.2003:132-136.[7] 钟朝艳.Cauchy中值定理与Taylor定理得新证明[J].云南:曲靖师专学报.1998,(9):9.[8] 荆天.柯西中值定理的证明及应用[J].北京:科技信息(学术版).2008,(06):14.[9] 葛健牙、张跃平、沈利红.再探柯西中值定理[J].浙江:金华职业技术学院学报.2007,(06):23.[10]刘剑秋、徐绥、高立仁.高等数学习题集(上)[M].天津:天津大学出版社,1987,(07).[11] 刘法贵、左卫兵.证明积分不等式的几种方法[J].高等数学研究,2008,(06).[12] 蔡高厅.高等数学[M].天津大学出版社,1994,(06).[13] W.Rmdin,Principle of Mathematical Analysis(Second edition)[J].Mc Graw-Hill,New York,1964,(09):96-102.致谢

从2008年9月到现在,我在黄淮学院已经渡过接近四年的时光.在论文即将完成之际,回想起大学生活的日日夜夜,百感交集.在大学学习的四年时间里,正是老师们的悉心指导、同学们的热情关照、家人的理解支持,给了我力量,从而得以顺利完成学业.在此对他们表示诚挚的谢意!本论文是在导师钟铭的悉心指导下完成的.导师渊博的专业知识,严谨的治学态度,精益求精的工作作风,诲人不倦的高尚师德,严以律己、宽以待人的崇高风范,朴实无华、平易近人的人格魅力对我影响深远.他对数学理论在经济,金融领域中的应用的想法和建议,使学生受益匪浅、铭刻终生.本论文从选题到完成,每一步都是在导师的指导下完成的,倾注了导师大量的心血.在此,谨向导师表示崇高的敬意和衷心的感谢!

感谢数学科学系其他老师讲授的数学基础课程,为我夯实了数学研究的理论基础,他们是李东亚老师、魏本成老师、庞留勇老师、侯亚林老师等.感谢数学系全体领导、老师、同学创造了一个宽松,自由的学习环境.此外我还感谢室友冯克飞、王宁对我的论文完成过程中给我的指导,她们深厚的数学功底以及对数学应用软件操作等方面的知识给了我很大的帮助.

最后深深地感谢我的父母,把最诚挚的感谢送给他们,感谢他们无微不至的关心和支持,感谢他们的无私奉献以及为我所做的一切.

下载微分中值定理的证明与应用分析五篇word格式文档
下载微分中值定理的证明与应用分析五篇.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    考研数学高等数学重要知识点解析--有关微分中值定理的证明(精选五篇)

    考研数学高等数学重要知识点解析—有关微分中值定理的证明万学教育•海文考研 王丹2013年考研数学大纲于2012年9月14日正式出炉,数学一、数学二、数学三高等数学考试内容和考......

    有关中值定理的证明题

    中值定理证明题集锦 1、已知函数f(x)具有二阶导数,且limx0f(x)0,f0,试证:在区间(0,1)内至少x存在一点,使得f()0. 证:由limf(x),由此又得00 ,可得limf(x)0,由连续性得f(0)x0x0xf(x)......

    中值定理超强总结

    咪咪原创,转载请注明,谢谢! 1、 所证式仅与ξ相关 ①观察法与凑方法 例 1 设f(x)在[0,1]上二阶可导,f(0)ff(0)0 试证至少存在一点(a,b)使得f()2f()1分析:把要证的式子中的  换......

    2016考研数学 中值定理问题的证明分析方法(精选五篇)

    全国高校报录比汇总 在考研数学中,有关中值定理问题的证明是一个比较难的考点,很多考生反映在做中值定理证明时没有思路,虽然看例题能明白,但自己做题时还是比较困难,之所以出现......

    中值定理题目分析总结答案(精选5篇)

    一:待证结论中只有ξ时采用还原法进行证明 工具:f’(x)/f(x)=[lnf(x)]’ 第一题:分析xf’(x)+f(x)=0 f’(x)/f(x)+2/x=0 所以[lnf(x)]’+[lnx²]’=0 证明:构造辅助函数为ln后面......

    定理与证明

    定理与证明(一)教学建议(一)教材分析1、知识结构2、重点、难点分析重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将......

    高等数学中值定理总结(含5篇)

    咪咪原创,转载请注明,谢谢! 中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、 所证......

    【考研数学】中值定理总结

    中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、 所证式仅与ξ相关 ①观察法与......