第一篇:心理科普文章
事实上,没有任何习惯是与生俱来的,每个习惯的养成都需要挣扎才能做成的。我们只有一个习惯是天生的——“懒惰”。无论小孩还是大人,懒惰都是天经地义的——谁都得经历或长或短那么一个“衣来伸手饭来张口”的时期才可能长大。在那段时间里,谁都是随心所欲的。然而,没有人可以总是“随心所欲”,那只不过是幼年时的真实,少年时幻想。马克吐温曾说过“保持身体健康的唯一办法,就是吃点你不想吃的,喝点你不想喝的,以及做点你不愿做的事情。”生活亦是如此,节制既是高级,一个习惯改变终身。
当今世界个人职业发展方面最成功的演说家和咨询家之一博恩·崔西认为“人类所有的行动,几乎全部或至少有95%,是由本人的习惯所决定的。”从心理学的角度来看,人类有95%的行动是在无意识中进行的,而大部分的无意识行动都是通过习惯产生的。所谓习惯就是“稳定的、甚至是自动化的行为。不依赖意志和毅力,把自己想要持续的事情,引导到如每天饮水般轻松的状态”。
我们都尝试过减肥、保持节约、早起早睡、戒烟、每天阅读的习惯。这些常常提到、听到、去尝试的话题,想做却往往半途而废。原因在哪里?
美国作家查尔斯·杜希格在《习惯的力量》一书中提到,“你坚持不了,是因为你太依靠你的意志力,事实上这是不正确的,你需要依靠的是习惯。”简言之,我们日常付出有意识的行为,其实是有限的。
我们可以一边跑步,一边思考,或者一边看电视一边和人聊天,而跑步动作就是我们的一个习惯行为,是脑中设定的记忆动作,我们只是把这个行为固定且无意识的重复。
其中最重要的一点,对大脑而言,没有所谓好习惯或坏习惯的分别,被动的被习惯支配还是巧妙地主动运用习惯,是我们可以自由选择的,我们需要善用习惯的力量。
为什么我们无法把减肥、看书、运动这些事情转化为习惯呢?那是因为,人类具有“对抗新变化、维持现状的倾向”的特点,要做出改变时,所有生物会将生理状态维持在某一固定状态,这一状态称为“平衡”。我们的大脑是一个懒惰的器官,对所有人来说,保持在固定的状态会感觉比较舒适,变化意味着未知、威胁。
正因为大脑对“培养新习惯”的变化感受到了威胁,所以大多数人对于新事物都是三分钟热度而无法的持续,容易回到固定的舒适状态,最终失败。
这种现象,就叫做「习惯引力」。它就像地心引力牵引着我们在离开地球时需要花费大量的动力,当我们想进入一个新的习惯状态前,也同样困难重重。
对于培养一个习惯所需时间也有不同,通常认为21天可以养成一种习惯,不过,从各种习惯养成的结论来看,其实习惯养成所需的时间长短,是依照想培养的习惯的种类而定的,因为习惯不同,习惯引力作用的强度也不一样。根据习惯引力的强度大小,我们可以把人类习惯养成大致可以分为:
要摆脱习惯引力的作用,成功跃入习惯化,你大致需要经过3个阶段:
第一个阶段:反抗期。最初的7天,这个阶段的人无时不刻都在想着放弃,其中42%的人都会在这个阶段遭受失败。
第二个阶段:不稳定期。第8天至第21天,长达14天,由于被预定事项或者其他人的影响,40%的人会在这个阶段失败。
第三个阶段:倦怠期,第22天至30天以上,在这个阶段你逐渐会对已经形成的习惯行为有一种倦怠感,而放弃保持,有18%的人在这个阶段会败下阵来。
— 4 — 那么要怎样成功地摆脱“习惯引力”,顺利度过习惯养成的三个阶段,收获习惯之旅的美妙感觉呢?
一、反抗期应对措施
这个阶段的意志力是最薄弱的,稍有松懈就会功亏一篑,要平安度过这个阶段,就应该保持着“坚持下去”“每天都要坚持”的心态,把重心放在过程中。
原则一锁定一项习惯,不要同时培养多种习惯;
原则二坚持有效的行动,行动规则越简单越好;
原则三不要太在意结果。
可以做简单记录,记录下每天的改变,哪怕只有一点点,对于孩子的改变,家长要予以肯定和支持。当达到一定天数后再回头看看自己的每天记录,会相当有成就感。
二、不稳定期应对措施
这个阶段的关键是要建立能够持续行动的机制,善于培养习惯的人会采取有弹性的计划,比如可以和孩子或者朋友制定一个奖罚机制,如果能坚持完成即可得到某一奖励。这样能解决不稳定期时心态的懈怠。这个阶段要把行动难度提高到自己本来要求的程度。
原则一是行为模式化,把你想培养的习惯化为固定的模式(时间、做法、地点),并认真执行,培养节奏感。
原则二是设定例外规则,对不规律发生的事件预先制定应对规则,让计划保持一定的弹性。
原则三是设定持续开关,心理学认为,积极行动的动力来源为产生快感和回避痛苦两种,所以为了保证习惯的持续,就可以运用快乐型开关和处罚型开关两种相结合,让自己持续的获得动力。
三、倦怠期应对措施 这个阶段的关键是要创造变化,应对在培养习惯过程当中产生的一成不变的感觉,当感受不到培养习惯的意义,就会因一成不变而产生空虚感,这时候有创意的变化就是度过这一阶段的利器。
方法一:添加变化,在原有的行动计划上,增加一些不同寻常的内容,比如改变改跑步路线,换一种学习方式等,换种心情让自己产生动力。
方法二:计划下一项习惯,拟定下一个习惯的培养计划,不断地为培养习惯投注心力,将习惯分为短期习惯、中期习惯、长期习惯是比较好的一个方法,就像聪明的厨师会在熬汤的过程中完成洗菜、调料、做菜的其他任务一样。
改变自己的人生,其实就是将好习惯坚持下去,将坏习惯尽量的减少。
事实上,无论你想培养什么习惯,只要掌握了培养习惯过程中这三个阶段的心理特点,再按照科学合理的方法规划自己的行动,不需要非凡的意志力和超人的耐性,你就能将新的行为、习惯融入到日常生活中。
一夜之间,我所有的朋友都去做微信公众号了。
在政府混吃的朋友,在事业单位等死的朋友,在跨国企业搬砖的朋友,在私人作坊卖身的朋友,在谈理想搞创业的朋友,在学校里头嗷嗷待哺的朋友,一夜之前,殊途同归,全部做起了微信公众号。
理由很多。求路人打赏,求广告商包养,更多的是上司一声令下——做不做?不做下岗!
于是我的手机从早震到晚,随时随地都在收推送。
内容自然五花八门。如何穿衣服,如何挑音乐,如何选餐厅,如何炒股票,如何买进口货,如何颠覆人生观价值观世界观,每一条看了,都让人立志要做更好的自己,拥抱光辉灿烂的明天。
每条推送都是不一样的烟火,除了三位数的阅读量这点,它们没有任何共通性。
做微信号的朋友,其实都挺年轻,下限二十二,上限二十八。但不得不板出风尘样,脸上写满了“我世面见很多”,嬉笑怒骂,指点江山。
这是很累人的。月入5千的主儿,成天推荐各大高级餐厅,分享红酒,奢侈品,和境外游。
男朋友还不见踪影的小姑娘,却要拿出灭绝师太的心,教习女同胞们生杀予夺,做爱情的胜利者。
朋友们成天为内容操碎了心,无时无刻不在捕捉热点。一篇咪蒙的《致贱人》横空出世,模仿版随即一拥而上。《致好人》、《谁是贱人》、《你个烂人》就不说了,还有理直气壮站出来吆喝,《我就是贱人》。
光是内容没用。为了做好公众号,还要精通十八般武艺。拍照和修图只是基本功,画漫画,编段子,录广播,剪视频,样样都要举重若轻,信手拈来。毕竟现在的公众号多如牛毛,许多读者又爱犯傲娇,动不动就“太长不看”。如何增添趣味性,脱颖而出,就成了重中之重。
不要小看每一条阅读量只有三位数的推送,他们背后都站着一位被迫害的年轻人,在哭天抢地,抓断上百根头发之后,才用心血凝结出了这图文并茂的推送。
连吃饭都不得安生。好几回聚餐,吃到一半时候,在座朋友纷纷从包里掏出笔记本或平板电脑,手指上下翻飞,编好推送内容,“biu”地一下发了出去。
“需要这么拼吗?吃完再发不也一样?”
“你傻呀,”朋友小黄大翻白眼,“待会儿就是大家翻手机,看推送的黄金时段,吃完再发,阅读量全让别人给抢光了。”
“说来恨得我,”朋友小明放下电脑,咬牙切齿,“昨天我跟那谁弄了个差不多的推送,他就比我早发那么5分钟,看看,流量全给抢光了,老天,都将近1万了,我这条才200多!”
“人家好几万的粉呢,你能跟人比啦?200多不错了,我这条才100多呢。”朋友小宝叹气。
小黄笑道:“你那号开仨月了,每天还那么可怜兮兮的一两百阅读量,怕是风水有问题。”
小明回嘴:“那倒是,跟你们混久了,晦气。我就该找个大号,跪舔,抱大腿,散红包,求转发。”
“还好不是网红,不用发自拍。要不一照,一个赛一个的磕碜!”
“哎你看你看,那谁,红人汪蒙又推送了。”
“阅读量多少?”
“乖乖不得了。半小时,五千!”
“又写了些啥?”
“题目是——《连你的屎都不敢吃的男人,凭什么给他操》。”
“太粗俗了。”我皱皱眉头。
“你懂什么,推送题目,就是要黄色,暴力,抓人眼球。”小明说。
“写了些啥?”小黄问。
小明用手指在屏幕上比划两下,说:“没什么,不就她家那位老方,两人恩恩爱爱缠绵史。”
“还有她朋友们的悲惨情史。”
“这可能是她第八百个堕胎的朋友。”
“堕下来的孩子可绕地球一圈。”
“这种东西怎么有人看?”我很吃惊。
“红得不行,”小明晃晃手机,“你看,咱说了五分钟的话,又多了上千的阅读量。”
“无法理解。”
“你不爱看,有的是小女生追,”小黄说,“每天眼巴巴的,就等这条推送了。仿佛看了,什么问题都迎刃而解,连妇科病都可治。”
“如果你们想炒话题,”我喝了口啤酒定神,“我允许你们写我。”
“他已经写过你,”小明指指小黄,“他写你留学,劈腿,搞外遇,还是个同性恋。” “什么!”
小黄脸上一红,立马反击:“小宝也写过你。他写你浮夸,炫富,装文艺,又绿茶!”
“其实咱们也不能说是在写你,”小宝慌忙解释,“不就借用个你的名字,显得真实。”
“对,对,就好比以前写作文,开头就来——一位名人曾说……”小黄在一旁帮腔。
“没想到你们为了点儿阅读量变成这种人,”我目瞪口呆,“这个人吃人的社会呐!”
同时暗自庆幸,还好自己没有经营微信公众号,尚不用为此费尽心神,甚至出卖良心。
第二天,老板要找我谈话。我们老板是个四十多岁的中年人,自诩思想新潮,紧跟时代,特喜欢跟我们这些年轻人打成一片。
“小张哎,你看这个。”老板拿出手机,翻开微信。
我定睛一看,是条推送。
“看到了吗?”
“看到了。”
“觉得怎样?”
“您这玫瑰金挺骚的。”
“少贫嘴,小张,”老板正色说,“这是咱们对手的推送!我们是创新的现代化公司,新媒体也要搞起来!不能落后!”
“所谓创新就是要另辟蹊径,不舔人家屁股——我完全反对。”
“那你来做,”老板仿佛没听我说什么,只拍拍我的胳膊,“小张你脑子活,文笔又好,搞个公众号,没问题的嘛!”
我想了想,点点头,回到工位,打开word文档,一边写起辞职信,一边发出鲁迅式的哀叹——
我当初虽然不知道,现在明白,这中国,已经难见不做公众号的人!没有做过公众号的孩子,或者还有?
救救孩子。
与人社交时如何很会聊天是个大家都非常感兴趣的话题,尤其是非常关注与异性聊天的问题。
我综合了此前写过的若干篇文字,有了下面的关于聊天的方法论总结。从3个方面入手,让大家看完就能去实践。1,心态篇 2,原因篇 3,策略篇
【心态篇】
我发现如果没有一个良好的心态作为支撑和前提,做任何事情都会事倍功半。反之,心态好,自信心足,就会有强大的抗挫折承受力,甚至是遇强则强,越挫越勇。
大家有没有如下情况:
1、与异性聊天,尤其是与高分异性、心仪的异性聊天时紧张害怕、自卑、患得患失?
2、你总是猜测对方说的某句话的潜在意思是什么?
3、和高分、心仪异性沟通不了,却对和自身价值差不多甚至更低一些的人就没问题?
这是很多心态差的人的首要问题,为什么这么说?你觉得没话说的时候,脑子里要么是一片空白,要么纠结了半天才挤出1,2句话,并还担心说了对方没有反应或是担心说错了,对方会对你产生不良反馈,可你越这样想,你就越害怕。这情况和当众演讲或表演时会怯场情景类似。
核心原因首先是不自信。不自信的背后,有2点。第1,出现问题的一个重要原因就是你心里有这样一幅图,虽然大部分人口头不愿承认,但内心潜意识是这样想的:自己的价值是比要追求的美女低的。原因就在于他们想从异性身上索取价值。(你懂的)
一旦陷入这种思维,你就会不自觉认为自己矮人一等,你在价值比你高的人面前自然就会紧张,担心自己说错话,害怕说错话对方给你否定的反馈,你越是这样想和担心就越陷入紧张的状态,直至想找个洞躲起来或是想办法逃离现场,以避免内心的煎熬。但你又想和喜欢的异性相处聊天,在这样矛盾的思想下痛苦不已。这就是你遇到陌生异性就紧张的原因之一。
原因2,也有可能你本身是个比较宅的人,平常很少社交,与人打交道的机会少,玩电脑时间多,随着时间的推移积累,你的社交能力、语言能力慢慢就有所退化,遇到陌生同性还好,但遇到异性,同时又想索取别人的价值,但能力又不够,不知道该怎么做,大脑陷入一种无所适从的状态,于是恐惧感就产生了。
前面紧张害怕的感觉一般约会连带着患得患失。
人为什么有时候会有患得患失的感觉?
并且这种感觉让人百爪挠心,纠结无比,此心态会直接影响人的行为模式,致使本来一个简单事情会变复杂或低级失误或是在追女孩的过程中让自己处在被动局面。
这个问题背后的本质原因,是“分别心”在作祟。那什么是“分别心”?用更通俗的词叫做“得失心”,患得患失的心态。
我们每个人的大脑里都有两个“我”,其中一个“我”就是对于各种自身行为的好坏下判断而产生情绪的“我”,在这里称之为“我1”,另外一个“我”是行动的无意识的“我”,在这里称之为“我2”。
比如“我2”在跟女生搭讪后,女生的反应并不是很好,这时“我1”就会开始下判断,对“我2”进行批评和否定,认为“我2”确实很2,如此,“我2”在行动上就会开始顾虑“我1”的否定而受到影响,害怕搞砸,从而限制住了本身的发挥。
我们在运动场上也经常见到运动员出现这样的情况,譬如在足球赛上单刀却没能抓住机会破门的球员,他们大多在同场比赛下一次单刀表现一定都会不进,因为在他们内心里,肯定会念叨这么一句话——我怎么这么没用。那么在下次拿到球单刀的时候就会在意上次的失败,从而导致发挥失常错过机会。
在与异性打交道的过程中,我相信也有人有过这种体验,譬如“桃花运”就是这么回事,有一段时间,你因为机缘巧合搞定一个不错的妞,之后就会感觉任何异性你都可以聊得特别HI,不管你说什么那些异性都可以手到擒来,但如果你在一个妞身上投入了很多,却总是受挫,同样会感觉无论任何异性对你来说都像一块钢板,她说什么你都得琢磨半天该怎么回,做每件事都会害怕得到负面的反馈,因为你害怕失去她,人对未来失去某样东西时都会感到焦虑。
比如你成绩不是很好,害怕年终考试挂课。比如,现在就业压力很大,你害怕毕业后就失业。比如你父母得了重病,你害怕失去他们。
回到前面刚开始提到的常见现象,很多人认识了一个新的异性,并对对方有好感时,心态发生了变化,变得患得患失,害怕失去,并问我,和对方聊天该用什么心态去面对,会比较有主动权?
我先举个类似的例子说明一下,假设你去面试找工作,一般的做法都是去网上搜集适合你职位的信息,同时都会有很多家公司在网上发布,那你是否会只投一份简历到一家公司?并且期望这家公司一定要应聘你,那如果你没有得到这家公司的工作,甚至连面试机会都没有,那你只会吊死在这一家公司吗?
我相信答案是肯定的,你们肯定不会,肯定是同时投很多简历去不同的公司,以期望获得更多的面试机会,和更多的公司选择。因为你也想选一家薪水更高、福利更好、交通便利、公司办公室环境舒服等等。
一般情况下你不可能在还未得到这个职位之前,就已经在害怕失去了,因为你知道即使失去了这个公司的机会,你还其他公司可以选择,东家不打,打西家,现在年轻人跳槽都还蛮频繁的。
那找工作和找女孩谈恋爱是一样的道理,那该用什么心态和对方聊天呢?
我的答案是:用你失去对方也不会可惜的心态,无所谓的心态,因为他本来就不属于你,失去对方,你是否会掉块肉?失去对方,你是否会死?失去对方,你是否就再也没有机会认识第2,3,4,5.。。个女孩了?同时你们还没在一起成为男女朋友,还未谈婚论嫁,他还不属于你,为什么你就开始害怕失去了呢?
接下来再说说喜欢揣测对方意思的问题,这里主要是从男性的角度阐述。
你喜欢不断的揣测对方说的话的潜台词,在一定程度上来说是没有安全感的表现,同时你之所以这样想,完全是你把对方放在了比你更高价值地位上,你心里有这样一幅图,就是前面刚刚说的那幅图。
你在这个基础上,做的任何行为都是把自己放在一个很低姿态,打个不恰当的比方,太监都喜欢揣测皇上的心思,并想尽办法讨皇上欢心。你作为一个顶天立地的男人,你觉得有必要把自己的姿态放那么低吗?大家觉得作为高高在上的皇上,需要天天揣测自己后宫嫔妃的心理想什么吗?
你们做为真正的男人,应该是带领女人,而不是被女人所左右,只有你在两性关系上掌握了主动权,你才有更多的话语权,你才不会被对方牵着鼻子走,也就不会过多在意对方每句话背后什么意思。
你以对方意志为转移,你的思想就一定程度上被控制或影响了。你觉得在受影响的同时,对方会喜欢这样被自己轻易影响或控制的人吗?女人一般来说都是希望有比自己更强的男人所征服。不是有句话说这样说的吗!男人靠征服世界来征服女人,而女人是靠征服男人来征服世界。
【原因篇】
经常有人问我,该如何与异性展开话题,我也经常分享一些方法给他们,而且是我经常使用而有效的,但对方反馈效果不明显。
直到我与一些粉丝、学员在YY上进行语音互动问答时,才发现问题没那么简单——很多人与异性交流存在障碍,不完全是方法技巧问题。而这些问题就是影响大家与异性交流的症结所在。
通过大量的交流、整理,我总结出了影响大家与异性交流时经常出现的8个常见问题:
1,当众说话紧张;
2,细声细语,没有感情,没有热情,没有能量;
3,繁复啰嗦,无重点,无逻辑;
4,没有储备足够多的知识、故事、话题;
5,容易说错话,容易冷场、容易终结话题;
6,不会延续话题、不会转移话题;
7,缺乏幽默感;
8,地方口音、甚至口吃;
1,当众说话紧张;
原因很简单,缺乏自信是第一。而这个自信更多是当众说话方面的自信。不懂主观上如何树立讲演时的自信心态、突破恐惧、克服当众讲话的紧张感的方法。二是没有学习过当众说话的系统方法。第三是缺乏足够多当众说话的经验积累。可参考经典书籍《金字塔原理》。
2,细声细语,没有感情,没有热情,没有能量;
这是你与这样的人交流的第一感受,正所谓不见其人,先闻其声,你还没弄清楚他说的内容,你听到对方声音就没有吸引力了。有气无力,没有抑扬顿挫,没有情感起伏,感觉不到对方的热情和能量。你与他的交流感觉就像是碰到了僵尸。最可怕的是,他自己完全感受不到这点,觉得没什么问题。而且这也是很多人专门去学很多话术技巧惯例之后依然效果不佳的原因之一。因为他不知道语言的本质,不完全是你说什么内容,而是你怎么说。同样一简单的话,你富有感情的表达肯定比你好无生气的叙述要好上很多倍。
推荐两个简单的方法来知道自己说话的感觉到底是怎么样的。
第一,用手机的录音功能录一段你和朋友对话。然后放出来听听,感受一下从音频里的声音和自己平常说出来的感觉有什么不同。
其次,再问问这朋友的感受是什么。通过次方法,你就能对自己说话有个另一个角度的认识。
3,繁复啰嗦,无重点,无逻辑;
表达一件事情,逻辑线不清晰,先说什么后说什么没有规划,语言干涩、重复。会让你听了半天,也不知道对方在说什么,你只有非常专注的听,并且总结复述给对方,才能确定是不是你听到的内容。试问如果异性和这样的人聊天,是多难受的一件事情。依然推荐参考经典书籍《金字塔原理》。
4,没有储备足够多的知识、故事、话题;
这样的结果就是容易在交流时思维枯竭,想表达而表达不出来,因为大脑里储备的素材太少。
原因大致3点:
1)平常不爱读书、不及时学习一些新知识。
“书到用时方恨少”说的就是这些朋友,平常不积累,碰到某个话题时,你对话题的背景、知识、趣闻、等等周边的相关信息知之甚少,就像电脑数据库里没有存储相应的数据,自然无法检索到,你当然也就不知道该聊什么了。
2)没有整理自己,适合与人分享的故事、或是没有把听到的好故事记录下来。
如果想与对方有更深入的交流、想进阶两人的亲密关系,你不表达一些你个人、甚至是隐私的内容,别人就感觉与你距离不够近。你想想你关系最好的朋友一般来说都是互相知根知底的,只有你们互相更了解对方,才有可能关系更亲密,你主动与对方分享了你的成长经历、恋爱经历、各种有趣、特殊、惊悚、甚至是灵异事件,对方才会对你更全面的了解,对方才可能敞开心扉也对你分享她的故事。
3)不关注时下热门话题
时下流行的东西是最具有可交流性的话题,因为大部分人都有关注,你不参与就显得你很不合群,或是比较落伍。而且流行内容也是最容易与陌生人、异性展开交流的开始,从这些话题上就可以了解到对方的一些观点、甚至是三观。
时下流行内容典型内容如下:电影、音乐、电视剧、名人、书籍、游戏、热门网络视频、热门网络事件等。平常上网的时候顺便关注一下,并时常有机会就和身边熟悉的朋友说,再在和陌生人、异性聊时就比较相对比较熟练与顺畅。
5,容易说错话,容易冷场、容易终结话题;
对不擅长聊天的人来说,当你还没调整过来,很容易你在社交场合成为传说中的——话题终结者。本来几个人正聊得欢时,你不经大脑的一句的话,让大家都尴尬了,整个热烈的聊天气氛就因为你瞬间降到了冰点,同时别人也一下子不知道该如何接话来延续或化解。一般来说碰到这样的情况,有经验的朋友都会直接打个哈哈,迅速转移了话题,直接聊了其他好玩的事情上,以避免尴尬。你是否也造成过这样的情况?如果有,就请继续往下看。
6,不会延续话题、不会转移话题; 你如果有前面的这些问题,你也很容易碰到这个情况,你让聊天冷场了,却不知道如何马上延续之前的话题,或是直接转移到其他可以聊的事情上,好让你们的聊天又回到正轨上。那你就会非常被动,一般来说对方也不是那种很擅长主导谈话的人话,就会陷入尴尬,尤其对方还是你希望追求的异性时,对方已经对你整个人的评价,在内心做出了一个相对负面的评判。恭喜你离失败又更进了一步。
7,缺乏幽默感;
假设你平常就是个严肃、冷酷的人,不会搞笑幽默,不会根据现场情况活跃气氛的人,虽然不一定有幽默感才能赢得朋友或异性欢心。但你却是少了一个有力的社交武器。幽默感有时候就像润滑剂、催化剂、助燃剂。能有效快速拉近你与他人的关系、能让你与他人的关系更亲密,也更容易让他人喜欢你。
8,地方口音、口吃;
假设你的声音有比较严重的地方口音、甚至口吃,也会阻碍你与他人的交流。别人听不太明白你说的是哪里的方言,具体在说什么,别人已经面露难色,但你依然坚持自我,丝毫没有把自己语言调整到和大家统一的频率上。
口吃属于一种语言障碍,表现为与正常流利交流的人的频率不一致,而且不自觉的重复、停顿。此问题完全通过参加矫正训练来治愈。
大家知道了这8个常见问题后,看看自己符合几条?如果超过3条以上,那你就需要一个课程来系统、全面、深入的区解决这个问题。不然这个问题会伴随你下半生,让你每次遇到类似场景时都无法发挥自己的真实能力或魅力,阻挡了别人更进一步,去认识你,了解你的可能性。
【策略篇】
大家看了心态篇、原因篇之后,我给出的聊天建议是1个原则,2个策略,2个要点。
原则:与对方聊天尽量不聊理性话题,比如你工作如何,家住哪里等查户口式的聊天。应多以感性艺术性话题为主,比如多聊娱乐性话题,电影、音乐、明星、娱乐方式、星座等等,这些话题在做细分又可以聊很久。可辅助参考原因篇第4点。
短期策略,立竿见影的方法,就是平常搜集一些上面提到的感性话题,但请不要依赖,因为这些只是素材,不是能和对方聊天热络和产生感觉的决定性因素,只是辅助,只是躯壳,不是灵魂。
长期策略,多和性格活泼的人成为朋友,他们的能量气场一般都很高,情绪和能量是可以互转的,你和他们在一起呆久了,很容易影响你,你慢慢也会变得开朗和说话多。大家回忆一下是不是有类似的经历?如果有,请多和他们在一起。
在此前提基础上,经过一段时间的练习与积累,你首先不会在异性面前紧张,在你放松的状态下,利用你平常积累的素材,在遇到觉得有意思内容当下反复说个几次,或者用手机有道云笔记摘录下来,偶尔翻出来看看有个印象即可,在此强烈不推荐死记硬背,切记!
在有了前面的准备,接下来会涉及到2个概念,“状态”与“惯性”。
这里说的“状态”是指你与对方交流的过程中,是否进入了不需要刻意去想话题,大脑会根据你们当时的聊天情景自然而然的不断自动浮现说话内容的状况。
进入“状态”,你就是快乐的源泉,像某些广场的音乐喷泉一样,给路人游客带来赏心悦目之感,每一次的喷薄而出都会带来人们的欢呼雀跃,甚至是人们冒着被 淋湿的风险或直接就想湿身的跑到喷泉中嬉戏,乐在其中。你如果也能做到这点,你也可以像喷泉那样,吸引对方的注意力,并让对方沉浸在你的欢乐中。
这种 “状态”从生理的角度上,是你体内通过外部的刺激产生了“肾上腺素”,它于是继续反过来刺激你的大脑,让你进入一个很嗨的非常规情绪,这时你的精神是处于高度兴奋和高速运转的过程,此时的你会变得很本能,你的语言、行为都或多或少不由自主的听从了本能的驱使。
常见的例子,你喝了酒,但又未醉的时候,处于兴奋状态,你会经常做一些你平常做不出的行为,说一些平常不会说的话,甚至会不停的说话,根本不需要思考,具体就不举例了,请各自回忆自己或朋友喝醉后的各种行为,自行脑补。
“惯性”是指你进入“状态”后,你会不自觉的停不下来,因为你这时情绪、能量都很高,也就是俗称的“嗨了!”,嗨了就是兴奋,你如果每次和别人聊天都能进 入这种兴奋状态,大脑就会自动高速运转,想到什么就会说什么,甚至说的内容可能没什么营养,但依然和对方沟通流畅气氛活跃,因为你不是在传递信息,而是传递情绪,对方与你聊天之后一般只会记得当下热烈氛围,而不一定记得你们具体的聊天内容。
好了。最后给大家总结一下。
1,通过扭转错误思维,调整自己紧张害怕,患得患失等不自信的表现和心态。
2,通过8个常见不会聊天的现象来总结自己的问题症结在哪,并针对性的去解决。
3,通过我给出的1个原则,2个策略,2个要点的方法循序渐进,并持之以恒的改进自己的聊天问题。
通过这3点,大家可以慢慢的变得会于异性聊天哟!
最后的最后,在补充一点。
部分女同胞有疑问,为什么没有从女性角度和男生聊天的内容,我想说的是虽然本文主要是从男性角度去写如何与异性聊天,但原理是类似的,男女是通用的。
截止到今天,我已经实践Everyman睡眠计划十六天了,关于这个睡眠方法,我在这里就不介绍了。我想说的是我所执行得这个睡眠计划每天白天是有三次时间为25分钟(过几天减至20)的小段睡眠的。一开始,在这么短时间里每次都能睡着对我这个生活作息毫无规律并且睡前玩手机到累得受不了才睡的大学生来说,真是个不小的挑战。
后来,我总结出了方法,这个方法熟悉之后(几天就能适应),你就能获得想睡就能睡的能力~10分钟入睡无压力~
方法如下:
1、在你不是很激动很兴奋的前提下,躺在你心爱的床铺上,摆出一个令你最爽的姿势;
2、全身放松,从头顶往下,走起,思绪到哪部位哪就放松下来;
3、重点到了,调整呼吸,让自己的气息长且匀,吸气自己把握,呼气的时候才是重点,呼气的时候让自己身体某一部位放松下来,比如左手、右肩、面部,最好是有一定规律,这个自己寻找吧,当然直接自上而下也是很好的。在这个过程中,最好不要动身体,一根手指也不行(熟练后无压力),自己的意识一定要保持在呼吸“周围”,这个不是很难吧。
如此,做得好的话,在几分钟内,你就会感觉自己突然就像进入到另一个世界了,感官上非常奇妙(其实就是平常的半睡状态,只不过这次你意识很清醒),到了这层次,你不要随意动身体任意一部分,只要不严重胡思乱想,几分钟内就能入睡了。
PS:方法重点,姿势舒服、深呼吸且平稳、身体随着呼气放松、意识跟随呼吸放松身体、相对静止、可用虫鸣等音效辅助睡眠。
文/池柯
---------番外:《怎样拥有好睡眠》
1、坚持一个睡眠时间表 :坚持一个睡眠时间表会使得你的身体习惯于一个睡眠周期,并帮助促进更好的睡眠;
2、戒烟 :尼古丁是一种兴奋剂,它会阻止你入睡;
3、阅读放松的词语 :根据一项发表在应用社会心理学杂志上的研究,如果你在睡前看放松的词语,如“冷静”“放松”“休息”等等,将有助于睡眠。所以可以写这样的一段话作为睡前阅读;
4、如果无法入睡,再做一些事情:如果你不能入睡超过了15分钟,做一些放松和尝试再次入睡,当你累了自然会睡;
5、更换旧床垫 :如果你的床垫是很旧的(超过6-7年),那么是时候以新代旧了;
6、吃晚饭 :等待至少3个小时睡觉前吃你的晚饭后;
7、温度 :你的卧室需要调一个完美的温度,大约是70°F或21°C;
8、关闭电子设备 :睡前请关掉手机,在你的卧室里不应该有任何人工光源。即使是小的LED灯也可能打扰你的睡眠。此外,还要避免睡前(如电视)强光照射1-2小时;
9、避免在晚上喝带有咖啡因的饮料或浓茶等:用花草茶代替,例如,甘菊茶可以帮助放松你的头脑,帮助你安然入睡;
10、酒精 :饭后一小盅,可能看起来像可以帮助你更快入睡,但睡眠质量差远了,不要在睡觉前2-3小时内喝酒;
11、练习:因为巴普洛夫效应,所以可以练习和改善睡眠长度和睡眠质量,但要练习要避免在睡前4小时之内;
12、限制白天小睡 :这意味着每天午睡不超过30分钟,因为白天小睡可能与夜间睡眠干扰;
14、食物: 晚餐要吃健康的食物,并且睡前不要吃得太饱。
解放大脑!这些方法你知道几个?
晏初 2015-10-18 17:43:43
原文:Increase Your Mind Power with These 7 Techniques 译者:何静雅
敞开心扉,探寻自己的无限可能,你会发现关于“智力”、“认知”、“情绪能量”的讨论铺天盖地,永无止境。教育家、心理学家、神经学家给这些词语下各种定义,讨论怎样“变聪明”、“变机敏”,令人作呕。不可否认,高智商和优等生之间确有联系,但是也有人提出质疑:某个学生拥有高智商,只能说明TA更适应学校里传统的学习-思考氛围,换言之,高智商是适应传统学习方式的结果,而非取得好成绩的原因。
对于我们来说,提高自己的精神能量,并从中获益,比科学家们如何定义来的更重要。这些精神能量包括清晰的思考、记忆、学习的能力、创造力、解决问题的能力。我们希望用一些行之有效的方法提升这些能量,所幸,人们在这方面做过大量的研究,在此,我们列举其中的7个。
【心智图】
年轻的读者也许对此更感兴趣。心智图是个相对新潮的概念,自诞生到现在也只有30年左右。心智图是这样绘作的:任意一个主题,比如园艺,将这个词语写在一张纸上,然后思考并写下任何与园艺有关的词语,最后把这张纸填满(译者注:类似头脑风暴)。这样做可以让你的大脑左右半球紧密联系,共同完成这项工作。当人们大脑左右半球同时活动,思路更宽广,更容易找到解决问题的方法。现在有许多心智图APP可供下载,你可以随时随地进行练习。
【脑筋急转弯小游戏】
脑筋急转弯这种有趣的游戏可以调动大脑的各个部位,激活神经元。每天只要15分钟的练习即可让你思维更敏捷,思考问题更高效。而且脑筋急转弯很容易找到,动动手指,网上随处可见。
【速读】
对于每天都得阅读大量文章和材料的学生,速读技巧可以节约许多时间。对于已经离开学校的人们,速读可以激活大脑分管语言的部位,尤其是语言运动中枢。读的越多,你的词汇量就越丰富。
【冥想】
作为人体器官,大脑同样需要休息。经过特定阶段的睡眠,大脑可以得到休息,同样,日常练习冥想也可以在很短时间内放松大脑。逐渐摒除杂念,沉入自己的内心,可以令你意念更敏锐。冥想对于身体健康的影响早已有过论证,当你的问题得以解决、脑中迸出新的观点,自然会身心健康。
【书写】
书写属于四项语言技能之一(另外三项分别是听、说、读)。相对于其他三项技能,书写更能刺激大脑左右半球之间的神经元,促使神经元放电。大脑左半球负责思考和组织语言,右半球激发创造性的想法。当左右半球一起合作,你便可以流利的书写。反过来,经常书写也可以激发你的创造力,并运用逻辑语言组织你的观点。如果你不爱写作,经常练习也可以提高写作技巧。相信我,这绝不会成为你的负担。
【学一门外语】
神经学家认为,练习外语能激活大脑右前额叶——该部位有组织、计划、决策的功能。随着年龄的增长,这一部位的功能会逐渐退化,经常练习,使之保持活力是件有益的事。
【管理思绪】
我们都曾有过这种体验:从大脑迸出各种各样杂乱无章的念头;有时候我们的大脑固着在某个问题上,左思右想,以致难以入寝。管理思绪是一项非常重要的能力,我们需要尽可能的培养、练习这项能力。
如果任由思绪随意飘荡,不加管理,我们的行为常常荒诞不经、缺乏理性逻辑性,而且缺乏重点。更严重的,如果被各种负面的念头困扰,比如焦虑、担忧、低迷,我们的身心健康也会受到影响。情绪管理,就是随时觉察脑中闪现的不合理念头,及时掐断,并用积极的、有益的念头取代之。只要你稍加留意就会发现,这种事每天都会发生。只要你每天不断练习,你会获益良多:积极想法开始超过消极想法,你可以迅速的切换消极念头。长此以往,你的思考能力、解决问题的能力都会得到发展,而不是简单的“转变态度”。
第二篇:统计科普文章
统计数据频遭质疑 统计方法亟待改进
[关键词]统计数据失真、信任危机、改进统计方法
[摘要]近几年来统计局发布的数据如房价、CPI、在岗人员平均工资等屡屡遭到老百姓的质疑,在社会上产生了很多负面影响。针对目前有些统计数据存在争议的现象,本文就该现象产生的原因进行了简要的分析。
国家统计局不久前公布全国70个大中城市房价上涨1.5%,全国居民消费价格指数(CPI)同比上涨了2.8%。对此,老百姓的感觉是:小数点打错了地方。
这不是统计数字首次遭遇信任危机。由此追溯到去年的工资“被增长”、“被就业”,中国现行的统计方法和制度正面临着新的挑战。争论的声音总会渐渐平息,但是一场统计新政却是势在必行。
实际上,从2009年开始,从专家到民众的质疑声一直不绝于耳。2009年,国家统计局公布全国城镇居民人均可支配收入增长11.2%,农村居民增长8.1%。而此前央行公布的调查数据显示,前两季度城镇居民当期收入感受指数为-8.6%,是1999年以来的最低水平。网络上喧嚣一片,网友愤慨地说“工资被增长”,而“被”字也成为一个标志性的符号写入了2009年的历史。
当统计数据不再是一个宏观经济问题,当一种全民关注的社会氛围悄然成形,数据就变成了关乎个人收入和生活的具体可感的事情。上世纪90年代以后,统计体制改革不断迈出新的步伐。如建立新国
民经济核算体系,实行新的统计报表制度,应用抽样调查方法„„等等。但是,原有的统计方法沿用多年,一直没有改进,已经有些滞后、渐渐不符合形势发展的要求了,统计数据无法反映社会经济发展的真实情况,应该跟上经济发展的脚步,这是大家一致的观点。
那么,有哪些因素导致了统计数据的偏差、失真或遗漏呢?除了存在统计指标体系设置不合理、统计调查方法不灵活等显性原因外,还存在着统计对象不配合等非统计因素的隐性原因。例如,在居民收入的统计调查过程中,如果被调查对象拒绝接受调查或提供不真实信息,特别是高收入阶层的灰色收入很可能涉及钱权交易、腐败、土地收益或其他垄断利益分配问题,就很容易造成居民收入的统计数据偏差、失真现象。
上述所言形成的数据偏差、失真或遗漏,我们完全可以通过采用更科学、更合理的调查方法、样本设计予以纠正,以此减少统计误差。但应更为警觉的是,导致当前统计数据失真的主要症结并不仅仅局限于技术性因素或非统计性因素,来自制度性因素的影响可能依然较为突出。例如,有些地方政府为了追求政绩或经济利益,有目的地编制一些统计数据,这个制度性因素可能是导致部分地方统计数据出现较大偏差或失真的主要原因之一。
由此,一场从方法到制度的变革正在统计部门酝酿和推行。
新修订后的统计法从今年1月1日开始实施,其中特别强化了对统计数据生产过程的监督,以及对统计机构的约束。第二十九条规定统计人员不得伪造、篡改统计资料,否则视作违法行为。
除了法规的硬性规定之外,一些技术手段也将在今年相继实施。从一季度开始,国家统计局将公布统计数据的环比数字,与同比数字相比,短期环比将更准确地反映经济发展的细微变化;为了杜绝地方政府注入水分,GDP将上交给国家统一核算;在平均工资统计方面,正试点将个体和私营企业纳入到平均工资统计范围。
另外还从三方面入手完善科学统计方法。
一是赋予统计工作更大的独立性和中立性。可以考虑像税务和审计系统一样,对统计系统实行垂直管理,这将有助于增强统计的抗干扰能力。因为,我国基本统计信息主要是依靠地方各级统计部门收集的,地方统计部门的干部任用和统计工作的保障条件都依赖于地方政府,这使得统计部门很难顶住来自地方政府干预统计数据的巨大压力。所以,增强统计系统的独立性,可减少此类干扰。
二是增强统计工作的公开、透明度,提高其专业性。也就是说,不仅要及时定期公布各类统计数据,而且还要公开统计数据的指标含义、样本范围数量和调查方法等。同时,要通过发现问题、积累经验、验证方案和完善方法等形式来不断提高统计部门的专业化水平,避免出现统计数据的偏差、失真或遗漏等现象。
三是应当逐步放开相关部门对统计工作的行政垄断局面,并向民间机构开放统计市场。事实上,官方统计部门与民间统计机构之间的相互竞争,将有助于促进、改善我国的统计质量与水平。
当然这不是全盘否定旧的统计方法,就比如全国居民消费价格指数(CPI)同比上涨了2.8%,虽然统计数据显示很低,但并非是统计
方法的问题,为何会出现这样的结果,如果能够更好宣传CPI、在岗人员工资的概念以及数据是怎样统计出来的,大家的质疑就不会如此强烈。
CPI是居民消费价格指数的英文缩写,是反映与居民生活有关的商品及劳务价格统计出来的物价变动指标,通常作为观察通货膨胀水平的重要指标之一。
CPI不是单一商品的价格涨幅,而是一个总体指标,反映的是全国13亿多人消费的商品和服务项目的价格变化情况。而百姓对物价上涨的感受往往是对单一商品价格变化的感受。有些商品和服务是经常性的消费项目,百姓对价格的上涨更敏感。比如大蒜价格暴涨,老百姓感受特别深,但可能忽略了猪肉价格低于去年同期,其他蔬菜价格也没像大蒜一样疯涨。虽然蔬菜涨幅很大,但蔬菜在CPI中的比重有限,短期的暴涨对CPI总指数的影响是有限的。另外普通居民感受价格变化,对比的基期往往是三五年前,甚至10年前。而CPI主要公布的是同比、环比指数,对比的分别是上年同期、上月,观察时期较短,其反映物价涨跌的变化也只是特定的一段时间内。如果把居民消费价格放在比较长的时间内观察,价格涨幅也是比较明显的。2007年猪肉价格开始大幅上涨,现在猪肉价格同比下降,是与去年的价格相比较的,但比起2006年还是在高位上。
商品在CPI总体中的重要程度,即在CPI中的权重对分类指数、总指数的影响程度是很大的。而权数的确定是一个地方总体消费结构所决定的,和个人的消费结构可能很不一致,因此造成一种商品价格的涨跌对CPI的影响是固定的,但对个人的影响不同,因而感受也不同。
最后,普通居民关注的是“吃穿用住行”等与日常生活紧密相关的商品和服务。而CPI调查的范围更加广泛,是一个加权计算后的综合平均数,其中既包含有上涨的品种,也包括了下跌的品种,如果居民用具体上涨的商品或服务项目的价格与公布的居民消费价格总水平相比,就会觉得CPI低估了。如果大家都知道这样的计算方法就不会再有质疑声了,由此可见统计工作的宣传也是一项重要的工作。当然也不是说这样的方法就是最适宜的,如果能考虑适当降低其他类别商品在CPI统计中的权重,并将房价纳入CPI指标就更能反映当前真实的价格水平。
统计工作在国家宏观调控和微观管理下,在我们统计工作人共同努力下,数据可靠性、真实性和权威性会逐步提高,统计数据失真的现象会得到很好的控制,统计工作也会不断迈上新的台阶。
第三篇:科普文章读后感
生活中的科学
——读《世界上最脏最脏的科学书》有感
徐州民主路小学三(8)班 张丁午
“嗡……嗡…..”我躺在床上,耳边传来令人厌恶的声音。我“啪”地猛拍了一下。
接下来,我挥动着手脚,试图赶走这些可恶的蚊子,不料,却遭到了更为猛烈地攻击。不一会儿,胳膊和腿上好多地方开始痒了,痒得我都睡不着觉了——看来,我要与蚊子彻夜搏斗了。我又急又气:为什么一到夏天,蚊子就会出来吸血呢?
我索性爬起来,打开台灯,翻开我最爱看的一本书——《世界上最脏最脏的科学书》寻找答案。这本书是妈妈送给我的,它用生动形象的语言向我们介绍了生活中的科学。一遇到我解不开的迷,我就会翻开它寻找答案。刚开始读时,我会觉得有些恶心,但是,读着读着,我就欲罢不能了。读完这本书,我明白了:为什么会有眼屎和鼻屎,有多少虫子住在我们的脸上,又有多少虫子生活在我们的肚子里……读完后,我发现,原来世界上根本不存在脏的东西,那些所谓的脏东西居然隐藏着那么多的科学知识。
我终于找到了蚊子吸血的答案:原来,炎热的夏天是蚊子繁殖的旺季,雌蚊子要靠吸血来给自己体内的“孩子”补充必需的蛋白质。雌蚊子的吸血部位拥有钻孔、锯齿、吸血用的强大针管等武器。看到这些,我明白了,原来吸血的是雌蚊子,它是为了自己的孩子才去吸
血的。只是,它那强大的口器在吸血时会传染许多病菌,所以它就变得很讨人厌了。
我又饶有兴趣地翻看了这本书的其它内容,它们一个比一个有趣。我看得入了迷,都忘了睡觉。这时,耳边传来爸爸的声音:“丁丁,快来睡觉吧。蚊帐搭好了。”我躺进蚊帐,心想:蚊子,这下我不怕你了!
《世界上最脏最脏的科学书》这本书真的不错,我推荐大家看一看。
(指导老师:杨蕾)
第四篇:科普文章读后感
《千亿个太阳》读有感
曾几何时,当我漫步在图书馆里那一列一列的书柜之间时,不经意走到了天文类书籍前。
记得以前一直听哥哥给我讲关于天上那一颗颗星星的故事,所以心中一直对那些神秘而又遥远的星空怀着强烈的好奇心,当我真正面对能破解这些秘密的宝藏时,又不知该从何处开始我的星际之旅,就在这时我看见了鲁道夫〃基彭哈恩所著的《千亿个太阳》这本书,我一下子就被他深深吸引了,我取下了它,开始了我的星空之旅〃〃〃〃〃〃
看了题目,你可能会问怎么可能有千亿个太阳呢?但事实是在我们的宇宙有无数和太阳一样的恒星,正是他们组成了我们夜晚看见的满天繁星。这本书介绍了恒星能源、结构和演化,射电脉冲星、密近双星质量转移、致密X射线以及地外文明的知识。这一切的一切都让我对我们所在的宇宙有了更深的理解。从我刚才列举的知识来看,你可能以为它很深奥,但全书基本上撇开了数学公式,运用了许多生动比喻,叙述了许多著者亲身经历的故事,如他把恒星比作人,用人的各个年龄来生动的比喻恒星从诞生到变成超巨星或中子星的演变过程,并配有精美的图画让严谨的知识变得生动有趣,让我们初步的理解深奥的天文知识。通过它我从太阳系飞过银河,飞到银河系的边缘,看到无数色彩绚丽形态优美的地外星系,他们如此迷人,有如此神秘,我想他们一定是在等我去探索,去发现,去开创人类知识的新边疆。
虽然因为我现在的知识还很有限,无法完全弄懂有些知识,但我相信,只要我保持对星空的热爱,只要我努力学习知识,我总会有一天会在鲁道夫〃基彭哈恩构建的璀璨星空里自由遨游,到达未知的远方〃〃〃〃〃〃
马玉峭
第五篇:物理科普文章
物理科普文章
第一篇 2011年诺贝尔物理奖--超新星与暗能量的发现
今年的诺贝尔物理奖授予了三位在发现宇宙加速膨胀的研究中做出杰出贡献的学者:Perlmutter, Schmidt和Riess.应该说,由于这项工作无可争辩的巨大重要性,几年来他们一直是获奖的热门人选。但是,导致宇宙加速膨胀的暗能量是什么仍是一个未解决的问题,而相关的许多 理论和观测还处在研究的前沿,存在许多疑问和争论,诺贝尔奖评委会素有稳重、保守的传统,所以我原以为他们还要再过若干年才会获奖。因此,作为一名宇宙学 研究者,我为他们今年获得这项殊荣感到非常高兴。
Perlmutter, Schmidt 和 Riess 是因为对超新星的研究而获奖的。超新星的概念是1934年由茨维基和巴德提出的。他们猜测当一些恒星寿命结束时将会塌缩,然后发生爆炸,其亮度可达到十亿 甚至百亿个太阳的亮度,巴德和茨维基也观测到了一些超新星。后来发现,其实有两种不同的超新星,一种是茨维基最早提出的核塌缩超新星,另一种其爆炸机理不同,现在一般认为是白矮星(质量比较低的恒星比如太阳在燃尽核燃料后就会变成白矮星)从其伴星中 吸积物质,到一定程度后发生核爆炸。有趣的是,茨维基和巴德最早观测到的超新星都是后面这种他们所未曾想到过的类型,被称为Ia型超新星。
[图1:超新星遗迹Cas A.]
由于超新星很亮,可以在宇宙中很远的地方看到,因此可用来研究宇宙学。特别是,白矮星有一个质量上限,称为钱德拉塞卡质量,大约是1.4个太阳质 量,白矮星发生超新星爆炸时大多都比较接近这个质量。既然这时白矮星的质量都差不多,就有理由认为,其爆炸时的亮度可能也差不多。这样,Ia型超新星就有 可能作为―标准烛光‖来使用:假定所有超新星的―绝对亮度‖也就是本身的亮度相等,那么根据观测到的一颗Ia超新星的视亮度,就可以推测它到我们的距离。另一方面,我们还可以观测到这些超新星的光谱,从中测出超新星的―红移‖。比如,一条原来在615纳米的谱线,经过红移后变为1230纳米,那么我们就说 这个超新星的红移z=1,因为观测到的谱线长度是原来的(1+z)倍。如果我们把测到的超新星的红移和距离一一对应起来,我们就可以画出所谓哈勃图,不同 的宇宙学模型的哈勃图是不一样的,因此用这种办法,可以测出宇宙到底是什么样的。
[图2:这是Perlmutter 等人1998年发表的超新星哈勃图,横坐标是红移,上面一图的纵坐标是星等(越暗星等越大),几条曲线是不同宇宙学理论的预言。下面图则是与理论的偏离。]
尽管上面叙述的这种办法原则上讲很简单,但实际做起来并不容易。首先是要发现超新星。尽管我们上面说超新星非常亮,但放在浩瀚的宇宙之中,也只是微 弱的一点。下面的图演示了一个超新星的发现图像:你可以看到,它非常微弱而不起眼,经过两次放大之后也并不容易在图像上看出来。发现它的办法是,把两个同 一天区但在不同时刻拍摄的照片叠放在一起,用后一张减去前一张,从二者之差发现可能变亮的候选目标。这样找到的候选者还不都是超新星,还有一些别的东西,比如星系中心的活动星系核有时会变亮,太阳系中的小行星有时会正好飞到这里,等等。在进一步观测排除这些其它东西后,才能找到超新星。这进一步的观测包括 用多次不同时刻的观测得到超新星亮度随时间变化的曲线(光变曲线),以及拍摄超新星的光谱以测定红移。光谱观测比照相观测更难,往往需要更大的望远镜,而 且需要在超新星最终变暗以前进行。
[图3:SCP组演示如何通过比较法找超新星的图]
1980年代中期,一些丹麦的天文学家开始试图寻找这些宇宙中的遥远超新星,经过长达2年的搜索,他们才找到了第1颗超新星,后来他们又发现了一 颗,但终因发现的过少而放弃了。由于很难发现超新星,再加上对超新星是否真是―标准烛光‖持怀疑态度,许多天文学家当时对这类研究抱悲观态度。也是在这一时期,劳伦斯伯克利实验室(LBL)的一组物理学家开始对搜寻超新星产生了兴趣。这一小组的传奇的创始人Luis Alvarez兴趣广泛。他本人因为高能物理实验(气泡室)方面的工作获得诺贝尔奖,但他更为公众所知是因为提出小行星撞击地球导致恐龙灭绝的理论。这一 小组中的Carl Pennypacker 和Rich Muller开始进行超新星研究,发展了一套在图像中自动搜索超新星候选者的软件。他们利用澳大利亚的3.9米望远镜进行了一段时间的搜寻,但是一开始他 们失败了,并未找到任何超新星。后来,Pennypacker 转而从事科普,而Rich Muller 本人受Alvarez关于恐龙灭绝研究的影响,转向研究气候变化和全球变暖问题——其实他关于超新星搜寻的工作也是与寻找―复仇之星‖(Nemesis)相结合的。古生物学家发现历史上的生物大规模灭绝存在周期性,Muller 认为可能是由于太阳有一颗红矮星或褐矮星伴星即复仇之星,当它沿周期轨道接近太阳时,其对小行星轨道的扰动就容易导致小行星撞击地球。Muller 的弟子Perlmutter的研究一开始就是寻找这颗复仇之星。后来,Perlmutter接掌了超新星项目。有趣的是,尽管Rich Muller本人在宇宙学领域工作的时间不长就离开了,但他有两个弟子后来因为宇宙学研究得到了诺贝尔奖:研究CMB的George Smoot 2006年获奖,Perlmutter今年获奖。
Perlmutter 接掌这项工作正是在项目最困难的时期:他们未取得任何成果,连一颗超新星都没能发现,而与澳大利亚人的合作也到期结束了。这一项目是否还能进行下去?伯克 利以及美国的资助机构在认真的评估后决定继续予以资助。Perlmutter工作专注,被认为是可以挽救这一项目的人选。他们还是得到了经费,造了一台 CCD相机安放在西班牙加纳利群岛的一台望远镜上,作为交换他们可以使用这一望远镜进行超新星搜索。Perlmutter也很努力,为了对发现的候选超新 星进行后续观测,Perlmutter 会给全世界各处天文台的望远镜打电话,恳求正在使用望远镜的人帮助他进行观测。
早期超新星研究的一大困难在于如何保证找到超新星并拍摄到其光谱。这里除了技术上的困难外,还有获得望远镜观测时间的困难。现代的天文望远镜都是由 许多天文学家共用的。一位或一组天文学家要用望远镜,需要写一份建议书,说明自己的科学目标和观测方法,经过同行评议后,由望远镜时间分配委员会根据评议 结果决定分配多少时间。这样,大型望远镜的观测时间表一般早就提前一年或半年定下来了。而在发现超新星之前,人们很难预先申请到这些观测时间,发现超新星 后往往只好临时借用别人的观测时间进行后续观测,这很难保证获得大量数据。Perlmutter 发展了一套―批处理‖的方法:他们每隔一个月,用观测条件最好的无月夜拍摄大片的星空,并立即与以往的观测进行比较,找出可能的超新星候选者,这样第2天 他们就可以获得一批超新星候选者样本,然后再用Keck 10米望远镜等大望远镜进行后续光谱观测。恰好超新星的光变周期是几个月,因此这一方法非常有效。由于一次可以得到多个超新星候选者,也就可以申请到大望 远镜的观测时间。用这种办法,Perlmutter领导的研究小组(称为超新星宇宙学计划Supernova Cosmology Project, SCP)开始发现大量的超新星。
伯克利的SCP小组由物理学家组成,他们一开始对于超新星天文学中的许多困难并不完全了解,―无知者无畏‖可能是他们在大多数天文学家对超新星观测 感到悲观时勇于进行这项研究的部分原因。然而,随着他们逐渐接近成功,天文学家们也开始看到希望并准备参加竞争。哈佛大学的Bob Kirshner(Adam Riess的导师)等人也想进行超新星观测,但问题是,SCP小组曾花费几年时间才研制出自动化超新星搜寻软件,别人能否在短期内研制出这样的软件呢?如 果没有,要进行竞争是困难的。Brian Schmidt 只用了一个月就开发出了这样一套软件,他没有象SCP小组那样完全新写一套软件,而是通过组合一些现成的天文软件而实现了这一目标。这样,由 Kirshner, Schmidt, Riess, Suntzeff, Filippenko 等人组成的High-z 小组以出人意料的高速加入了竞争的行列。
现在找超新星的问题解决了,但Ia型超新星是否真是标准烛光呢?遗憾的是,并非完全如此。渐渐地人们发现Ia型彼此并非完全相同,有的超新星光度的 变化速度更快一些,有些则更慢一些。不过,Mark Philips 通过研究发现,那些绝对亮度更大的超新星,其变化速度也往往更慢。因此利用光变曲线可以修正超新星绝对亮度的变化。
此外,对于实际观测的超新星,还需要考虑好几个其它问题。星际空间存在着尘埃,这些尘埃会吸收光子,使超新星变暗。好在这一效应还是可以修正补偿 的。尘埃吸收除了使目标变暗外,还会更多吸收蓝光而导致目标变红,因此根据其变红的程度进行修正。问题是,每颗超新星其本身的颜色其实也并不完全相同。最 后,即使本身光谱完全相同的超新星,当它位于不同红移时,用给定波长的滤光片组进行观测时,得到的颜色也是不一样的,还需要对这一效应进行改正。好在这几 个效应虽然复杂,但有规律可循。哈佛大学的研究生Adam Riess 发展了一套数学方法,他发现,利用多个滤光片拍摄的光变曲线数据,经过改正后,Ia型超新星还是可以作为近似的标准烛光的,因此用Ia型超新星进行宇宙学 研究是有希望的。实际上,即使到了今天,人们也还是不完全理解为什么Ia型超新星经过修正后可以作为这么好的标准烛光。人们很容易想到各种因素,使得Ia 型超新星偏离标准烛光,这也是一开始很多天文学家对超新星宇宙学感到悲观的原因。然而数据显示Ia型超新星经过修正后确实还是不错的标准烛光,这是大自然 给我们的一个惊喜。当然,研究者们仍在探究这其中的原因。
SCP和High-z这两个小组的竞争非常激烈。到了1997年下半年,他们开始发现,高红移的超新星比他们原来预期的要暗。根据哈勃图,这表明宇 宙的膨胀在加速而不是减速。这是否是由于观测或数据处理上的错误造成的呢?或者,尘埃吸收等因素考虑得不够周全?经过反复检查,1998年1月,两个小组 几乎同时公布了自己的观测结果,SCP组有42颗超新星数据,High-z 组只有16颗超新星数据,但每颗的误差要小一些。总之,他们一致的结论是宇宙的膨胀在加速。这一结果轰动了世界。
按照广义相对论理论,如果宇宙由一般的―物质‖(包括所谓―暗物质‖)组成,其膨胀会逐渐减速,这是万有引力的作用。那么如何解释观测到的宇宙膨胀 加速呢?目前主流的解释是引入―暗能量‖的概念。暗能量(dark energy)一词是美国宇宙学家Mike Turner 引入的。它实际上也是物质的一种形式,但具有很奇特的性质。比如,它的有效―压强‖小于0,这些压强项使时空的弯曲与一般物质造成的时空弯曲相反,因此可 以理解成是与万有引力相对的―斥力‖,可以导致宇宙加速膨胀。根据现在对宇宙微波背景辐射、超新星等实验数据的拟合表明,宇宙中大约百分之七十五左右是暗 能量,此外还有百分之二十一左右是不发光的暗物质,而我们熟悉的普通物质仅占百分之四多一点。
[图4:宇宙的组分]
也有人认为不需要引入新的物质形式―暗能量‖,而是万有引力的规律与我们一般所假定的广义相对论理论有所不同造成。不过,这种修改引力理论往往比暗能量理论更为复杂。广义地说,这也可以算暗能量模型。
还有少数学者怀疑超新星的观测或数据分析有错误,宇宙并未加速膨胀。但是,13年来人们又观测了许多超新星,目前总数有几百颗,对其分析也更加深 入,虽然还存在很多疑点(比如Ia型超新星爆炸的机理到底是什么?),但数据本身经过许多不同的天文学家用不同方法的分析,迄今并未发现大问题。其次,有 人曾提出Ia型超新星的光在传播中会由于与一种被称为―轴子‖的假想粒子的相互作用而变暗,导致其被误认为是宇宙加速膨胀。但是,这种假设与观测的拟合并 不好。特别是,有的高红移超新星测量结果表明,宇宙的膨胀并非一直加速,而是先减速再加速,这用上述假说不容易解释,而却正是暗能量理论的预言。
暗能量的存在也有一些其它方面的证据。例如,早在SCP和High-z 小组公布他们的超新星观测之前,有一些科学家(例如Turner & Krauss, Ostriker & Steinhardt等)根据宇宙年龄、物质密度和功率谱等因素考虑,就认为宇宙可能含有暗能量。此后,宇宙微波背景辐射、重子声波振荡等其它观测也支持 宇宙中存在暗能量的理论。目前,也有少部分观测,例如强引力透镜的数量,与根据暗能量理论做出的预言符合得不好,但这些观测目前其可靠性本身是比较低的,因此暗能量是为大多数人所接收的模型。宇宙的加速膨胀是一个惊人的重大发现,因此其发现者获得诺贝尔奖也是意料之中的。但是,暗能量的本质仍是一个还未解决的问题。对这一问题的研究,也 很可能是未来基础物理学发展的突破口。国外有许多计划中的实验项目,而我国目前除了提出多种暗能量的理论模型外,一些天文学家也结合我国实际,提出了一些 未来的暗能量实验观测计划。例如,在南极冰穹A(那里的观测条件好)建造大型光学望远镜,在我国天宫空间站上装设光学望远镜,在南美建造大型的光谱巡天望 远镜等,以及参与一些国外重大实验项目的合作。笔者本人目前也正在推动开展―天籁计划‖研究,这是一项在国内地面进行的实验,研制专用射电望远镜阵列进行 巡天观测,利用宇宙大尺度结构中的重子声波振荡特征精密研究暗能量的性质。希望未来我国在这一方面的研究中也能做出重大的发现。
从今年获诺贝尔物理奖的研究工作中,我们能受到什么启发呢?我觉得,Schmidt 和 Riess 等人能够凭借自己的研究积累,抓住战机,在激烈的竞争中一举冲入研究的最前沿,其能力和敏锐令人钦佩。但更值得思索和借鉴的是Perlmutter等人的 顽强坚持。作为研究者,要有信心和勇气在困难时坚持下去,正是这种信心和勇气,使Perlmutter等人在人们大多对超新星宇宙学感到悲观时能够坚持下 去。而美国的资助机构能够宽容失败,看出这一项目的科学价值和团队人员的能力,保持对这一项目的资助,也是非常有眼光的。有重大创新的科研常常有很大的风 险,很难保证完全实现计划的成果。这时应该怎么办?我国现在口头上也常常说支持探索、宽容失败,但实际上有风险的研究计划很难得到支持,更不用提对失败的 理解和宽容了。这恐怕是我们所应该深思的。
第二篇 和圆一样的三角形
数学之所以重要,不仅因为它是科学理论的基石,还因为数学在日常生活、工业制造甚至是艺术品审美上都用着非常广泛的应用和体现。如果不知道一些基本的数学道理,就是被科学武装到牙齿的 NASA 工程师也会犯一些低级错误。比如今天的故事主角——勒洛三角形。这个和圆是一家的多边形,不仅性质奇特,还是制造业的宠儿。它是如何渗透到广大劳动人民身边的?死理性派告诉你。
不识勒洛三角形,NASA都要犯错误
历史上,一枚美国火箭的发射流程是这样的:先在工厂完成推进器的组装,然后用驳船运至佛罗里达的肯尼迪航天中心进行整体吊装,最后在发射台上点火发射。然而,一些 NASA 的工程师发现一个问题:在运抵总装车间之前,推进器需要横躺着跋涉数千公里(例如在加利福尼亚组装的土星-5 的第二级推进器甚至需要绕道巴拿马运河),但在这一过程中,由于其本身的巨大重量,推进器有可能会发生变形。对于液体燃料火箭来说,轻微的变形也可能导致燃料泄漏造成发射事故。为了检验火箭截面是否是正圆,NASA 的技术人员们提出了一个标准,每隔 60° 测量一次火箭的直径(该方向上界面内两点距离的最大值),如果 3 次测得的直径都相等,那火箭的截面即使不是标准的圆形也差不多了。
然而这个方案真的靠谱么?很不幸,一种叫做定宽曲线的曲线族粉碎了他们的幻想。定宽曲线是这样的一种几何图形,它们在任何方向上的直径(或称宽度)都是定值。当然,圆也是一种定宽曲线,但是定宽曲线可远远不止这么一种,其中最具有代表性的当属勒洛三角形。
勒洛三角形
像上图这样把 3 个等半径的圆重合起来,两两互相经过圆心,3 个圆相交的部分就是勒洛三角形,或者其发现者所称的―曲边三角形‖。如果不幸碰到这样的一条曲线,NASA 的工作人员无论怎么测直径,得到的结果都会是一样的。
勒洛三角形和它的一干定宽曲线兄弟们都具有许多有趣的特性,其中最重要的当然就是它们的定宽性。使用截面是定宽曲线的滚木来搬运东西,不会发生上下抖动。实际上这样的装置在许多科技馆都能看到,下图就是柏林一家博物馆内的定宽曲线滚木。另外定宽曲线还有一个有趣的性质,就是宽度相等的定宽曲线有相同的周长,所以下图中的圆形滚木转过一周的时候,旁边的勒洛三角形滚木也恰好转过一周。
制造工艺上的广泛应用 应用上面滚木的原理,可以制造出许多有趣的小玩意。例如我国劳动人民就充分发挥聪明才智制造了一辆利用等宽曲线轮的 角轮自行车,据说已经成功申请专利了。
有人会说―角轮自行车‖只是观赏性大于实用性的玩具,确实如此。那不妨让我们再来看看等宽曲线在汽车工业上的应用。当然,汽车制造商们不会用等宽曲线制造轮子,他们把等宽曲线藏在了汽车更核心的部分——发动机里。下图就是马自达公司的转子发动机截面图。其实转子发动机并不是什么新鲜发明,早在 20 世纪 50 年代德国工程师汪克尔就制造出了第一台转子发动机的样机,因此这种发动机又叫做汪克尔发动机。
熟悉汽车的同学可能已经注意到了这种发动机与其他发动机的不同之处,它没有常见的活塞和曲杆。没错,因为对于转子发动机来说,这些麻烦的东西已经完全不需要了,取而代之的是一个转子。转子的截面是面积最小的等宽曲线勒洛三角形,无论转子转到什么角度,都严格将汽缸分成三部分,同时进行进气、压缩、点火与排气的周期,这样当转子转过一周时可以做功三次,效率远高于旋转两周才做工一次的传统四冲程活塞发动机。与传统四冲程发动机相比,转子发动机具有体积更小、振动与噪音更低、结构简单、故障率低等优点。但转子发动机对材料和工艺的要求也更高,同时提升功率较为困难,所以目前市场上,采用转子发动机的汽车公司还并不多。
由于等宽性,等宽曲线还可以在一个正方形内贴着边沿滚动。1914 年,一位注意到这一特性的美国工程师据此发明了方孔钻头。方孔钻头的截面是一个勒洛三角形,为使钻头更锋利,它被削去了一部分的。在工作时钻头的中心随着钻头的转动同时绕轴做圆周运动(事实上并不是严格的圆周运动),就可以钻出四角略圆的正方形。
方孔钻头分解图,中间的齿轮组是使钻头轴转动的机构
在上面的段落里,勒洛三角形大出风头,但是等宽曲线家族可不是只有这么一位成员。在其他地方我们也能看见等宽曲线的身影,许多国家的硬币就喜欢采用等宽曲线作为外形轮廓,例如英国的 20 便士与 50 便士银币采用的就是由 7 条弧组成的定宽曲线。除此之外,在不少艺术品中也常常能看到各种等宽曲线的身影,这主要是为了提高观赏价值了。
物理科普文章
第三篇
神奇的“金属橡胶
你能否想象,有一种材料既可以像橡胶一样弯曲和拉伸,又可 以像金属一样导电?这就是利用纳米技术制造出来的新材料———金属橡胶。―金属橡胶‖的出现是材料学上的一次革命,也是纳米技术在新材料领域的成功应用。有了它,未来的飞机可以拥有像鸟儿一样可扇动的翅膀;有了它,未来的航空座椅将舒适无比;有了它,甚至连电视都可以做得又平又软,还能折叠起来放在口袋 里……
人类一直幻想能够拥有像鸟类一样的翅膀。从人类第一次绑上羽毛模仿鸟类飞行到制造出空中巨无霸波音747,这种追求从来没有停止过。但即使在科技已经高度发达的今天,人类仍然无法完全模仿鸟类的飞行。
科学家对鸟类研究后发现,在飞行中,鸟类能根据飞行的需要,随时改变翅膀的形状,以适应不同的飞行状态,这种飞行不仅更经济,而且更有效、更安全。而制造可以变换形状的翅膀,就需要一种既具备金属的导电特性,又具备橡胶伸缩自如特点的新材料。
如今,金属橡胶的问世,给人类制造出像鸟类翅膀一样的―智能飞行翼‖带来了新的曙光。
柔韧性能超群
制造了金属橡胶的能人,是来自美国弗吉尼亚州的一个科学小组,这个小组的带头人就是材料学和工程学专家理查德•克劳斯教授。该小组用了整整6年的时间,终于使金属橡胶变成了现实。
金属橡胶的颜色呈棕褐色,外表有点像普通的塑料包装壳,但在这种普通外表的背后,则蕴含着一些令人吃惊的物理特性:它可以在外力的作用下拉伸2到3倍,随后恢复原状;被拉伸时,这种材料仍能够保持其金属特征,具有导电性;它可以像金属一样百毒不侵,无论将其放入航空燃料还是丙酮液体里,它都能完好无损地 不被腐蚀,也不会发生结构上或化学上的降解;它可以在华氏700度的高温下不燃烧,也可以在华氏-167度的低温下不变性,其结构十分稳定。
制造工艺复杂
制造这种金属橡胶可不是一件容易的事情。科学家们采用了一种全新的纳米技术工艺流程,他们称之为―静电分子自我组装‖工艺。科学家形容,这种生产工艺就像人类骨骼的形成一样,通过单个分子在物质表面层叠而成。
为了制造金属橡胶,科学家们首先要找到一种可以使分子凝聚的基质,一般使用塑料或玻璃。这些基质被带上正电荷或负电荷后,轮流放入两种不同电荷的溶剂 中,一种溶剂为带正电的塑料分子,另一种溶剂为带负电的塑料分子。如果基质带正电,则先同带负电的塑料分子溶剂接触,反之则与带正电的塑料分子产生反应。塑料分子与基质接触后,就在基质表面形成一个分子厚度的分子层。经过在两种溶液中反复反应,分子层不断重叠,最终形成的这种新型材料就是金属橡胶。
科学家将这种制造过程形象地比喻成做蛋糕,一层一层地重叠,最终形成了一个漂亮的生日礼物。
未来应用广泛
按照目前的工艺水平,科学家每天可以制造出两英尺见方、7毫米厚的金属橡胶。科学家相信,随着工艺水平的不断进步,将来,金属橡胶的生产会像印刷报纸那样简单容易,适合各种用途的金属橡胶产品也将会被迅速生产出来。
金属橡胶最令人激动的应用前景,莫过于在未来航空领域的广泛使用。有了这种新型材料,人类制造出像鸟类那样―智能飞行翼‖的梦想就将得以实现。目前,这种材料已经引起洛克希德-马丁公司的关注,该公司的科学家正在努力开发这种材料用于航空领域的可能性。
此外,这种材料还可以在生物医学产品如人造肌肉等方面得到迅速应用。利用这种新材料的特性,也可以设计出新型航空座椅、新型汽车,甚至连电视都可以设计成可以折叠的、放在口袋携带的超便携款式。
物理科普文章 第四篇 最冷的,最凝聚
这话说起来有点酷:距离我办公桌数百米,在Eric Cornell教授的实验室里,存在着可能是这个星球上甚至这个宇宙中最寒冷的地方。那里面的物质拥有一种神奇的状态:玻色-爱因斯坦凝聚。
这一切要从费米子和玻色子说起——
大家知道,物质是由原子构成的,原子是由质子、中子、电子构成的,而质子、中子等又是由夸克构成的,另外还有传递相互作用的光子、胶子等等。从原 子、质子、中子到夸克、光子、胶子,这些都是微观粒子。根据它们的物理性质不同,可以将这些微观粒子分成不同的类别,比如:是否为目前认为不能再向下分的 基本粒子、是否带有电荷、是否带有静止质量,等等。
中子和质子组成的原子核,再加上核外的电子云就构成了原子的结构
依据微观粒子统计性质的不同,物理学家们把微观粒子划分为两类:费米子和玻色子。费米子服从费米-狄拉克统计,玻色子则服从玻色-爱因斯坦统计 [1],简单一点说,这两种统计的不同意味着在不同微观状态之间分布的时候,占据状态方法的不同。打个比方,如果同一种微观粒子聚众看电影,对于费米子来 说,两个人不能同时坐在同一位置上,这就是有名的―泡利不相容‖原理,而对于玻色子来说,则可以允许两个甚至更多个人同时坐于同一个位置——虽然位子足够 多时,这种情况也很少发生。
不可分辨的同一种粒子
抱歉,说起来,前边这个―电影院比喻‖其实还是有失准确—— 因为,当我们面对电影院里的人,还是可以清晰分辨张三和李四的不同。但当我们面对微观的粒子,同一种微观粒子之间却是不能够分辨的,一个粒子与另外 一个粒子并无任何不同,所有人都失去了个性。我们可以说―两个费米子不能坐在同一个位置上,两个玻色子可以坐在同一个位置上‖,但是并不能分清楚到底是哪 个微观粒子坐在这个位置上。这个就是一般统计物理里面说的―全同的量子粒子不可分辨‖的概念。
1925年的玻色(来自维基百科相关页面)。萨特延德拉·纳特·玻色(Satyendra Nath Bose,1894年1月1日-1974年2月4日)是印度的一位物理学家,他最先提出了微观全同粒子不可分辨的概念。
这个概念的历史并不长。直到100年前,大家还认为微观粒子可以分辨的,在不同状态上的分布满足―麦克斯韦-玻尔兹曼分布‖。这是一种经典统计学的 分布规律,如果说不同状态对应的能量是相当于不同档次的电影票价的话,那么最后每种座位上微观粒子的数量只和微观粒子所拥有的平均财富(对应系统的温度)和每种座位的票价(每个状态的能量)有关系。但是对于费米子和玻色子来说,分布规律还要和粒子的总数有关系。仔细来说,和每个粒子进入系统都有的一个跟现 有的粒子数目相关的额外入场费用或者是最低消费额度有关系(统计物理里面是体系的化学能)。在使用光子的概念来解释黑体辐射等实验的时候,人们逐渐发现经 典的麦克斯韦-玻尔兹曼统计在研究微观粒子的时候并不准确。
玻色-爱因斯坦凝聚的提出
最先提出―微观全同粒子不可分辨‖概念的人是印度物理学家萨特延德拉·纳特·玻色。1924年,年轻帅气的玻色写了一篇题为《普朗克定律和光量子假说(Planck's Law and the Hypothesis of Light Quanta)》 的论文,提出可以通过这一概念来完美解释普朗克总结的黑体辐射的实验发现。但是,他这篇文章并没有得到欧洲一些学术期刊的重视。遭到挫折的玻色将他的论文 寄给身在德国的爱因斯坦,爱因斯坦意识到了玻色这篇论文的重要性,亲自将它翻译成德语,然后以玻色的名义发表在德国著名的《德国物理学刊》上。通过爱因斯 坦的帮助,玻色的研究成果得以发表并获得了人们的关注。
1923年的爱因斯坦,摄于巴塞罗那
1925年,爱因斯坦将玻色关于―没有静止质量的光子‖的统计方法推广到有质量的原子体系中,预言了一种新的物质状态的存在。根据爱因斯坦的预言,在极低的温度下,由服从玻色-爱因斯坦统计的原子构成的气体可能会发生神奇的转变,处于最低的能量状态上的原子数目会随着温度的降低逐渐增大,直到几乎所 有的原子都处于这一个能量状态上,而整体呈现出一个量子状态。这种状态后来被称为―玻色-爱因斯坦凝聚(Bose-Einstein Condensation,BEC)‖,是很多实验物理学家致力实现的预言。
空间中粒子的分布:左图,可分辨粒子可以看成一个个单独的波包;右图,不可分辨的同一种粒子互相叠加起来,我们不能区分单个的粒子,它们形成一个整体的分布。
根据量子力学的知识,微观粒子具有波粒二象性,原子是粒子也是波。一个原子在空间中的存在可以用波函数来表示,如上面左图显示的那样,每一个粒子的 准确位置都难以判定,只是在某一个位置附近有一定的分布,分布的大小对应于原子的德布罗意波长。原子的温度越低,德布罗意波长越大。如果原子之间的距离远 大于于德布罗意波长,那么就可以把原子看成是一个个的点;如果距离小于德布罗意波长,那么原子的分布就会互相重叠(左图)。对于不可分辨的同一种粒子来 说,互相重叠的分布使得他们表现出一个整体的量子态,如果粒子是玻色子,它们之间倾向于处于同一个状态,整个系统就会形成―玻色-爱因斯坦凝聚‖。
因此,对于给定的玻色原子体系,要形成这种凝聚需要一定体积里面含有的原子数比较大(这样原子间的距离比较小),以及,温度足够低(这样德布罗意波长比较大)。
低温和超流
20世纪30年代,前苏联物理学家彼得·卡皮查(Пётр Леонидович Капица,1894年7月9日-1984年4月8日)开始低温物理学的研究。1934年他开发了能制造大量液氦的装置。1937年的时候,他发现在将 液氦的温度降低到2.17K(-270.98摄氏度)之下的时候,液氦会变成一种没有摩擦的神奇液体,称做超流体。1978年,由于他―在低温物理学领域 基本的发明和发现‖[3],这位低温物理学的先驱和发现宇宙背景辐射的彭齐亚斯和威尔逊分享了诺贝尔物理奖。
超流体有着非常有趣的性质。超流动性使得悬挂容器内的超流体在重力作用下沿着容器的壁到容器外来
卡皮查实现的是氦4的超流(氦4即一个氦原子核里含有两个质子和两个中子),里面的氦原子是一种玻色子,因此,超流体的发现可以说在一定程度上验证 了玻色-爱因斯坦凝聚的正确性。然而,因为氦本来就处于液体的状态,原子和原子之间有着比较大的相互作用力,超流并不单纯是由于玻色统计导致的。如果想要 严格验证爱因斯坦的预测,我们需要在气体体系里面实现玻色-爱因斯坦凝聚才行。前面说过,这需要将系统的温度将到非常低,因此需要更先进的制冷技术;同时 还需要有大量的有一定密度并处于气体状态的原子,原子数太少则很难形成凝聚,原子密度太大则有可能形成液体或者固体。
这一切,直到20世纪90年代才得以实现。
激光冷却-低于千分之一度的低温
1997年,美国斯坦福大学的朱棣文教授(现任美国能源部部长)、法国巴黎高等师范学院的Claude Cohen-Tannoudji教授和美国国家标准局的William D.Phillips教授因为他们利用激光冷却并束缚原子的工作分享了诺贝尔物理学奖。激光冷却使得我们能够获得更低温度的原子气体,从而制造更精确的冷原子 钟。1985年的时候,朱棣文等人首先利用这个技术将钠的原子气体冷却到了240微开尔文的温度(仅比绝对零度高出一百万分之二百四十度)[4]。
我们一般用的温度标准是摄氏度,一个大气压下,水结冰的温度是0摄氏度,水沸腾的温度是100摄氏度。很多情况下,物理学里面用的是绝对温度,单位 为开尔文(K),一个开尔文和一摄氏度的单位是一样的。绝对零度(0开尔文)是-273.15摄氏度,室温相当于大约300开尔文。对于空气里面的绝大多 数成分来说(氧气、氮气、二氧化碳等等),温度的降低会使得它们变成液体,然后有的还会随着温度的继续降低变成固体,比如说,氧气在90.20开尔文(零 下182.95摄氏度)的时候变成液体,在54.36开尔文(零下218.79摄氏度)的时候变成固体。空气里的气体分子是在不断地到处运动并且互相碰撞 的,空气的温度和运动速度是联系起来的。我们周围的空气分子运动速度在数百米每秒的样子,如果降低空气的温度,分子的运动速度也会降低,而如果能够将一个 个的空气分子速度减下来,空气的温度也就降低了。而激光冷却就是通过激光来减慢原子的运动速度,从而使得原子气体的温度变小。
激光器发出的光子在钠原子上―散射‖,同时给钠原子一个反冲的作用。在这个作用下,原来向右运动的钠
原子速度会变慢。
大家可以想象一个战争的场面。失控的战车冲向战壕,战壕里的战士向战车不断开枪,子弹打由战车弹向四面八方。如果仔细看战车的速度,我们会发现由于 子弹的撞击,战车的速度会越来越小,利用激光冷却原子和这个过程相似。如上图显示的,激光器发出的光子就像子弹一样,如果光子在钠原子上发生―散射‖,那 么向右运动的钠原子在激光的作用下速度会越来越慢。仔细说来,光子在钠原子上发生的并不是散射,而是光子将钠原子的电子激发到激发态,然后电子跃迁回来的 时候会放出一个方向不确定的光子。在一段时间内,钠原子吸收的光子有特定方向,而放出的却没有,所以原子会被光束减速。这样,原子的动能有个和光子的能量 相关的不确定性,这也给出了激光冷却能够得到的最低温度。
高压钠灯的发射谱线
为了利用这一点来冷却气体,我们它对不同的原子能有不同的效果。对于向着激光运动的原子来说,我们希望能减慢他们的速度,对于远离激光运动的原子来 说,我们不希望把它们推的越来越快。并不是所有波长的激光都能够和原子相互作用,原子在内部的电子能级发生变化的时候,会放出或者吸收特定波长的光,这构 成了原子的发射光谱或者吸收光谱。每一条谱线都是有一定的宽度,激光的波长越接近吸收谱线的中心位置,激光就越容易影响原子。
激光冷却原子的示意图,选择激光的波长在原子谱线偏红(波长偏长)的一侧,这样可以实现原子的减速。来自[5]里的动画截屏(强烈推荐大家去玩一玩这里面的一系列关于BEC的动画游戏)。
如果像上图右下角显示的那样,我们将激光的波长选择在原子谱线波长略微比中心位置长一些的一侧,那么由于多普勒效应,向着激光运动的原子感受到的波 长会显得短一些(蓝移),因此作用强烈;而背离激光运动的原子感受到的波长会更长一些,因此作用很弱。这样,如果在前后左右上下六个方向都有一束激光的 话,就可以保证把原子的速度降低下来。通过这种方法,可以将原子气体的温度降低到绝对零度之上大约千分之一摄氏度,这一温度要比自然条件下存在的最冷温度 低成千上万倍。(在自然条件下,最冷温度是太空的温度,也就是宇宙背景辐射的温度,大约为3K)。
然而,这还不够……要产生产生玻色-爱因斯坦凝聚,我们还需要更低的温度。
20世纪90年代的Carl Wieman教授(左)和Eric Cornell教授(右)。Eric Cornell教授现在是JILA的主任(JILA是科罗拉多大学和美国国家标准局的一个合作研究单位)。
玻色-爱因斯坦凝聚的最终实现
1990年,从麻省理工学院(MIT)获得博士学位的Eric Cornell来到科罗拉多州位于洛基山脉山脚下的小镇博尔德(Boulder)做博士后,随Carl Wieman教授一起致力于研究如何实现玻色-爱因斯坦凝聚,两年后他成为助理教授。他们采用了激光冷却的方法将铷原子气体冷却到很低的温度,然后利用磁 势阱蒸发冷却的方法得到了更低的温度。
磁势阱蒸发冷却示意图:磁势阱里面束缚的原子气体在势阱降低的时候,带有较高能量的原子会跑掉,留
下温度较低的那些原子。
本身带有磁性的原子,这使得可以用磁场来束缚住原子,称为一个磁场的势阱。大家对蒸发冷却的原理都很熟悉:一杯开水放在桌子上,水里面速度较快的水 分子会冲出水面,散发到空气中去,从而带走了较多的能量,剩下的水分子平均能量因此降低。同样,通过降低磁势阱的高度,我们可以让束缚在势阱里面的带有较 高能量的原子跑掉,从而留下温度较低的原子,得到非常冷的原子气体。
利用这两种制冷方法,Cornell和Wieman在1995年6月成功地将含有大约2000个铷87原子(铷的一种同位素)的气体冷却到低于 170nK的温度(仅比绝对零度高了百万分之零点一七度),这时,大量的原子聚集到了最低的能量状态,形成了玻色-爱因斯坦凝聚[6,7]。此时,距离玻 色和爱因斯坦提出玻色-爱因斯坦凝聚的构想已过去70年。四个月之后,MIT的Wolfgang Ketterle教授等人成功地用钠23原子实现了玻色-爱因斯坦凝聚,他们实现的凝聚含有超过一百倍数量的原子,这使得他们可以观测一些重要的性质,比 如观察两个凝聚之间的量子干涉现象[2,8]。这三位科学家分享了2001年的诺贝尔物理学奖。
Eric Cornell和Carl Wieman得到的玻色-爱因斯坦凝聚结果图。从左到右依次为400nK,200nK和
50nK。
束缚在势阱里面的冷原子气体在关掉磁势阱之后,会向着周围的空间运动。如果没有实现凝聚,那么原子就有不同的向四面八方的速度,一段时间之后的原子 在空间里分布就会很广;而凝聚的原子称为一个整体,基本没有向外扩散的速度,在一段时间之后仍然表现为一个很集中的分布。利用光学成像的方 法,Cornell和Wieman得到了不同温度下关掉磁势阱之后得到的分布图像(如上图),200nK和50nK的结果里清晰地显示了玻色-爱因斯坦凝 聚的存在。
Ketterle教授等人观测到的两个玻色-爱因斯坦凝聚之间的干涉现象[9]。
玻色-爱因斯坦凝聚是一个宏观的量子现象,实现的凝聚里面所有的原子可以用一个整体的波函数来描诉。因此,像两束激光一样,两个凝聚之间也可以发生 干涉的现象。Ketterle教授等人利用两个玻色-爱因斯坦凝聚实现了这个干涉的现象。上图显示了两个凝聚之间的干涉现象,仔细看的话,水平方向有一系 列的干涉细线。原子构成的凝聚清晰地体现了波的性质。
关于玻色-爱因斯坦凝聚有着非常多的有趣的实验可以介绍,而在某些条件下,费米子也可以像玻色子那样凝聚起来。(由于篇幅的问题,在这里就不再介绍,期待以后有机会再一一展开去讲。)
凝聚有什么用?
近百年前的理论预测,经过许多物理学家孜孜不倦的努力才得以实现,这个领域是现代物理里面光学、凝聚态等方向的尖端前沿,里面诞生了许许多多的激动人心的研究成果。然而对于实际应用来说,玻色-爱因斯坦凝聚还只是一个刚刚开始的方向,也许要等待数年才能有实际的应用出现。
对于物理学来说,玻色-爱因斯坦凝聚的实现提供了一个研究量子现象的工具。很多的量子现象都只能在原子的大小上实现,而我们缺乏合适的观测方法。利 用玻色-爱因斯坦凝聚,我们可以把微小尺度上的量子现象放大到宏观的尺度,进而利用更方便的探测方式去研究其中的规律,去和物理的理论对比,从而可以得到 更多的进展。举个例子来,固体物理学的研究对象是不同的固体系统,比如说半导体或者超导体,这些系统的性质是由原子不同的排布方式和电子在原子排布的格点 里面运动的方式决定的。利用冷原子凝聚和激光构成的系统,我们可以模拟这些固体系统并且通过实验的手段去调节系统里面不同的参数,这样,我们可以获得更多 的理解。玻色-爱因斯坦凝聚之间的干涉现象可以提供给我们提供一个更精确测量速度和位置的工具,因此将来有可能实现玻色-爱因斯坦凝聚为基础的导航设备。此外,为了实现玻色-爱因斯坦凝聚而使用的冷却方式也是用处多多,比如提供更好地制造原子钟的技术,此处不再赘述。
参考阅读:
1.更多细节可以参阅统计物理学教材,例如:高等教育出版社,汪志诚,《热力学·统计物理》。2.维基百科,Maxwell–Boltzmann distribution,Fermi–Dirac statistics,Bose–Einstein statistics,Satyendra Nath Bose,Superfluid,laser cooling,Bose-Einstein condensate等相关内容。3.诺贝尔奖网站,1978年物理奖获奖者 4.Steven Chu et.al.,Physical
Review
Letters
55,48
(1985).链接
http://prl.aps.org/abstract/PRL/v55/i1/p48_1 5.美国科罗拉
多大学
―Physics-2000‖项
目
关
于
BEC的内
容
。http://www.xiexiebang.com/abstract/PRL/v75/i22/p3969_1 9.D.S.Durfee and W.Ketterle, Optics Express 2, No.8, 299(1998).链接 http://www.xiexiebang.com/oe/abstract.cfm?uri=oe-2-8-299
【返场注释】
(文/沐右)
超流体有着非常奇特的性质,它的粘滞系数为零,它的表面张力也为零。由于表面张力为零,超流 体会倾向于于覆盖整个表面的状态。这样,如下图所示,一个容器里面如果有超流体的话,那么整个表面都会有一层超流体,放在容器内超流体表面的碗内外也都会 有一层超流体薄膜,在重力的作用下,超流体会向碗内运动。而前面提到的悬挂起来装有超流体的容器,其内部的超流体就会通过这一层薄膜在重力的作用下运动到 外面来。
图片来自维基百科―Superfluid‖页面[2]。
物理科普文章 第五篇 动物为什么不会迷失方向? 两项新的研究揭示了动物是如何利用自身固有的―指南针‖来识别方向的。研究人员发现迁徙的海龟是依靠地域性磁场引导它们在北大西洋中游动的。海龟通过沿着一个被称为北大西洋环流的循环流动系统确定自身的方位,避免了进入危险的寒冷水域中。来自美国佛罗里达州东部的海龟幼仔在一进入大海后,就开始漫长的迁徙。它们游向环绕着马尾藻海域的北大西洋环流,并用几年的时间沿着该环流游动。
科学家把海龟放置在一个大水缸中,水缸由计算机控制的线圈环绕着,以此来研究海龟幼仔对不同磁场的反应。每个海龟身上装有一个电子跟踪仪,可以记录下海龟的位置。海龟可以通过改变它们游动的方向,对磁场中的某些变化做出反应。
在另一项对赞比亚地下鼹鼠的研究中,捷克和德国的研究人员发现在名为上丘脑的大脑结构中有些神经细胞是这种动物生物―指南针‖的一部分。这些细胞组对不同磁场方向会做出有选择性的反应。鼹鼠利用这些磁感觉信息合成了一幅它们周围环境的心理地形图,而其它的动物用不同感官信息来达到同样的地形图。
物理科普文章
第六篇
【科普】核辐射及预防
什么是核辐射
简单来说,放射性物质以波或微粒形式发射出的一种能量就叫核辐射。
核爆炸和核事故都有核辐射。它有a,b和y三种辐射形式。a辐射只要用一张纸就能挡住,但吸入体内危害大;b辐射是高速电子,皮肤沾上后烧伤明显;y辐射和X射线相似,能穿透人体和建筑物,危害距离远。宇宙、自然界能产生放射性的物质不少,但危害都不太大,只有核爆炸或核电站事故泄漏的放射性物质才能大范围地对人员造成伤亡。
放射性物质可通过呼吸吸入,皮肤伤口及消化道吸收进入体内,引起内辐射。y辐射可穿透一定距离被机体吸收,使人员受到外照射伤害。
核辐射有什么危害
核泄漏一般的情况对人员的影响表现在核辐射,也叫做放射性物质,放射性物质可通过呼吸吸入,皮肤伤口及消化道吸收进入体内,引起内辐射,y辐射可穿透一定距离被机体吸收,使人员受到外照射伤害。
内外照射形成放射病的症状有:疲劳、头昏、失眠、皮肤发红、溃疡、出血、脱发、白血病、呕吐、腹泻等。有时还会增加癌症、畸变、遗传性病变发生率,影响几代人的健康。一般讲,身体接受的辐射能量越多,其放射病症状越严重,致癌、致畸风险越大。
核辐射分级
核辐射对人体的危害取决于受不同辐射的时间以及辐射量。以下是遭受的辐射量(单位:毫雷姆)的后果:
1:腿部或者手臂进行 X 光检查时的辐射量;
8:建筑材料每年所产生的辐射量;
10:乘飞机时遭受的辐射量;
60:人体内的辐射量;
700:大脑扫描的核辐射量;
5000:每年的工作所遭受的核辐射量;
10000:患癌症的可能性为 1/130;
60000~100000:出现各种辐射疾病;
200000~450000:掉头发,血液发生严重病变,一些人在 2 至 6 周内死亡;
450000~800000:30 天内将进入垂死状态
民众如何预防核辐射
1.隐蔽
早期停留于室内是一种简单、有效的措施,可明显降低全身及皮肤外照射剂量。当人们受放射性烟云照射时,隐蔽在室内可将外照射剂量减少50-90%,这要视建筑物的类型和结构而定。
2.服用稳定性碘
用稳定性化合物可以阻止或减少特定器官对相应的放射性核素的吸收,从而减少该器官的受照剂量,稳定性碘就是一个例子。碘化钾或碘酸钾都能有效地减少甲状腺对放射性碘同位素的吸收,但他们不能降低已摄入的其它放射性核素的剂量,更不能代替其它防护措施。
3.撤离
撤离是最有效的防护措施,可避免或减少来自各种途径的照射,但也是各种措施中最困难、最易造成混乱的一种。
4.个人防护方法
主要指对人员呼吸道和体表的防护。当空气被放射性物质污染时,用简易方法(如用手帕、毛巾、布料等捂住口鼻)可使吸入放射性物质所致的剂量减少约90%。但防护效果与放射性物质的理化状态、粒子分散度、防护材料特点及防护物(如口罩)周围的泄漏情况等有关。对人员体表的防护可用各种日常服装,包括帽子、头巾、雨衣、手套和靴子等。当人们开始隐蔽及由污染区撤离时,可使用这些简易的防护用品。
物理科普文章
第七篇 简单科普:核辐射
核辐射,或通常称之为放射性,存在于所有的物质之中,即包括你喝的水和我呼吸的空气,这是亿万年来存在的客观事实,是正常现象。所以我们不是讨论有没有放射性,而是讨论在日常生活中有哪些物质,在一定条件下,有偏高或高的放射性,并足以对人造成伤害。
详细介绍
核辐射主要是α、β、γ三种射线:
α射线是氦核,β射线是电子,这两种射线由于穿透力小,影响距离比较近,只要辐射源不进入体内,影响不会太大。
γ射线的穿透力很强,是一种波长很短的电磁波。电磁波是很常见的辐射,对人体的影响主要由功率(与场强有关)和频率决定。通讯用的无线电波是频率较低的电磁波,如果按照频率从低到高(波长从长到短)按次序排列,电磁波可以分为:长波、中波、短波、超短波、微波、远红外线、红外线、可见光、紫外线、X射线、γ射线。以可见光为界,频率低于(波长长于)可见光的电磁波对人体产生的主要是热效应,频率高于可见光的射线对人体主要产生化学效应。
核辐射定义
核辐射是原子核从一种结构或一种能量状态转变为另一种结构或另一种能量状态过程中所释放出来的微观粒子流。核辐射可以使物质引起电离或激发,故称为电离辐射。电离辐射又分直接致电离辐射和间接致电离辐射。直接致电离辐射包括质子等带电粒子。间接致电离辐射包括光子、中子等不带电粒子。
辐射有什么危害?
答:人们在长期的实践和应用中发现,少量的辐射照射不会危及人类的健康,过量的放射性射线照射对人体会产生伤害,使人致病、致死。剂量越大,危害越大。
为什么说人类生活在放射环境中?
答:实际上,人类的生活没有一刻离开过放射性,这些放射性是天然放射性,主要来自三个方面:
1.宇宙射线;
2.地面和建筑物中的放射性;
3.人体内部的放射性。
微量的放射性不会危及健康。
人们的哪些活动也有放射性?
答:人类的很多活动都离不开放射性。例如,人们摄入的空气、食物、水中的辐射照射剂量约为0.25毫希/年。带夜光表每年有0.02毫希;乘飞机旅行2000公里约0.01毫希;每 天抽20支烟,每年有0.5-1毫希;一次X光检查0.1毫希等等。
生活中的核辐射污染
对于核辐射污染,即放射性污染,常人往往只注意到现代科学研究中的核辐射核工厂里某些特殊车间产生的放射性物质造成的危害,或者医院的X射线治疗所产生的放射性造成的影响及损害,而未考虑生活中还会有放射性污染源。实际上,生活中的放射性物质能通过多种途径进入人体,造成对机体的慢性损害。要防止生活中的放射性污染源对人体健康的危害,有关执法部门要增强环境保护意识的宣传。另一方面,政府及执法部门要加强对放射性物质的管理,对容易受放射性物质污染的商品要进行定期监测。
一、注意居室中的放射性污染
随着工业的发展,经常利用工业废渣做建筑材料,可能造成建材中含有一些放射性物质,经放射性衰变产生了放射性气体及其子体产物,悬浮于室内空气中,氛及其于体产物放射出能量较高的a射线(粒子),人若吸进这样的气体,即会照射人体肺组织。如果长期受到照射,便容易产生支气管炎和肺癌等疾病。另据国外报道,大多数家庭居室中自然出现的放射性气体氛,如果与烟气混合,将会有致命的影响。氛是肺癌的一个致病因素。另外,装修居室用的花岗岩及其它板石材料也含有一定量的氛,特别是通风不良时,可造成居室内放射性污染加重。经监测表明,室内氧气多在通风不良的地方积累,所以经常打开居室的窗户,促进空气流通,使氧稀释,这是减少室内氛浓度的良好措施。装修房屋用的石(板)材要有选择地使用。石材的放射性核素含量随矿床,所在地等天然条件的不同而有所增减,必须对其进行监测,才能知道是否适合居室装修。要规范装修材料的市场。
二、谨防饮用水的核污染
加强对饮用水源地的环境保护,谨防饮用水受到核污染。受放射性物质污染的水不能直接饮用。
如果用受放射性物质污染的水浇灌农作物、蔬菜。其放射性物质的含量普遍增高,食用有害人体健康。
中国矿泉水水源丰富,其中也有不少水源在流经途中受到人工或天然的放射性污染。据报道,通过有关部门监测,某些盲目开发的矿泉水水源中含氧的浓度过高,若长期饮用这种矿泉水就会危害身体。因此,各地有关执法和监督部门,要对矿泉水的开发项目要严加管理,不仅要严格控制商品矿泉水的卫生指标,还要重视它是否受到放射性物质的污染。
三、要防燃煤的放射性污染
燃煤中常含有少量的放射性物质。研究分析表明,许多煤炭烟气中含有U、Th、Ra、210Po和210Pb。大多数情况下,尽管这些物质含量稀少,但如长期聚集,其放射性物质亦会随空气及烘烤的食物进入人体,造成机体的慢性损害。
平时生活使用燃煤,要注意通风排气,警惕煤烟通过呼吸进入人体内。禁止食用煤碳直接烘烤食物,尤其是茶叶、烟叶、肉类和饼干等。如果必须使用燃煤(碳)烘烤食物时也要注意屏蔽,不要让食物与煤烟直接接触。
四、莫要长期佩戴金银首饰
佩戴金银首饰是人们,尤其是女士们美容化妆的重要生活内容。殊不知经常佩戴首饰也会给人们带来烦恼,那就是容易患“首饰病”,即皮肤病。
一般来讲,除纯金(24K)首饰以外,其他的首饰在制作过程中都要掺入少量钢、铬、镍等材质,特别是那些异常光彩夺目的或廉价合成首饰制品,这些首饰制品的材质成分更加复杂,对人的皮肤造成伤害的可能性更大。据报道,美国专家在检验了几千件首饰后发现,其中有近百件含有放射性物质,这些放射性元素对人体有严重地损害,如果长期佩戴,有可能诱发皮肤病或皮癌。金银首饰,不宜常戴。常戴的首饰制品,最好进行含放射性物质测定。
迄今最严重核事故一览
1957 年9 月29 日:前苏联乌拉尔山中的秘密核工厂―车里雅宾斯克65 号‖一个装有核废料的仓库发生大爆炸,迫使苏联当局紧急撤走当地11000 名居民。
1957 年10月7日:英国东北岸的温德斯凯尔一个核反应堆发生火灾,这次事故产生的放射性物质污染了英国全境,至少有 39 人患癌症死亡。
1961年1月3日:美国爱荷华州一座实验室里的核反应堆发生爆炸,当场炸死3名工人。
1967年夏天:前苏联―车里雅宾斯克 65 号‖用于储存核废料的―卡拉察湖‖干枯,结果风将许多放射性微粒子吹往各地,当局不得不撤走了9000 名居民。
1971年11月9日:美国明尼苏达州―北方州电力公司‖的一座核反应堆的废水储存设施发生超库存事件,结果导致5000 加仑放射性废水流入密西西比河,其中一些水甚至流入圣保罗的城市饮水系统。
1979 年3月28日:美国三里岛核反应堆因为机械故障和人为的失误而使冷却水和放射性颗粒外逸,但没有人员伤亡报告。
1979 年8月7日:美国田纳西州浓缩铀外泄,结果导致1000 人受伤。
1986 年1月6 日:美国俄克拉荷马一座核电站因错误加热发生爆炸,结果造成一名工人死亡,100 人住院。
1986 年4月26 日:前苏联切尔诺贝利核电站发生大爆炸,其放射性云团直抵西欧,造成约八千人死于辐射导致的各种疾病。
2011年3月12日:日本福岛核电站第一机组因9.0级大地震导致泄漏爆炸,周围8万居民紧急撤离。日本福岛第一核电站1号机组厂房的外墙和屋顶在爆炸中受损,截止到3月13日,2号、3号机组也已开始发生泄漏,已有190名人员被确认受到核辐射。
物理科普文章
第八篇 彩虹为什么是弯的?
想必很多人都见过彩虹(至少彩虹的照片你见过吧)。一说到它,你脑海里总能浮现出一道七色圆弧。但你知道彩虹为什么是弯的吗?彩虹真的是恰好七种颜色吗?彩虹的秘密,死理性派告诉你。
古代人对彩虹的观察和研究
对彩虹的研究最早可以追溯至公元前 4 世纪。亚里士多德是第一个认真研究彩虹的人,他曾指出彩虹最为重 要的几个特征,比如:
如果太阳在地平线上升起得不太高,彩虹就会出现。彩虹不会出现在夏日的中午我们可以同时看到两条形状相同但颜色顺序排列相反的彩虹,其中外侧那条显得略为松散,彩虹主要由三种(或四种)颜色组成(现代的RGB三原色理论亦基于此)。
但是有一个很重要的现象亚里士多德并没有注意到,那就是两条虹中间的区域亮度较暗,直到公元约 200 年雅典哲学家亚历山大(Alexander of Aphrodisia)才观察到这个现象,所以后人就将这条暗带命名为―亚历山大暗带‖(dark band of Alexander)。另外,亚里士多德对彩虹的解释并不正确,他认为只有大的镜子可以反射出物体的全部外形,他把天空中的水滴比做小镜子,认为这个镜子太小了,不可能反射出整个太阳,但是又必须得有什么东西反射出来,所以会有颜色呈现出来。而且,亚里士多德也没有注意到光的折射作用。
在此之后,古罗马哲学家 塞内卡、波斯物理学家 海什木 等人也都曾发表过自己的看法。中国北宋时期一位叫 孙思恭 的精通天文历算的进士也曾说过―虹乃雨中日影也,日照雨则有之‖(沈括《梦溪笔谈》),这些均只停留在对现象的思考上,没有更多深入和本质性的研究。
彩虹是怎么形成的
我们现在知道,彩虹的形成和光的折射有关。所以直到人们发现折射定律,彩虹问题才有条件被解决。光入射到不同介质的界面上会发生反射和折射,入射光和折射光位于同一个平面上,且与法线的夹角满足如下关系:
其中,n 1 和 n 2 分别是两个介质的折射率,θ 1 和 θ 2 分别是入射光(或折射光)与法线的夹角,叫做入射角和折射角。这个定律最早在公元 984 年被波斯科学家 IbnSahl 精确描述。随后又被英国科学家 托马斯·哈利奥特(1602 年)、荷兰物理学家 威理博•斯涅尔(1621 年)、法国数学家笛卡尔(1637 年)等人先后独立发现这个定律。其中,笛卡尔利用折射定律,成功解释了彩虹是如何形成的。笛卡尔假想在一个 AFZ平面内,光线从 AF 处射出,人眼位于 E 处。如果这时把一个代表水滴的圆球放在 BCD 处,那么 D 部分将呈现全红色且比其它部分都更明亮。而无论是把球向前向后还是向左向右移动,这个现象均不会改变。笛卡尔测出此时的 ∠DEM 约为 42°(M 为彩虹的圆心)。之后他将 ∠DEM 调得稍大一些,观察到红光立刻就消失了,稍小一些,则能看到黄色、蓝色等其它颜色。在仔细检查 BCD 处的球后,笛卡尔得出结论:光线 AB 在 B 点处射入球体发生折射打到 C 点,随后在 C 点处发生反射传递到 D 点,并在 D 点再次发生折射而出。
【笛卡尔描绘彩虹是如何形成的。图片来源:wikipedia.com】
上面这段话并不太好理解,转化成现代语言就是:以空中的一个水珠为例,如下图所示,光线在水滴内发生两次折射和一次反射。其中α为入射角,β为折射角。容易看到,角 D(α)就是最后的光线偏离原始方向的角度。
【图像来源:plus.maths.org】
那如果一簇平行光线射入水珠又是什么情况呢?如下图所示,可以发现经水珠两次折射后,一部分光线散射出去,还有一部分光线则非常密集地射向(大致的)同一方向。实际上 可以证明,下图中越靠近红线处的光线越密集,光强越大。这条红线就被称作为彩虹线。
【图像来源:plus.maths.org】
要确定这条彩虹线的位置也并不困难。仍然以红光为例,前面已经说过,角 D(α)是最后的光线偏离原始方向的角度。通过简单的几何知识我们容易得到:
而根据折射定律,有
其中,是红光在水中的折射率(1.33),将上式代入到 的表达式中,绘制 的函数图象如下图蓝线所示。从函数图中我们可以看到,当入射角 α 范围相等时(I 1 = I 2),最后的光线偏移量范围 J 1 比 J 2 间隔更小,也就是说入射角在 I 1 范围内的入射光线(入射光线是平行的,但由于水珠是球形,所以几乎每条光线的入射角都不相等,而是在一个范围内),光线偏移量的范围更小。即两次折射后的光线更加密集,光强更大。
因此,D f(α)的最小值就对应着彩虹线的位置。通过求导计算,当 α = 59.58° 时有最小值 D f(α)= 137.48°。因此,最终的折射光线和入射光线的夹角是 180°-137.48°= 42.52°。这正是笛卡尔寻找的 ∠DEM,也就是人眼对于彩虹的仰角,称为红光的―彩虹角‖(Rainbow angle)。我们所看到的彩虹中红色部分均来在这一角度附近。
【图像来源:plus.maths.org】
当以人的眼睛为顶点,把所有与平行入射光线成 42.52° 彩虹角的光束连接起来,就形成一个红色的圆锥体。圆锥底面的圆弧就是彩虹。到这里,我们就成功解决了彩虹为什么是弯的这个让无数人困惑的难题。
【所有满足红光彩虹角形成的红色圆锥体.图像来源:plus.maths.org】
另一方面,对红光的分析还可以拓展到其它颜色的光线。这样就可构建出彩虹的完整的彩色外形。比如对紫光分析,由于其频率比红光高,折射率要高于红光,所以能计算出其彩虹角为41.07°(取紫光在水中折射率为1.34)。这个值小于红光,这正是为什么在彩虹中,紫色排在红色下方的原因。
为什么中午很难看到彩虹 顺带一说的是,你在中午几乎看不到彩虹。因为从上面的示意图我们可以看到,太阳位于底面圆心(即彩虹的圆心)与人眼连线的延长线上,这导致了彩虹不会出现在中午——太阳越高,彩虹的圆心将越往地平线以下偏移,这使得彩虹整体下移。当然如果从空中俯瞰的话,可以观察到完整的圆形彩虹。如果没有飞机,站在视野开阔的高山之巅也有可能看到。
【彩虹不会出现在中午的原因。图像截自:The Rainbow-Aristotle's Theory】
彩虹是七色的吗?
说完彩虹的形状,不妨再说说彩虹的颜色。一种广为流传的说法是彩虹由 7 种颜色组成。但事实上彩虹是一道由红色到紫色的连续光谱(―光谱‖一词最先由牛顿创造),并非真的只是由 7 种泾渭分明的颜色组成。1665 年牛顿在棱镜实验中将可见光分为红、橙、黄、绿、蓝、靛、紫这 7 种颜色,实际是受到了来源于古希腊的毕达哥拉斯学派的影响。毕达哥拉斯学派认为数学是美的(比如他们搞出的―黄金分割‖),在祷文中他们认为 1 是纯洁的,4 是圣洁的,10 是万物之母,而数字 7 则象征着完美。在牛顿之前,―七原色‖(seven principal colours)的概念就已出现在中世纪的神秘主义和炼金术理论之中,并在文艺复兴时期成为遵行的颜色理论。
由于不同颜色光的波长都不相同,所以彩虹实际就是可见光的色散,介质就是雨后天空中的水滴。人的眼睛可以感知的电磁波波长一般在 400 到 700 纳米之间,而这只占宽广的电磁波谱的极小部分。
【可见光光谱。图像来源:wikipedia.com】
多重彩虹和亚历山大暗带
虽然牛顿在对彩虹的研究中颇有发现,但是在对彩虹的进一步阐释中,由于牛顿深陷于光的粒子性理论之中,因此无法解释―复虹‖(supernumerary rainbow,指有时在一条彩虹的内部还可以看到几条模糊的彩虹)的存在。
直到 1801 年,英国科学家托马斯•杨意识到了光在一定条件下还具有波的性质,并用双缝实验给予了有力的证明。随后(1804 年)他用―光的干涉‖理论完美解释了复虹现象:当两条光束从同一个水滴沿相同方向散播出来的时候,它们彼此之间会发生干涉。若两光束的光程相差半波长的奇数倍,则到达观察者的光强彼此削弱;若相差整数波长,则光强相互增强。由此造成了一系列位于彩虹内侧的明暗相同的光带。根据这一解释,―复虹‖又被称为―干涉虹‖。
【副虹。图像来源:wikipedia.com】
在上文中我们分析的彩虹又可称为―主虹‖(primary rainbow)。在主虹上方,我们有时还能看到―副虹‖(secondary rainbow),也就是文章开头提到的亚里士多德观察到的两条形状相同但颜色顺序排列相反的彩虹的外一层,即我们常说的―霓‖。虹是光在水滴内经过了两次折射和一次反射的结果,霓的形成则比虹在水滴内多经历了一次反射(就是笛卡尔描述彩虹怎样形成示意图中的红色光线所示),导致它的颜色排布与虹的颜色排布顺序相反。霓中不同颜色的光线的彩虹角约在 51°左右,所以它比虹显得要高。在自然界中,我们最多能观察到一条副虹,而更高阶的副虹则可以通过实验手段制得。
到这里,霓虹之间的―亚历山大暗带‖也可以得到解释了:人眼所能捕捉的光线几乎全部集中在彩虹线及以下处,而几乎没有或者很少有光线高于彩虹线射出,所以虹的上半部是是偏暗的。彩虹线以下射出的光束基本上都是混合了光谱的颜色,呈可见光白色,所以虹的内部要更明亮。霓的分析与之相对,由此形成―亚历山大黑带‖(也就是仰角大约在 42°到 51°之间)。
【虹、霓和亚历山大暗带。图像来源:wikipedia.com】
关于彩虹各种观察现象的科学讨论还有很多很多,曾经还有人为之还出了一本书,书名为《彩虹桥:艺术、神话和科学中的彩虹》(The rainbow bridge: rainbows in art, myth, and science by Raymond L.Lee,Alistair B.Fraser)。本文只讨论了彩虹现象其中极小的一部分,涉及到了几何光学、波动光学等知识。20 世纪的时候,还曾有科学家用电磁波理论、光子理论等对彩虹现象进行更精确的描述。关于彩虹的更多有意思的科学话题,欢迎参看后面的参考文献。
物理科普文章
第九篇 七大著名流星雨
流星雨通常与彗星有关,在距离太阳较近时,彗星会受到其巨大引力和辐射的影响,喷发出大量的尘埃物质,其中一部分尘埃物质会遗留在轨道附近,形成一 个柱状的尘埃带。当地球绕太阳公转,穿过尘埃带时,就会有流星雨出现。为我们带来这个流星雨的彗星,就被称为母彗星。也有母体是小行星的流星雨。
相关概念:
辐射点:流星雨看起来像是流星从夜空中的一点迸发并坠落下来。这一点或这一小块天区叫作流星雨的辐射点。通常以流星雨辐射点所在天区的星座给流星雨命名,以区别来自不同方向的流星雨。所有流星的反向延长线都相交于辐射点,通过这一点可以在观测时判断看到的是否是群内流星。
偶发流星:单个出现的流星,在方向和时间上都很随机,也无任何辐射点可言。
ZHR值:极大时极限星等为6.5等且辐射点在天顶时观测者每小时看到的流星数
R值:代表同一流星群内亮流星数目所占的比例,如果一个流星群的r值为3,那么某一星等的流星数量就是比它亮一个星等的流星的3倍。r值越小,亮流星所占比例也就越大。
流星暴雨:ZHR大于1000的流星雨。
七大著名流星雨
1.狮子座流星雨
狮子座流星雨在每年的11月14至21日左右出现。一般来说,流星的数目大约为每小时10至15颗,但平均每33至34年狮子座流星雨会出现一次高峰期,流星数目可超过每小时数千颗。这个现象与谭普-塔特而彗星的周期有关。流星雨产生时,流星看来会像由天空上某个特定的点发射出来,这个点称为―辐射点‖,由于狮子座流星雨的辐射点位于狮子座,因而得名。
2.双子座流星雨
双子座流星雨在每年的12月13至14日左右出现,最高时流量可以达到每小时120颗,且流量极大的持续时间比较长。双子座流星雨源自小行星1983 TB,该小行星由IRAS卫星在1983年发现,科学家判断其可能是―燃尽‖的彗星遗骸。双子座流星雨辐射点位于双子座,是著名的流星雨。
3.英仙座流星雨 英仙座流星雨每年固定在7月17日到8月24日这段时间出现,它不但数量多,而且几乎从来没有在夏季星空中缺席过,是最适合非专业流星观测者的流星雨,地 位列全年三大周期性流星雨之首。彗星Swift-Tuttle是英仙座流星雨之母,1992年该彗星通过近日点前后,英仙座流星雨大放异彩,流星数目达到 每小时400颗以上。
4.猎户座流星雨
猎户座流星雨有两种,辐射点在参宿四附近的流星雨一般在每年的10月20日左右出现;辐射点在ν附近的流星雨则发生于10月15日到10月30日,极大日 在10月21日,我们常说的猎户座流星雨是后者,它是由著名的哈雷彗星造成的,哈雷彗星每76年就会回到太阳系的核心区,散布在彗星轨道上的碎片,由于哈 雷彗星轨道与地球轨道有两个相交点形成了著名的猎户座流星雨和宝瓶座流星雨。
5.金牛座流星雨(南金牛座流星雨,北金牛座流星雨)
金牛座流星雨在每年的10月25日至11月25日左右出现,一般11月8日是其极大日,Encke彗星轨道上的碎片形成了该流星雨,极大日时平均每小时可观测到五颗流星曳空而过,虽然其流量不大,但由于其周期稳定,所以也是广大天文爱好者热衷的对象之一。
6.天龙座流星
天龙座流星雨在每年的10月6日至10日左右出现,极大日是10月8日,该流星雨是全年三大周期性流星雨之一,最高时流量可以达到每小时400颗。Giacobini-Zinner彗星是天龙座流星雨的本源。
7.天琴座流星雨
天琴座流星雨一般出现于每年的4月19日至23日,通常22日是极大日。该流星雨是我国最早记录的流星雨,在古代典籍《春秋》中就有对其在公 元前687年大爆发的生动记载。彗星1861 I的轨道碎片形成了天琴座流星雨,该流星雨作为全年三大周期性流星雨之一在天文学中也占有的极其重要的地位。
物理科普文章
第十篇 别把煤灰不当宝贝 环保汽车或可由其提取物制造
除了制造水泥、砖块,以及走向其最终的―墓地‖——垃圾填埋场之外,燃煤电厂排放出来的煤灰还有其他用途吗?美国科学家表示,未来更轻便、更节能的环保汽车或许可由煤灰提取物来参与制造。另外,经不起任何风吹雨打的煤灰也能―化身‖为道路桥梁的―护身符‖,让其包裹的钢筋和水泥更坚固,以抵挡岁月的侵袭。
桥梁道路的“护身符”
美国物理学家组织网3月30日报道称,美国佛罗里达大西洋大学化学与生物化学系教授查尔斯·卡拉赫在美国化学学会大会上表示,燃煤发电厂产生的煤灰能用来制造包装材料,包裹美国道路和桥梁所使用的水泥,经过―包装‖的道路和水泥的寿命可以延长几十年。而且,这种材料的经久耐用性是现有包装材料的几百倍,而成本则仅为其一半,因此,每年能为美国节省数千亿美元。
卡拉赫解释说,美国450家左右的燃煤电厂每年大约产生1.3亿吨煤灰。在与空气污染有关的法律出现之前,无人会理会这些细微的、毫不起眼的煤灰,径由它们从烟囱散逸入空气中。现在,发电厂开始收集这些煤灰。
―不过,收集起来的煤灰如何处理成为令很多人深感头疼的问题。‖卡拉赫说,―有些煤灰确实被回收并重新利用,但70%的煤灰进了垃圾填埋场。随着土地不断减少,垃圾填埋场也变得越来越稀缺而昂贵。我们的研究表明,煤灰等‗废物‘能变成极有价值的资源,它们可以包裹水泥,成为水泥的‗护身符‘,减缓水泥因为时间流逝而出现的品质下降乃至崩塌的速度。而且,这种包装材料也可以修复受损的水泥。‖
卡拉赫表示,实验室进行的测试表明,当暴露在炎热、寒冷、下雨和其他比实际环境还要恶劣的模拟环境中时,煤灰制成的这种包装材料具有非凡的硬度和耐用性。例如,当将其暴露在酸度达正常室外空气中酸度一万倍的空气中时,这些包装材料可让水泥的品质维持在很高的水平,在一年的观察期内,受到这种保护的水泥坚固如初并毫发无伤,而暴露在同样的环境下的普通水泥几天后就开始弱不禁风了。
卡拉赫说,美国环保署公布的数据显示,目前美国在修复、加固和替代家用废水系统和饮用水系统中所用水泥方面的花费高达1.3万亿美元,而且很多项目必须要在2020年前完成,以避免可能会出现的环境问题和公共安全问题;同时,修复和重建凹凸不平的水泥路和摇摇晃晃的桥梁需要几千亿美元。―因此,煤灰制成的这种包装材料能延长这些道路、桥梁和水系统的寿命,节省成本,同时解决煤灰的废物处理问题。‖卡拉赫如是强调。
未来轻型汽车的“血肉”
其他科学家也将关注的目光投向了煤灰,他们认为,煤灰提取物可能会成为未来包括电动汽车在内的更轻便、更节能车辆的―血肉‖。
据美国《科学美国人》3月28日报道,纽约大学理工学院的教师尼基尔·古普塔博士在上周出版的《金属杂志》上指出,他的研究小组正致力于研发一项专利技术——用煤灰提取物做原材料,让汽油或柴油动力汽车―瘦身‖10%;至于电动汽车,可以通过使其电池减重20%到30%来进一步减轻其重量,由此增加它们持续工作的能力。
古普塔说,可以将发电站产生的大量煤灰收集起来很好地加以利用,包括用来制造热门的汽车等。古普塔指出,煤灰―变脸‖为轻型汽车原料的奥秘在于煤灰中含有一种叫做煤胞的微结构,这是一种坚固而中空的含泡结构,是煤炭燃烧所产生的废弃副产品的一部分。这些副产品中,煤胞会漂浮在水上,而其他物质则下沉,因此,可以用水将其从这些废弃的副产品中分离出来。
用镍、铜或任何其他合金或陶瓷材料给这些煤胞加上涂层就能制成一种超级坚固但轻巧的材料,这种材料可以混合入很多金属―体内‖。古普塔和同事们估计,任何一片金属中都可以添加60%以上的煤灰提取物,这一比例可以根据最终得到的部件所需要的弹性进行调整,这样就可以在保持钢铁或铝的强度的同时大大降低其重量。尽管这项技术有几百种用途,但古普塔表示,重型车辆制造商和军方可能最感兴趣。
研究人员称,他们与威斯康星的制造企业合作,制造出了一些汽车的原型,证明这一方法的确可行。他们说,让标准汽车减重10%是―保守估计‖,因为汽车技术人员或许能在制造中发现研究人员没有想到的其他用途。
古普塔团队下一步的目标是进军电动汽车市场,同汽车制造商以及电池制造商合作。该研究团队表示,通过将这种煤胞融入电池使用的铅或者其他金属内,可以将电池的重量减少20%到30%甚至更多。电池是电动汽车中最重的部分,削减电池的重量可以大幅减少汽车的重量,这样,一次充电能让汽车行驶更长时间。而这项技术可以进行规模化生产并且成本低廉。
不过,古普塔也承认,来自煤灰的煤胞的质量无法预测是一个问题。但在美国,每年发电站产生的大量煤灰提供了廉价、充足的材料供应,人们可以从中挑选出最好的煤胞。(刘霞)
煤灰或有望用于制造环保汽车等大用途(新闻配图)