第一篇:高等数学考研大总结之五 微分中值定理
第五章微分中值定理
一,罗尔(Rolle)中值定理费马(Fermat)引理:设fx在点x0取得极值,且f/x0存在则f/x0=0。解析:几何意义:曲线在极值点处的切线是平行于x轴的。
2罗尔(Rolle)中值定理:函数fx在闭区间a,b上连续,在开区间a,b内可导(每一点都具有导数)并且在闭区间a,b的端点函数值相等,即:fafb,那么在开区间a,b内至少有一点使得f/0。
解析:⑴该定理是奠定一系列中值定理的基础。
⑵此定理反映了由区间端点函数值的情况来表现区间内导函数值的变化情况,给出了点的具体位置和计算方法(与Lagrange中值定理的区别)。
⑶几何意义:若连接曲线两端点的弦是水平的,则曲线上至少有一点的切线是水平的。⑷两个推论:①推论1:如果函数fx在区间a,b内的导数恒等于零,那么函数fx在区间a,b内是一个常数。②推论2:如果函数fx在区间a,b内处处有
。f/xg/x,则在此区间内fxgxC(常数)
二,拉格朗日(Lagrange)中值定理
设函数fx在闭区间a,b上连续且在开区间a,b内可导(每一点都具有导数)那么在开区间a,b内至少有一点ab使等式fbfaf
该定理的其它几种表示形式:⑴f//ba成立。fbfa ba
AB解析:反映其几何意义:如果连接曲线yfx的弧上除端点外处处具有不垂直于x轴的切线,那么这弧上至少有一点,使曲线在处的切线平行于弦AB。
⑵令aba,01则fbfaf/ababa,01。解析:由于的特定取值范围,所以在证明不等式时较常用,若令ax0,bx0h那么有:fx0hfx0f/x0hh,01。
⑶有限增量公式:如果用x表示ba则函数增量yfbfa,这时该定理变成yf/x。
解析:⑴从理论上与微分的区别:该公式准确的表明了函数增量与自变量增量(不要求其趋第1页
于零或比较小而仅要求其为有限增量)的关系,而微分只能近似的表示这一关系,并且要求
x比较小,而且当x0时dy表示y的误差才趋于零。但在实际应用中仍常用微分去
近似表示函数值的改变量。⑵类比与上式,则还可表示为yf三,柯西(Cauchy)中值定理
设两个函数fx和gx在闭区间a,b上连续且在开区间a,b内可导(每一点都具有导数)且g/x在a,b内每一点均不为零,则在a,b内至少存在一点使得
/
xxx,01。
fbfaf/,ab成立。gbgag/解析:⑴要求分子与分母中的是同一个值。⑵
类
比
于
Lagrange
定
理,此
定
理
可
表
示
为
fx0hfx0f/x0h
,01。
gx0hgx0g/x0h四,Rolle,Lagrange,Cauchy中值定理间的关系
xxfafb
CauchygLagrangeRolle
五,泰勒(Taylor)中值定理定义:若fx在a,b上有直到n阶连续的导数,在开区间a,b上n1阶导数存在,则
对
于
任
意的x,x0a,b
有:
fxfx0
f
/
x0
1!
xx0
f
//
x0
2!
xx0
fnx0xx0nRnx其中
n!
fn1称为余项(与误差估计有关)。其中当x0xx0n1(介于x与x0之间)Rnx
n1!
取零时的泰勒(Taylor)公式称为麦克劳林(Maclaurin)公式。
解析:使复杂函数成为简单函数的有效方法。2 各种形式的泰勒(Taylor)公式
⑴带有皮亚诺(Peano)余项的泰勒
(Taylor)公式:
f/x0f//x0fnx02nn
Taylor:fxfxxxxxxxxx,xx000000
1!2!n!///n
Maclaurin:fxf0f0xf0x2f0xnxn,x01!2!n!
⑵带有Lagrange余项的泰勒(Taylor)公式:
f/x0f//x0fnx0fn12nn1
Taylor:fxfxxxxxxxxx00000
n11!2!n!
///nn1
xxn1,01Maclaurin:fxf0f0xf0x2f0xnf
n11!2!n!
⑶
带
有
Cauchy
余
项的泰
勒
(Taylor)
公
式
:
nfkx0
xx0kfxn1
xnm,xxm!fk!k0Taylor:0m
gkx0n!gn1k
xx0gx
k!k0
nxx0xnn1fkx0k
xx0fCauchy:令gxx,m0则fxk!n!k0
⑷带有积分余项的泰勒(Taylor)公式:
n
fkx01xn1kn
Taylor:fxxxftxtdt0x0
k!n!k0
kn1n1f0kxnn1Maclaurin:fxxfxt1tdt0k!n!k0常见函数的麦克劳林(Maclaurin)展式
⑴带有皮亚诺(Peano)余项的麦克劳林(Maclaurin)展式:
n
x3x5x2n1x2k1n1k12n
sinxx1x1x2n
2n12k13!5!!k1
2n2kn
x2x4nxkx2n
cosx11x1x2n
2n2k2!4!!k0
kn
xx2xnk1xn
e1x1xn
1!2!n!k!k0x
nkn
x2x3n1xk1xn
ln1xx1x1xn
23nkk1
1x
n
1212n1nnkk
1xxxx1Cxxn2!n!k1
⑵带有Langrange余项的麦克劳林(Maclaurin)展式:
sinx1
k1n
n
k1
x2k1ncosx
1x2n1,012k12n1!
x2kn1cosx
cosx11x2n2,01
2k2n2!k0
k
xkex
exn1,01
!k0k!n1x
n
ln1x1`
k1
n
k1
xkxn1n
1,x1,01n1kn11x
1x
kk
1Cx
k1
n
1n1xn1xn1,x1,01
n1!Taylor公式的应用
⑴求极限。⑵近似计算,误差估计。⑶与幂级数的关系。⑷不等式证明。六,罗比塔(L”Hospital)法则解决问题的情况:
00
。
解析:不是以上两种型的转化为以上型。例如:
“0”型,“”型,“00”型,“0”型,“1”型。需注意的问题:⑴只有未定式才能应用罗比塔(L”Hospital)法则,不是未定式,则不能用罗比塔(L”Hospital)法则,且分子与分母分别求导。
⑵只有
法则。
00
未定式才能直接应用罗比塔(L”Hospital)
00
未定
⑶求其他类型未定式的值时,就首先将其转化为
式,然后才能应用罗比塔(L”Hospital)法则。
⑷可以对未定式反复应用罗比塔(L”Hospital)法则,直到求出确定的极限值为止。⑸用对数方法求极限时还要将结果还原为指数形式。
⑹有些未定式若用罗比塔(L”Hospital)法则求不出它的值时,就改用其它方法计算。
第二篇:高等数学中值定理总结
咪咪原创,转载请注明,谢谢!
中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。
1、所证式仅与ξ相关
①观察法与凑方法
例 1设f(x)在[0,1]上二阶可导,f(0)f(1)f(0)0
2f()试证至少存在一点(a,b)使得f()1
分析:把要证的式子中的 换成 x,整理得f(x)xf(x)2f(x)0(1)
由这个式可知要构造的函数中必含有f(x),从xf(x)找突破口
因为[xf(x)]xf(x)f(x),那么把(1)式变一下:
f(x)f(x)[xf(x)f(x)]0f(x)f(x)[xf(x)]0
这时要构造的函数就看出来了F(x)(1x)f(x)f(x)
②原函数法
例 2设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,又g(x)在[a,b]上连续
求证:(a,b)使得f()g()f()
分析:这时不论观察还是凑都不容易找出要构造的函数,于是换一种方法
现在把与f 有关的放一边,与g 有关的放另一边,同样把 换成 x
两边积分f(x)g(x)dxg(x)lnf(x)g(x)dxlnCf(x)Ce
f(x)
f(x)eg(x)dxC 现在设C0,于是要构造的函数就很明显了
F(x)f(x)eg(x)dx
③一阶线性齐次方程解法的变形法
对于所证式为fpf0型,(其中p为常数或x 的函数)
可引进函数u(x)e,则可构造新函数F(x)fepdxpdx
例:设f(x)在[a,b]有连续的导数,又存在c(a,b),使得f(c)0
f()f(a)
ba
f()f(a)分析:把所证式整理一下可得:f()0ba
1[f()f(a)][f()f(a)]0,这样就变成了fpf0型ba求证:存在(a,b),使得f()
-dx-引进函数u(x)eba=eba(令C=0),于是就可以设F(x)eba[f(x)f(a)]
注:此题在证明时会用到f(c)
2、所证式中出现两端点
①凑拉格朗日 1xxf(b)f(a)0f(b)f(a)这个结论ba
例 3设f(x)在[a,b]上连续,在(a,b)内可导
证明至少存在一点(a,b)使得bf(b)af(a)f()f()ba
分析:很容易就找到要证的式子的特点,那么可以试一下,不妨设
F(x)xf(x),用拉格朗日定理验证一下
F()f()f()
②柯西定理 bf(b)af(a)ba
例 4设0x1x2,f(x)在[x1,x2]可导,证明在(x1,x2)至少存在一点c,使得
ex1ex2e1e2f(c)f(c)(x1)f(x2)
e1f(x2)e2f(x1)
ex1x2xxxx分析:先整理一下要证的式子e
这题就没上面那道那么容易看出来了
xxf(c)f(c)x1x2发现e1f(x2)e2f(x1)是交叉的,变换一下,分子分母同除一下e
f(x2)f(x1)
ex2e
ex11x2e
③k值法 1x1于是这个式子一下变得没有悬念了用柯西定理设好两个函数就很容易证明了
仍是上题
分析:对于数四,如果对柯西定理掌握的不是很好上面那题该怎么办呢?
在老陈的书里讲了一个方法叫做k 值法
第一步是要把含变量与常量的式子分写在等号两边
以此题为例已经是规范的形式了,现在就看常量的这个式子
设 e1f(x2)e2f(x1)
ex1x2xxe
很容易看出这是一个对称式,也是说互换x1x2还是一样的记得回带k,用罗尔定理证明即可。k 整理得ex1[f(x1)k]ex2[f(x2)k]那么进入第二步,设F(x)ex[f(x)k],验证可知F(x1)F(x2)
④泰勒公式法
老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。
3、所证试同时出现ξ和η
①两次中值定理
例 5f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)1
试证存在,(0,1)使得e[f()f()]1
分析:首先把与分开,那么就有e[f()f()]e
一下子看不出来什么,那么可以先从左边的式子下手试一下
很容易看出e[f()f()][ef()],设F(x)exf(x)
ebf(b)eaf(a)利用拉格朗日定理可得F()再整理一下ba
ebeaebea
e[f()f()]只要找到与e的关系就行了baba
这个更容易看出来了,令G(x)ex则再用拉格朗日定理就得到
ebea
G()ee[f()f()]ba
②柯西定理(与之前所举例类似)
有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。
第三篇:高等数学中值定理总结
咪咪原创,转载请注明,谢谢!
中值定理一向是经济类数学考试的重点(当然理工类也常会考到),咪咪结合老陈的书和一些自己的想法做了以下这个总结,希望能对各位研友有所帮助。
1、所证式仅与ξ相关 ①观察法与凑方法
例 1 设f(x)在[0,1]上二阶可导,f(0)f(1)f(0)02f()试证至少存在一点(a,b)使得f()1分析:把要证的式子中的 换成 x,整理得f(x)xf(x)2f(x)0(1)由这个式可知要构造的函数中必含有f(x),从xf(x)找突破口 因为[xf(x)]xf(x)f(x),那么把(1)式变一下: f(x)f(x)[xf(x)f(x)]0f(x)f(x)[xf(x)]0 这时要构造的函数就看出来了F(x)(1x)f(x)f(x)②原函数法
例 2 设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)0,又g(x)在[a,b]上连续 求证:(a,b)使得f()g()f()分析:这时不论观察还是凑都不容易找出要构造的函数,于是换一种方法 现在把与f 有关的放一边,与g 有关的放另一边,同样把 换成 x 两边积分f(x)g(x)dx g(x)lnf(x)g(x)dxlnCf(x)Cef(x)
f(x)eg(x)dxC 现在设C0,于是要构造的函数就很明显了 F(x)f(x)eg(x)dx③一阶线性齐次方程解法的变形法
对于所证式为fpf0型,(其中p为常数或x 的函数)可引进函数u(x)e,则可构造新函数F(x)fepdxpdx例:设f(x)在[a,b]有连续的导数,又存在c(a,b),使得f(c)0f()f(a)baf()f(a)分析:把所证式整理一下可得:f()0ba1 [f()f(a)][f()f(a)]0,这样就变成了fpf0型ba 求证:存在(a,b),使得f()-dx- 引进函数u(x)eba=eba(令C=0),于是就可以设F(x)eba[f(x)f(a)] 注:此题在证明时会用到f(c)
2、所证式中出现两端点 ①凑拉格朗日 1xxf(b)f(a)0f(b)f(a)这个结论ba
咪咪原创,转载请注明,谢谢!
例 3 设f(x)在[a,b]上连续,在(a,b)内可导 证明至少存在一点(a,b)使得bf(b)af(a)f()f()ba
分析:很容易就找到要证的式子的特点,那么可以试一下,不妨设 F(x)xf(x),用拉格朗日定理验证一下 F()f()f()②柯西定理
bf(b)af(a)ba例 4 设0x1x2,f(x)在[x1,x2]可导,证明在(x1,x2)至少存在一点c,使得 1ex1ex2e1e2f(c)f(c)f(x1)f(x2)e1f(x2)e2f(x1)ex1x2xxxx分析:先整理一下要证的式子e 这题就没上面那道那么容易看出来了xxf(c)f(c)
x1x2 发现e1f(x2)e2f(x1)是交叉的,变换一下,分子分母同除一下ef(x2)f(x1)ex2eex11x2e③k值法 1x1于是这个式子一下变得没有悬念了 用柯西定理设好两个函数就很容易证明了仍是上题分析:对于数四,如果对柯西定理掌握的不是很好上面那题该怎么办呢? 在老陈的书里讲了一个方法叫做k 值法 第一步是要把含变量与常量的式子分写在等号两边 以此题为例已经是规范的形式了,现在就看常量的这个式子 设
e1f(x2)e2f(x1)ex1x2xxe 很容易看出这是一个对称式,也是说互换x1x2还是一样的 记得回带k,用罗尔定理证明即可。k 整理得ex1[f(x1)k]ex2[f(x2)k] 那么进入第二步,设F(x)ex[f(x)k],验证可知F(x1)F(x2)④泰勒公式法
老陈常说的一句话,管它是什么,先泰勒展开再说。当定理感觉都起不上作用时,泰勒法往往是可行的,而且对于有些题目,泰勒法反而会更简单。
3、所证试同时出现ξ和η ①两次中值定理
咪咪原创,转载请注明,谢谢!
例 5 f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)1 试证存在,(0,1)使得e[f()f()]1分析:首先把与分开,那么就有e[f()f()]e 一下子看不出来什么,那么可以先从左边的式子下手试一下 很容易看出e[f()f()][ef()],设F(x)exf(x)ebf(b)eaf(a)利用拉格朗日定理可得F()再整理一下baebeaebea e[f()f()]只要找到与e的关系就行了baba
这个更容易看出来了,令G(x)ex则再用拉格朗日定理就得到ebea G()ee[f()f()]ba②柯西定理(与之前所举例类似)
有时遇到ξ和η同时出现的时候还需要多方考虑,可能会用到柯西定理与拉氏定理的结合使用,在老陈书的习题里就出现过类似的题。
第四篇:微分中值定理的证明题
微分中值定理的证明题
1.若f(x)在[a,b]上连续,在(a,b)上可导,f(a)f(b)0,证明:R,(a,b)使得:f()f()0。
证:构造函数F(x)f(x)ex,则F(x)在[a,b]上连续,在(a,b)内可导,(a,b),使F()0 且F(a)F(b)0,由罗尔中值定理知: 即:[f()f()]e0,而e0,故f()f()0。
2.设a,b0,证明:(a,b),使得aebbea(1)e(ab)。
1111 证:将上等式变形得:ee(1)e()
baba1x11b11a111111作辅助函数f(x)xe,则f(x)在[,]上连续,在(,)内可导,baba 由拉格朗日定理得:
11f()f()baf(1)1(1,1),11baba11b1a1ee1a(1)e
1(1,1),即 b11baba
即:
aebbea(1)e(ab)
(a,b)。
3.设f(x)在(0,1)内有二阶导数,且f(1)0,有F(x)x2f(x)证明:在(0,1)
内至少存在一点,使得:F()0。
证:显然F(x)在[0,1]上连续,在(0,1)内可导,又F(0)F(1)0,故由罗尔定理知:x0(0,1),使得F(x0)0
又F(x)2xf(x)x2f(x),故F(0)0,于是F(x)在[0,x0]上满足罗尔定理条件,故存在(0,x0),使得:F()0,而(0,x0)(0,1),即证 4.设函数f(x)在[0,1]上连续,在(0,1)上可导,f(0)0,f(1)1.证明:(1)在(0,1)内存在,使得f()1.
(2)在(0,1)内存在两个不同的点,使得f/()f/()1
【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【证明】(I)
令F(x)f(x)1x,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在(0,1), 使得F()0,即f()1.(II)在[0,]和[,1]上对f(x)分别应用拉格朗日中值定理,存在两个不同的点(0,),(,1),使得f()于是,由问题(1)的结论有
f()f()f()1f()11.11f()f(0)f(1)f(),f()
015.设f(x)在[0,2a]上连续,f(0)f(2a),证明在[0,a]上存在使得
f(a)f().【分析】f(x)在[0,2a]上连续,条件中没有涉及导数或微分,用介值定理或根的存在性定理证明。辅助函数可如下得到
f(a)f()f(a)f()0f(ax)f(x)0
【证明】令G(x)f(ax)f(x),x[0,a].G(x)在[0,a]上连续,且
G(a)f(2a)f(a)f(0)f(a)
G(0)f(a)f(0)
当f(a)f(0)时,取0,即有f(a)f();
当f(a)f(0)时,G(0)G(a)0,由根的存在性定理知存在(0,a)使得,G()0,即f(a)f().
6.若f(x)在[0,1]上可导,且当x[0,1]时有0f(x)1,且f(x)1,证明:在(0,1)内有且仅有一个点使得f() 证明:存在性
构造辅助函数F(x)f(x)x
则F(x)在[0,1]上连续,且有F(0)f(0)00,F(1)f(1)10,由零点定理可知:F(x)在(0,1)内至少存在一点,使得F()0,即:f()
唯一性:(反证法)
假设有两个点1,2(0,1),且12,使得F(1)F(2)0
F(x)在[0,1]上连续且可导,且[1,2][0,1]
F(x)在[1,2]上满足Rolle定理条件
必存在一点(1,2),使得:F()f()10
即:f()1,这与已知中f(x)1矛盾
假设不成立,即:F(x)f(x)x在(0,1)内仅有一个根,综上所述:在(0,1)内有且仅有一个点,使得f()
17.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f()=1。试
2(x)=1。证至少存在一个(0,1),使f¢分析:f'()=1f'(x)=1f(x)=xf(x)x=0 令 F(x)= f(x)x 证明: 令 F(x)= f(x)x
F(x)在[0,1]上连续,在(0,1)内可导,F(1)= f(1)110(f(1)0)F(11111)= f()0(f()1)222221由介值定理可知,一个(,1),使 F()=0 又 F(0)=f(0)0=0 对F(x)在[0,1]上用Rolle定理,一个(0,)(0,1)使
F'()=0 即 f'()=1 8.设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)f(1)试证存在和.满足01,使f()f()0。
证 由拉格朗日中值定理知,1f()f(0)12f()(0,)
12021f(1)f()12f()(,1)
121211f()f(0)f(1)f()20 f()f()211229.设f(x)在[a,b]上连续,(a,b)内可导(0ab),f(a)f(b), 证明: ,(a,b)使得 f()abf().(1)2证:(用(ba)乘于(1)式两端,知)(1)式等价于
f()f()2(ba)(ba2).(2)12
为证此式,只要取F(x)f(x),取G(x)x和x在[a,b]上分别应用Cauchy中值定理,则知
2f()f()2(ba)(ba2), f(b)f(a)12其中,(a,b).10.已知函数f(x)在[0 ,1]上连续,在(0,1)内可导,0ab,证明存在,(a,b),使32f/()(a2abb2)f/()
f/()f(b)f(a)解:利用柯西中值定理 2333ba而f(b)f(a)f/()(ba)
则
f/()f(b)f(a)f/()(ba)f/()(后面略)22333323babaaabb/11.设f(x)在xa时连续,f(a)0,当xa时,f(x)k0,则在(a,af(a))k内f(x)0有唯一的实根
/解:因为f(x)k0,则f(x)在(a,af(a))上单调增加 kf(a)f(a)f/()/f(a)f(a)f()f(a)[1]0(中值定理)
kkk而f(a)0故在(a,af(a))内f(x)0有唯一的实根 k12t0tsin12.试问如下推论过程是否正确。对函数f(t)在[0,x]上应用拉tt00格朗日中值定理得:
1x2sin0f(x)f(0)111xxsinf()2sinc(0sx)
ox0x0x
即:cos12sin1xsin1)
(0x
x1xsin limx00,il2nsi0
因0x,故当x0时,由m010 x
得:limcosx0
10,即limcos010
解:我们已经知道,limcos010不存在,故以上推理过程错误。
首先应注意:上面应用拉格朗日中值的是个中值点,是由f和区间[0,x]的
端点而定的,具体地说,与x有关系,是依赖于x的,当x0时,不 一定连续地趋于零,它可以跳跃地取某些值趋于零,从而使limcosx010成
立,而limcos010中要求是连续地趋于零。故由limcosx010推不出
0limcos10
13.证明:0x2成立xtgxx。cos2x
证明:作辅助函数f(x)tgx,则f(x)在[0,x]上连续,在(0,x)内可导,由拉格朗日定理知:
f(x)f(0)tgx1(0,x)f()x0xcos2即:tgx1x(0,)(0,),因在内单调递减,故在cosx22cosx22cos111xxx即: cos20cos2cos2xcos2cos2x内单调递增,故
即:xtgx1。cos2x
注:利用拉格朗日中值定理证明不等式,首先由不等式出发,选择合适的函数f(x)及相应的区间[a,b],然后验证条件,利用定理得
f()(ba(a,b)
f(b)f(a),再根据f(x)在(a,b)内符号或单调
证明不等式。14.证明:当0x时,sinxtgx2x。
证明:作辅助函数(x)sinxtgx2x
则(x)cosxsec2x2
12 cos2x1cos2x2 2cosxcosxx(0,)
2
(cosx0
12)cosx
故(x)在(0,)上单调递减,又因(0)0,(x)在(0,)上连续,22
故 (x)(0)=0,即:sinxtgx2x0,即:sinxtgx2x。
注:利用单调性证明不等式是常用方法之一,欲证当xI时f(x)g(x),常用辅助函数(x)f(x)g(x),则将问题转化证(x)0,然后在I上
讨论(x)的单调性,进而完成证明。
15.证明:若f(x)二阶可导,且f(x)0,f(0)0,则F(x),内单调递增。)
(0
f(x)在 x证明:因F(x)xf(x)f(x),要证F(x)单调递增,只需证F(x)0,2x
即证xf(x)f(x)0。
设G(x)xf(x)f(x),则G(x)xf(x)f(x)f(x)xf(x),因为
f(x)0,x0,故G(x)是单调递增函数,而G(0)0f(x)00,因此G(x)G(0),即:xf(x)f(x)0,即:F(x)0,即F(x)当x0时单调递增。
第五篇:考研数学高等数学重要知识点解析--有关微分中值定理的证明
考研数学高等数学重要知识点解析—有关微分中值定理的证明
万学教育•海文考研 王丹
2013年考研数学大纲于2012年9月14日正式出炉,数学
一、数学
二、数学三高等数学考试内容和考试要求包含标点符号在内均没有任何的变化;而线性代数部分,由原来的“线性方程组的克莱姆法则”改为“线性方程组的克拉默法则”,只是名称的改变,内容没有变化;概率论与数理统计部分,数学一没有任何变化,而数学三“多维随机变量的分布这一章”考试内容和考试要求的难度都降低了,具体变化为将考试内容中“两个及两个以上随机变量的函数的分布”增加了两个字“简单”,即“两个及两个以上随机变量简单函数的分布”;相应的考试内容中“会根据多个相互独立随机变量的联合分布求其函数的分布”改为“会根据多个相互独立随机变量的联合分布求其简单函数的分布”。
有了考试大纲,就有了我们复习的依据,通过对历年考研命题规律的分析,我们得出与中值定理有关的证明题是考研数学的重点且是难点,每年必考有关中值定理的一道证明题10分.所以大家一定要引起重视,对于解这类题目,首先要确定证明的结论,然后联想与之相关的定理、结论和方法以及所需要的条件,再看题设中是否给出条件,若都没有直接给出,考虑如何由题设条件推出这些所需的条件,最后证明.其中,当要证明存在某些点使得它们的函数值或者高阶导数满足某些等式关系或者其他特性时,用中值定理所求的点常常是区间内的点.下面我就有关中值等式的证明总结几种方法,并且通过例题加强对此类问题方法的理解和把握。
一、有关闭区间上连续函数等式的证明主要有以下几种方法:
(1)直接法.利用最值定理、介值定理或零点定理直接证明,适用于证明存在[a,b],使得G(,f())0.
(2)间接法.构造辅助函数F(x)(其中F(x)的构造方法可参照重要题型五),然后验证F(x)满足中值定理的条件,最后由相应的中值定理得出命题的证明.
二、证明存在一点使得关于a,b,f(a),f(b)或,f(),f(),„,f(n)()的等式成立.常用证法:
(1)对于这类等式的证明问题,可以通过移项使等式一端为0,转化为重要题型五中证明存在一点使得G(,f(),f'())0的问题.(2)利用拉格朗日中值定理直接进行证明.
现举例题如下
例题1:设f(x)在[a,b]上连续,(a,b)内可导,0ab,试证明(a,b),使得
'f(b)f(a)22f()(aabb)2ba3
分析本题的关键是构造辅助函数.对于关系式中显含a,b及f(a),f(b)的情形,更多地是直接采用拉格朗日中值定理,将含介值的项全部右移,再将左端分子、分母中的a,b分离,然后直接观察即可得到所需辅助函数.
'f(b)f(a)f(b)f(a)f'()22f()(aabb)222ba3ba(aabb)32
f(b)f(a)f'()即.a3b332
证令g(x)x3,则f(x),g(x)在[a,b]上连续,在(a,b)内可导,且当x0时,g'(x)0,f(b)f(a)f'()f(b)f(a)f'()则由柯西中值定理有,所以,'332g(a)g(b)g()ab3
'f(b)f(a)22f()即,得证.(aabb)ba32
例题2 设函数f(x)在0,3上连续,在0,3内存在二阶导数,且
2f(0)fx(d)x02f(2)f,(3)
(I)证明:存在(0,2)使f()f(0);(II)证明存在(0,3),使f()0 证明:(I)2f(0)f(x)dx,又fx在0,2上连续 02
由积分中值定理得,至少有一点0,2,使得fxdxf20 02
2f02f,存在0,2使得ff0。
(Ⅱ)f2f32f0,即f2f3f0 2
又fx在2,3上连续,由介值定理知,至少存在一点12,3使得f1f0 fx在0,2上连续,在0,2上可导,且f0f2
由罗尔中值定理知,10,2,有f10
又fx在2,1上连续,在2,1上可导,且f2f0f1 由罗尔中值定理知,22,1,有f20
又fx在1,2上二阶可导,且f(1)f(2)0
由罗尔中值定理,至少有一点1,2,使得f()0.