有关中值定理的证明题

时间:2019-05-14 18:40:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《有关中值定理的证明题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《有关中值定理的证明题》。

第一篇:有关中值定理的证明题

中值定理证明题集锦

1、已知函数f(x)具有二阶导数,且limx0f(x)0,f(1)0,试证:在区间(0,1)内至少x存在一点,使得f()0.证:由limf(x),由此又得00,可得limf(x)0,由连续性得f(0)x0x0xf(x)f(0)f(x)f(0)limlim0,由f(0)f(1)0及题设条件知f(x)在[0,1]x0x0x0x上满足罗尔中值定理条件,因此至少存在一点 c(0,1),使得f(c)0,又因为f(0)f(c)0,并由题设条件知f(x)在[0,c]上满足拉格朗日中值定理的条件,由拉格朗日中值定理知,在区间(0,1)内至少存在一点,使得f()0.2、设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)0,证明:存在一点(0,a),使得f()f()0.证:分析:要证结论即为:[xf(x)]x0.令F(x)xf(x),则F(x)在[0,a]上连续,在(0,a)内可导,且F(0)F(a)0,因此故存在一点(0,a),使得F()0,F(x)xf(x)在[0,a]上满足罗尔中值定理的条件,即f()f()0.注1:此题可改为:

设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)0,证明:存在一点(0,a),使得

nf()f()0.)nf()(0给分析:要证结论nf()f()等价于nn1f(nn1n,而nf()f()0即为[xf(x)]x0.nf()f()两端同乘以n1)故令F(x)xf(x),则F(x)在[0,a]上满足罗尔中值定理的条件,由此可证结论.注2:此题与下面例题情况亦类似:

设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)0,x(0,1),有f(x)0,证:nnN,(0,1),使得

nf()f(1)成立.f()f(1)分析:要证结论可变形为nf()f(1)f()f(1)0,它等价于nfn1()f()f(1)fn()f(1)0(给nf()f(1)f()f(1)0两端同乘以fn1()),而nfn1(f)f()(fn1f)(即)为(1)0[fn(x)fx1(x,用罗尔中值定理)]0.以上三题是同类型题.3、已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)0,f()1,证明:(1)存在一点(,1),使f().(2)存在一点(0,),使f()1.(3)存在一点x0(0,),使f(x0)1(f(x0)x0).证:(1)分析:要证结论即为:f()0.12121211111显然F(x)在[,1]上连续,且F()f()0,F(1)f(1)110,2222211因此F(x)在[,1]上满足零点定理的条件,由零点定理知,存在(,1),使F()0,22令F(x)f(x)x,则只需证明F(x)在(,1)内有零点即可。即f().(2)又因为F(0)f(0)00,由(1)知F()0,因此F(x)在[0,]上满足罗尔中值定理条件,故存在一点(0,),使F()0,即f()10,即f()1.(3)分析:结论f(x0)1(f(x0)x0)即就是F(x0)F(x0)或F(x0)F(x0)0,F(x0)F(x0)0ex0[F(x0)F(x0)]0,即[exF(x)]xx00.故令G(x)exF(x),则由题设条件知,G(x)在[0,]上连续,在(0,)内可导,且G(0)e0F(0)0,G()eF()0,则G(x)在[0,]上满足罗尔中值定理条件,命题得证.4、设f(x)在[0,x]上可导,且f(0)0,试证:至少存在一点(0,x),使得f(x)(1)ln(1x)f().证:分析:要证结论即为: f(x)f(0)(1)[ln(1x)ln1]f(),也就是f(x)f(0)f(),因此只需对函数f(t)和ln(1t)在区间[0,x]上应用柯西中值定理1ln(1x)ln11即可.5、设f(x)、g(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,且g(x)0,证明:至少存在一点(a,b),使得f()g()f()g().证:分析:要证结论即为: f()g()f()g()0,等价于

f()g()f()g()0,2g()即就是[即可.f(x)f(x)在区间[a,b]上应用罗尔中值定理]x0,因此只需验证函数F(x)g(x)g(x)

6、设f(x)在[x1,x2]上可导,且0x1x2,试证:至少存在一点(x1,x2),使得x1f(x2)x2f(x1)f()f().x1x2f(x2)f(x1)f(x)()xx2x1x证:分析:要证结论即为: ,因此只需对函f()f()111()xx2x1x数f(x)1和在区间[x1,x2]上应用柯西中值定理即可.xx此题亦可改为:

设f(x)在[a,b]上连续,(a,b)内可导,若0ab,试证:至少存在一点(a,b),使得af(b)bf(a)[f()f()](ab).7、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)0,试证:(1)(a,b),使得f()f()0;(2)(a,b),使得f()f()0.证:(1)令F(x)xf(x),利用罗尔中值定理即证结论.(2)分析:f()f()0e[f()f()]0[e22x22f(x)]x0,因此令F(x)ex22f(x),利用罗尔中值定理即证结论.8、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)1,试证:,(a,b),使得e[f()f()]1.[exf(x)]xe[f()f()]证:分析:要证结论即为1,即就是1.xe(e)x令F(x)ef(x),令G(x)e,则F(x)和G(x)在[a,b]上满足拉格朗日中值定理的条件,由拉格朗日中值定理知: xxebf(b)eaf(a)ebea,即就是e[f()f()].(a,b),使得F()babaebeaebea,即就是e.(a,b),使得F()babae[f()f()]因此,有1,即就是e[f()f()]1.e9、设f(x)、g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)g(a),f(b)g(b),试证:(a,b),使得f()g().0.证:分析:要证结论即为[f(x)g(x)]x令F(x)f(x)g(x),(1)若f(x)、g(x)在(a,b)内的同一点处取得相同的最大值,不妨设都在c点处取得最大值,则F(a)F(c)F(b)0(acb),则F(x)分别在[a,c]、[c,b]上满足罗尔中值定理条件,故1(a,c),2(c,b)使得F(1)0,F(2)0.由题设又知,F(x)在[1,2]上满足洛尔定理条件,故存在(1,2),使得F()0,即就是f()g()].(2)若f(x)、g(x)在(a,b)内的不同的点处取得相同的最大值,不妨设f(x)在p点处、g(x)在q点处取得最大值,且pq,则F(p)f(p)g(p),F(q)f(q)g(q)0,由零点定理知,c(p,q)(0,1),使得F(c)0,由此得 F(a)F(c)F(b)0(acb),后面证明与(1)相同.10、设f(x)在[a,b]上连续,在(a,b)内可导,且f(x)0,若极限limxaf(2xa)存在,xa试证:(1)存在一点(a,b),使得

b2a2baf(x)dx22; f()22b(2)在(a,b)内存在异于的点,使得f()(ba)f(x)dx.;

aa证:(1)令F(x)xaf(t)dt,G(x)x2,则F(x)、G(x)在[a,b]上满足柯西中值定理

b2a2ba条件,故存在一点(a,b),使得

b2a2af(t)dtf(t)dta2成立,即就是f()bab222成立,即就是2f(x)dx(ba)f()成立.af(x)dxf()(2)由(1)知,2ba22因此要证f()(ba)f(x)dx(b2a2)f(),2bf(x)dx.,aa即要证f()(ba)221a(b2a2)f(,)即要证f()(a)f(,)由已知

xalimf(2xa)f(2xa)0,可得,lim从而得f(a)0,因此要证f()(a)f(),xaxa即要证f()(a)f()f(a),显然只需验证f(x)在[a,]上满足拉格朗日中值定理条件即可。

第二篇:微分中值定理的证明题

微分中值定理的证明题

1.若f(x)在[a,b]上连续,在(a,b)上可导,f(a)f(b)0,证明:R,(a,b)使得:f()f()0。

证:构造函数F(x)f(x)ex,则F(x)在[a,b]上连续,在(a,b)内可导,(a,b),使F()0 且F(a)F(b)0,由罗尔中值定理知: 即:[f()f()]e0,而e0,故f()f()0。

2.设a,b0,证明:(a,b),使得aebbea(1)e(ab)。

1111 证:将上等式变形得:ee(1)e()

baba1x11b11a111111作辅助函数f(x)xe,则f(x)在[,]上连续,在(,)内可导,baba 由拉格朗日定理得:

11f()f()baf(1)1(1,1),11baba11b1a1ee1a(1)e

1(1,1),即 b11baba

即:

aebbea(1)e(ab)

(a,b)。

3.设f(x)在(0,1)内有二阶导数,且f(1)0,有F(x)x2f(x)证明:在(0,1)

内至少存在一点,使得:F()0。

证:显然F(x)在[0,1]上连续,在(0,1)内可导,又F(0)F(1)0,故由罗尔定理知:x0(0,1),使得F(x0)0

又F(x)2xf(x)x2f(x),故F(0)0,于是F(x)在[0,x0]上满足罗尔定理条件,故存在(0,x0),使得:F()0,而(0,x0)(0,1),即证 4.设函数f(x)在[0,1]上连续,在(0,1)上可导,f(0)0,f(1)1.证明:(1)在(0,1)内存在,使得f()1.

(2)在(0,1)内存在两个不同的点,使得f/()f/()1

【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】(I)

令F(x)f(x)1x,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在(0,1), 使得F()0,即f()1.(II)在[0,]和[,1]上对f(x)分别应用拉格朗日中值定理,存在两个不同的点(0,),(,1),使得f()于是,由问题(1)的结论有

f()f()f()1f()11.11f()f(0)f(1)f(),f()

015.设f(x)在[0,2a]上连续,f(0)f(2a),证明在[0,a]上存在使得

f(a)f().【分析】f(x)在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。辅助函数可如下得到

f(a)f()f(a)f()0f(ax)f(x)0

【证明】令G(x)f(ax)f(x),x[0,a].G(x)在[0,a]上连续,且

G(a)f(2a)f(a)f(0)f(a)

G(0)f(a)f(0)

当f(a)f(0)时,取0,即有f(a)f();

当f(a)f(0)时,G(0)G(a)0,由根的存在性定理知存在(0,a)使得,G()0,即f(a)f().

6.若f(x)在[0,1]上可导,且当x[0,1]时有0f(x)1,且f(x)1,证明:在(0,1)内有且仅有一个点使得f() 证明:存在性

构造辅助函数F(x)f(x)x

则F(x)在[0,1]上连续,且有F(0)f(0)00,F(1)f(1)10,由零点定理可知:F(x)在(0,1)内至少存在一点,使得F()0,即:f()

唯一性:(反证法)

假设有两个点1,2(0,1),且12,使得F(1)F(2)0

F(x)在[0,1]上连续且可导,且[1,2][0,1] 

F(x)在[1,2]上满足Rolle定理条件

必存在一点(1,2),使得:F()f()10

即:f()1,这与已知中f(x)1矛盾

假设不成立,即:F(x)f(x)x在(0,1)内仅有一个根,综上所述:在(0,1)内有且仅有一个点,使得f()

17.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f()=1。试

2(x)=1。证至少存在一个(0,1),使f¢分析:f'()=1f'(x)=1f(x)=xf(x)x=0 令 F(x)= f(x)x 证明: 令 F(x)= f(x)x

F(x)在[0,1]上连续,在(0,1)内可导,F(1)= f(1)110(f(1)0)F(11111)= f()0(f()1)222221由介值定理可知,一个(,1),使 F()=0 又 F(0)=f(0)0=0 对F(x)在[0,1]上用Rolle定理,一个(0,)(0,1)使

F'()=0 即 f'()=1 8.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)试证存在和.满足01,使f()f()0。

证 由拉格朗日中值定理知,1f()f(0)12f()(0,)

12021f(1)f()12f()(,1)

121211f()f(0)f(1)f()20 f()f()211229.设f(x)在[a,b]上连续,(a,b)内可导(0ab),f(a)f(b), 证明: ,(a,b)使得 f()abf().(1)2证:(用(ba)乘于(1)式两端,知)(1)式等价于

f()f()2(ba)(ba2).(2)12

为证此式,只要取F(x)f(x),取G(x)x和x在[a,b]上分别应用Cauchy中值定理,则知

2f()f()2(ba)(ba2), f(b)f(a)12其中,(a,b).10.已知函数f(x)在[0 ,1]上连续,在(0,1)内可导,0ab,证明存在,(a,b),使32f/()(a2abb2)f/()

f/()f(b)f(a)解:利用柯西中值定理 2333ba而f(b)f(a)f/()(ba)

f/()f(b)f(a)f/()(ba)f/()(后面略)22333323babaaabb/11.设f(x)在xa时连续,f(a)0,当xa时,f(x)k0,则在(a,af(a))k内f(x)0有唯一的实根

/解:因为f(x)k0,则f(x)在(a,af(a))上单调增加 kf(a)f(a)f/()/f(a)f(a)f()f(a)[1]0(中值定理)

kkk而f(a)0故在(a,af(a))内f(x)0有唯一的实根 k12t0tsin12.试问如下推论过程是否正确。对函数f(t)在[0,x]上应用拉tt00格朗日中值定理得:

1x2sin0f(x)f(0)111xxsinf()2sinc(0sx)

ox0x0x

即:cos12sin1xsin1)

(0x

x1xsin limx00,il2nsi0

因0x,故当x0时,由m010 x

得:limcosx0

10,即limcos010

解:我们已经知道,limcos010不存在,故以上推理过程错误。

首先应注意:上面应用拉格朗日中值的是个中值点,是由f和区间[0,x]的

端点而定的,具体地说,与x有关系,是依赖于x的,当x0时,不 一定连续地趋于零,它可以跳跃地取某些值趋于零,从而使limcosx010成

立,而limcos010中要求是连续地趋于零。故由limcosx010推不出

0limcos10

13.证明:0x2成立xtgxx。cos2x

证明:作辅助函数f(x)tgx,则f(x)在[0,x]上连续,在(0,x)内可导,由拉格朗日定理知:

f(x)f(0)tgx1(0,x)f()x0xcos2即:tgx1x(0,)(0,),因在内单调递减,故在cosx22cosx22cos111xxx即: cos20cos2cos2xcos2cos2x内单调递增,故

即:xtgx1。cos2x

注:利用拉格朗日中值定理证明不等式,首先由不等式出发,选择合适的函数f(x)及相应的区间[a,b],然后验证条件,利用定理得

f()(ba(a,b)

f(b)f(a),再根据f(x)在(a,b)内符号或单调

证明不等式。14.证明:当0x时,sinxtgx2x。

证明:作辅助函数(x)sinxtgx2x

则(x)cosxsec2x2

12 cos2x1cos2x2 2cosxcosxx(0,)

2

(cosx0

12)cosx

故(x)在(0,)上单调递减,又因(0)0,(x)在(0,)上连续,22

故 (x)(0)=0,即:sinxtgx2x0,即:sinxtgx2x。

注:利用单调性证明不等式是常用方法之一,欲证当xI时f(x)g(x),常用辅助函数(x)f(x)g(x),则将问题转化证(x)0,然后在I上

讨论(x)的单调性,进而完成证明。

15.证明:若f(x)二阶可导,且f(x)0,f(0)0,则F(x),内单调递增。)

(0

f(x)在 x证明:因F(x)xf(x)f(x),要证F(x)单调递增,只需证F(x)0,2x

即证xf(x)f(x)0。

设G(x)xf(x)f(x),则G(x)xf(x)f(x)f(x)xf(x),因为

f(x)0,x0,故G(x)是单调递增函数,而G(0)0f(x)00,因此G(x)G(0),即:xf(x)f(x)0,即:F(x)0,即F(x)当x0时单调递增。

第三篇:2018考研数学 中值定理证明题技巧

为学生引路,为学员服务

2018考研数学 中值定理证明题技巧

在考研数学中,有关中值定理的证明题型是一个重要考点,也是一个让很多同学感到比较困惑的考点,不少同学在读完题目后不知从何下手,不会分析证明,找不到思路,之所以会出现这样的情况,主要是因为这些同学对中值定理证明题型的特点缺乏清晰的认识,对其分析和证明方法没有完全理解和掌握,为了协助这样的同学克服这方面的困难,下面本文对这类题的特点和证明方法做些分析总结,供各位考生参考。

一、中值定理证明题的特点

中值定理证明题主要有以下一些特点:

1.中值定理证明题常常需要作辅助函数;

2.中值定理证明题经常在一个题中需要结合运用三个知识点,分别是:连续函数在闭区间上的性质(包括最大值和最小值定理、零点定理和介质定理),微分中值定理和积分中值定理;

3.中值定理证明题可能需要在一个问题的证明中反复运用同一个微分中值定理两次甚至三次,比如罗尔中值定理或拉格朗日中值定理;

4.从历年考研数学真题变化规律来看,证明中用得最多的主要是罗尔中值定理和拉格朗日中值定理,而泰勒中值定理和柯西中值定理则用得很少。

二、中值定理证明题的常用方法

中值定理证明题有不同的类型,对不同的类型需要运用不同的方法,主要的和常用的方法包括以下几种:

1.如果题目条件中出现关于函数值的等式,而函数是连续的,则可能需要运用连续函数在闭区间上的性质进行证明;对导数是连续的情况也可以对导函数运用连续函数的性质;

2.如果题目条件中出现关于定积分的等式,则可能需要运用积分中值定理;

3.对于以下这类问题一般使用罗尔中值定理进行证明:

6、如果是要证明两函数差值比的中值等式,或证明两函数导数比的中值等式,则可能需要利用柯西中值定理进行证明。

对于上面总结介绍的各种证明方法,在实际问题中要根据具体情况灵活运用,另外,对于需要作辅助函数的证明题,常常通过还原法分析找出需要的辅助函数,对于含积分等式的证明题,常常需要作变积分限的函数作为辅助函数,这种方法也是证明积分等式或不等式的主要方法之一,这些分析总结希望对大家提高中值定理证明题的解题能力有所帮助。最后预祝各位考研成功、金榜题名!

第四篇:2018考研数学重点:中值定理证明题解题技巧

凯程考研辅导班,中国最权威的考研辅导机构

2018考研数学重点:中值定理证明题解

题技巧

考研数学中证明题虽不能说每年一定考,但也基本上十年有九年都会涉及,在此着重说说应用拉格朗日中值定理来证明不等式的解题方法与技巧。

凯程考研辅导班,中国最权威的考研辅导机构

根据以上的攻关点拨和典例练习,相信同学们对该题型的解题训练有了一定的掌握。

需要提醒考生们,数学题目多,而且考查的知识点很综合,很多人担心自己做的少,碰到的知识点就会少一些,从而加快了解题速度,实际上考生最重要的是要注重对题目的理解,对基本知识的概括和各种题型解题技巧的能力训练,因此大家可以根据以上的攻关点拨和典例练习,这样加以积累练习,为以后的快速准确解题打下基础。

另外,数学试题切忌眼高手低,实践出真知,只有自己真正做一遍,印象才能深刻,才能了解自己的复习程度,疏漏的内容,如果题目确实做不出来,可以先看答案,看明白之后再抛弃答案自己再把题目独立地做一遍,一定要力求全部理解和掌握所考查的知识点。

页 共 2 页

第五篇:中值定理超强总结

咪咪原创,转载请注明,谢谢!

1、所证式仅与ξ相关 ①观察法与凑方法

例 1 设f(x)在[0,1]上二阶可导,f(0)f(1)f(0)0 试证至少存在一点(a,b)使得f()2f()1分析:把要证的式子中的  换成 x,整理得f(x)xf(x)2f(x)0(1)由这个式可知要构造的函数中必含有f(x),从xf(x)找突破口 因为[xf(x)]xf(x)f(x),那么把(1)式变一下: f(x)f(x)[xf(x)f(x)]0f(x)f(x)[xf(x)]0 这时要构造的函数就看出来了F(x)(1x)f(x)f(x)②原函数法

例 2 设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,又g(x)在[a,b]上连续 求证:(a,b)使得f()g()f()分析:这时不论观察还是凑都不容易找出要构造的函数,于是换一种方法 现在把与f 有关的放一边,与 g 有关的放另一边,同样把  换成 x g(x)dx

f(x)f(x)两边积分g(x)lnf(x)g(x)dxlnCf(x)Ce f(x)eg(x)dxC 现在设C0,于是要构造的函数就很明显了 F(x)f(x)e③一阶线性齐次方程解法的变形法 g(x)dx对于所证式为fpf0型,(其中p为常数或x 的函数)pdxpdx可引进函数u(x)e,则可构造新函数F(x)fe例:设f(x)在[a,b]有连续的导数,又存在c(a,b),使得f(c)0 求证:存在(a,b),使得f()分析:把所证式整理一下可得:f() [f()f(a)]1ba1f()f(a)baf()f(a)ba0[f()f(a)]0,这样就变成了fpf0型xx--badx 引进函数u(x)e=eba(令C=0),于是就可以设F(x)eba[f(x)f(a)] 注:此题在证明时会用到f(c)f(b)f(a)ba0f(b)f(a)这个结论

2、所证式中出现两端点 ①凑拉格朗日

咪咪原创,转载请注明,谢谢!

例 3 设f(x)在[a,b]上连续,在(a,b)内可导 证明至少存在一点(a,b)使得bf(b)af(a)baf()f()

分析:很容易就找到要证的式子的特点,那么下可以试一下,不妨设 F(x)xf(x),用拉格朗日定理验证一 F()f()f()bf(b)af(a)ba(x1,x2)至少存在一点②柯西定理

例 4 设0x1x2,f(x)在[x1,x2]可导,证明在 1c,使得ex2x1ex2ex1f(c)f(c)ef(x1)f(x2)xx2x2分析:先整理一下要证的式子e1f(x2)eex1f(x1)f(c)f(c)e 这题就没上面那道那么 发现e1f(x2)exx2容易看出来了分子分母同除一下

f(x1)是交叉的,变换一下,ex1x2f(x2)ex2f(x1)e1x11x2于是这个式子一下变得没有悬念了eex1 用柯西定理设好两个函③k值法

仍是上题数就很容易证明了分析:对于数四,如果对柯西定理掌握的不是方法叫做k 值法很好上面那题该怎么办呢? 在老陈的书里讲了一个 第一步是要把含变量与 以此题为例已经是规范 设常量的式子分写在等号的形式了,现在就看常k 整理得ex1两边量的这个式子x2

ex1f(x2)eex1x2x2f(x1)e[f(x1)k]e[f(x2)k] 很容易看出这是一个对 那么进入第二步,设称式,也是说互换x1x2还是一样的F(x1)F(x2)F(x)ex[f(x)k],验证可知。记得回带k,用罗尔定理证明即可④泰勒公式法

老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。

3、所证试同时出现ξ和η ①两次中值定理

咪咪原创,转载请注明,谢谢!

例 5 f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)1 试证存在,(0,1)使得e[f()f()]1分析:首先把与分开,那么就有e[f()f()]e 一下子看不出来什么,很容易看出那么可以先从左边的式子下手试一下xe[f()f()][ef()],设F(x)ef(x)利用拉格朗日定理可得F()eaef(b)ef(a)baexbba

再整理一下 e[f()f()]ebbaa只要找到eaba与e的关系就行了得到 这个更容易看出来了,G()e令G(x)e则再用拉格朗日定理就e[f()f()]ba②柯西定理(与之前所举例类似)

有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。ebe

下载有关中值定理的证明题word格式文档
下载有关中值定理的证明题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高等数学中值定理总结(含5篇)

    咪咪原创,转载请注明,谢谢! 中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、 所证......

    【考研数学】中值定理总结

    中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、 所证式仅与ξ相关 ①观察法与......

    高等数学中值定理总结(5篇)

    咪咪原创,转载请注明,谢谢! 中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。 1、 所证......

    今年又见定理证明题

    今年又见定理证明题--从2012年陕西高考理科第18题谈起周兴顺 ( 陕西省西安市田家炳中学710500)(作者简介:周兴顺 ,高级教师,国家奥林匹克数学竞赛教练员,先后在湖北《中学数学》......

    高等数学 极限与中值定理 应用

    (一)1.xsinlimxlimxsin2xx1 22xx1(洛必达法则)1x2 =lim2x22xx1 2 2. xx limxlimsinxcosx1 13. x0sinxlimcosxx0limtanxsinxx3 sinx3limx sinx(1cosx)x0xcosx3 x3lim23x0......

    关于中值定理中构造函数的方法

    关于中值定理中创立函数的方法 n先举个例子:已知f(x)在(0,1)可导,在[0,1]内连续。而且f=0.证明:存在§∈(0,1),使得nf(§)+§f´(§)=0.证明:设F(x)=xf(x) 则F(0)=F(1)=0 ∴存在§......

    中值定理题目分析总结答案(精选5篇)

    一:待证结论中只有ξ时采用还原法进行证明 工具:f’(x)/f(x)=[lnf(x)]’ 第一题:分析xf’(x)+f(x)=0 f’(x)/f(x)+2/x=0 所以[lnf(x)]’+[lnx²]’=0 证明:构造辅助函数为ln后面......

    中值定理在不等式证明中的应用

    摘 要 本文主要写在不等式证明过程中常用到的几种中值定理,其中在拉格朗日中值定理证明不等式的应用中讲了三种方法:直接公式法、变量取值法、辅助函数构造法.在泰勒中值定理......