大学 高等数学 竞赛训练 导数、微分及其应用

2020-12-11 11:00:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《大学 高等数学 竞赛训练 导数、微分及其应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《大学 高等数学 竞赛训练 导数、微分及其应用》。

导数、微分及其应用训练

一、(15分)证明:多项式无实零点。

证明:用反证法证明,设存在实根,则此根一定是负实根(因为当时,)。假设,则有。因为

由此可得,但是,这是一个矛盾。所以多项式无实零点。

二、(20分)设函数在上具有连续导数,在内二阶可导,证明:存在,使得

证明:设。对函数在区间上运用拉格朗日中值定理可得,存在使得

再对函数在区间运用拉格朗日中值定理,存在使得

由此可得

三、(20分)设是二阶可微函数,满足,且对任意的有

证明:当时。

证明:因为,设,则有

因此当时,当时。

四、(15分)设函数是可微函数,如果,证明:仅为的函数。

证明:考虑球面坐标,其中,则有,因为

所以仅为的函数。

五、(15分)设在点处可导,且。

证明:

证明:因为在点处可导,所以

又因为,所以,由此可得

六、(15分)设函数具有三阶连续导数,并且对任意的,都为正值,并且。

证明:对任给的有。

证明:任取数,构造函数

因为,并且只有,所以

任取正数,则有

利用拉格拉日中值定理,存在使得,所以有

又因为,所以

当时有,由的任意性可得对任给的有。

七、

下载大学 高等数学 竞赛训练 导数、微分及其应用word格式文档
下载大学 高等数学 竞赛训练 导数、微分及其应用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    大学 高等数学 竞赛训练 极限

    大学生数学竞赛训练一(极限)一、计算解:因为原式又因为所以。二、计算解:因为所以。三、计算解:设,则因为,所以。四、计算解:因为,所以五、设数列定义如下证明:极限。证明:方法一、考虑......

    大学 高等数学 竞赛训练 试题

    一、(本大题共4小题,每小题6分,共24分)计算下列各题(要求写出计算步骤)1)解:因为所以,原式2)设,求。解:因为…………所以。3)求,其中。解:4)求幂级数的和函数,并求级数的和。解:设,则有上式两边......

    大学 高等数学 竞赛训练 微分方程

    大学生数学竞赛训练五—微分方程一、(15分)设函数在上可导,且,对任给的满足等式1)求导数;2)证明:当时,成立不等式:。解:1)设,则有当时有两边关于求导得解微分方程得由条件可得,因此2)当时,,所......

    大学 高等数学 竞赛训练 积分学

    大学生数学竞赛训练三—积分学一、(15分)计算。解:原式二、(20分)设曲面和球面1)求位于内部的面积2)设,求位于内部的体积。解:1)解方程组得方法二、。2)此为旋转体的体积方法二、三、(15......

    大学 高等数学 竞赛训练 级数

    大学生数学竞赛训练四—级数一、(20分)设1)证明:2)计算证明:1)设,因为所以,当时,为常数,即有(注意这里利用了极限)2)。二、(15分)设在点的一个邻域内有连续导数,且。证明:级数收敛,但级数发散。......

    导数与微分(教案)

    重庆工商大学融智学院 《微积分》教案 (上册) 章节名称: 第三章导数与微分 主讲教师: 联系方式: 岳斯玮 *** 《微积分》(上册)教案 第三章 导数与微分 本章教学目标与要求......

    第二章导数与微分总结

    第二章 导数与微分总结 一、导数与微分概念 1.导数的定义 设函数yfx在点x0的某领域内有定义,自变量x在x0处有增量x,相应地函数增量yfx0xfx0。如果极限 limfx0xfx0y limx0xx0x......

    高等数学考研大总结之四导数与微分(精选五篇)

    第四章导数与微分 第一讲导数 一,导数的定义: 1函数在某一点x0处的导数:设yfx 在某个Ux0,内有定义,如果极限limfx0xfx0fx0xfx0(其中称为函数fx在(x0,x0+x)上的平均xxx0变化率(......