第一篇:LED开关电源保护电路介绍
LED开关电源保护电路介绍
一款好的LED开关电源除了需要稳定、高效、可靠外,电路的各种保护措施也必须精心设计,以避免在复杂环境条件下能够迅速的对电源电路和负载进行有效保护,本文介绍LED开关电源的几种常见保护电路。
1、过电流保护电路
在直流LED开关电源电路中,为了保护调整管在电路短路、电流增大时不被烧毁。其基本方法是,当输出电流超过某一值时,调整管处于反向偏置状态,从而截止,自动切断电路电流。如图1所示,过电流保护电路由三极管BG2 和分压电阻R4、R5组成。电路正常工作时,通过R4与R5的压作用,使得BG2 的基极电位比发射极电位高,发射结承受反向电压。于是BG2 处于截止状态(相当于开路),对稳压电路没有影响。当电路短路时,输出电压为零,BG2 的发射极相当于接地,则BG2 处于饱和导通状态(相当于短路),从而使调整管BG1 基极和发射极近于短路,而处于截止状态,切断电路电流,从而达到保护目的。
图2:LED开关电源输入过电流保护电路
2、过电压保护电路
直流LED开关电源中开关稳压器的过电压保护包括输入过电压保护和输出过电压保护。如果开关稳压器所使用的未稳压直流电源(诸如蓄电池和整流器)的电压如果过高,将导致开关稳压器不能正常工作,甚至损坏内部器件,因此LED开关电源中有必要使用输入过电压保护电路。图3为用晶体管和继电器所组成的保护电路,在该电路中,当输入直流电源的电压高于稳压二极管的击穿电压值时,稳压管击穿,有电流流过电阻R,使晶体管T导通,继电器动作,常闭接点断开,切断输入。输入电源的极性保护电路可以跟输入过电压保护结合在一起,构成极性保护鉴别与过电压保护电路。
图3:LED开关电源输入过电压保护电路
3、软启动保护电路
开关稳压电源的电路比较复杂,开关稳压器的输入端一般接有小电感、大电容的输入滤波器。在开机瞬间,滤波电容器会流过很大的浪涌电流,这个浪涌电流可以为正常输入电流的数倍。这样大的浪涌电流会使普通电源开关的触点或继电器的触点熔化,并使输入保险丝熔断。另外,浪涌电流也会损害电容器,使之寿命缩短,过早损坏。为此,开机时应该接入一个限流电阻,通过这个限流电阻来对电容器充电。为了不使该限流电阻消耗过多的功率,以致影响开关稳压器的正常工作,而在开机暂态过程结束后,用一个继电器自动短接它,使直流电源直接对开关稳压器供电,这种电路称之谓直流LED开关电源的“软启动”电路。
如图4(a)所示,在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。当电容器C充电到约80%额定电压时,逆变器正常工作。经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,LED开关电源处于正常运行状态。为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图4(b)所示电路替代RC延迟电路。
图4:LED开关电源软启动保护电路
4、过热保护电路
直流LED开关电源中开关稳压器的高集成化和轻量小体积,使其单位体积内的功率密度大大提高,因此如果电源装置内部的元器件对其工作环境温度的要求没有相应提高,必然会使电路性能变坏,元器件过早失效。因此在大功率直流LED开关电源中应该设过热保护电路。
本文采用温度继电器来检测电源装置内部的温度,当电源装置内部产生过热时,温度继电器就动作,使整机告警电路处于告警状态,实现对电源的过热保护。如图5(a)所示,在保护电路中将P型控制栅热晶闸管放置在功率开关三极管附近,根据TT102的特性(由Rr值确定该器件的导通温度,Rr越大,导通温度越低),当功率管的管壳温度或者装置内部的温度超过允许值时,热晶闸管就导通,使发光二极管发亮告警。倘若配合光电耦合器,就可使整机告警电路动作,保护LED开关电源。该电路还可以设计成如图5(b)所示,用作功率晶体管的过热保护,晶体开关管的基极电流被N型控制栅热晶闸管TT201旁路,开关管截止,切断集电极电流,防止过热。
图5:LED开关电源过热保护电路
第二篇:开关电源保护电路_电源技术概要
开关电源保护电路_电源技术概要
评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过热、过流、短路、缺相等保护电路。开关电源常用的几种保护电路 2.1 防浪涌软启动电路
开关电源的输入电路大都采用电容滤波型整流电路,在进线电源合闸瞬间,由于电容器上的初始电压为零,电容器充电瞬间会形成很大的浪涌电流,特别是大功率开关电源,采用容量较大的滤波电容器,使浪涌电流达100A以上。在电源接通瞬间如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关合不上闸。上述现象均会造成开关电源无法正常工作,为此几乎所有的开关电源都设置了防止流涌电流的软启动电路,以保证电源正常而可靠运行。
图1是采用晶闸管V和限流电阻R1组成的防浪涌电流电路。在电源接通瞬间,输入电压经整流桥(D1~D4)和限流电阻R1对电容器C充电,限制浪涌电流。当电容器C充电到约80%额定电压时,逆变器正常工作。经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R1,开关电源处于正常运行状态。
图1 采用晶闸管和限流电阻组成的软启动电路
图2是采用继电器K1和限流电阻R1构成的防浪涌电流电路。电源接通瞬间,输入电压经整流(D1~D4)和限流电阻R1对滤波电容器C1充电,防止接通瞬间的浪涌电流,同时辅助电源Vcc经电阻R2对并接于继电器K1线包的电容器C2充电,当C2上的电压达到继电器K1的动作电压时,K1动作,其触点K1.1闭合而旁路限流电阻R1,电源进入正常运行状态。限流的延迟时间取决于时间常数(R2C2),通常选取为0.3~0.5s。为了提高延迟时间的准确性及防止继电器动作抖动振荡,延迟电路可采用图3所示电路替代RC延迟电路。
图2 采用继电器K1和限流电阻构成的软启动电路
图3 替代RC的延迟电路
2.2 过压、欠压及过热保护电路
进线电源过压及欠压对开关电源造成的危害,主要表现在器件因承受的电压及电流应力超出正常使用的范围而损坏,同时因电气性能指标被破坏而不能满足要求。因此对输入电源的上限和下限要有所限制,为此采用过压、欠压保护以提高电源的可靠性和安全性。
温度是影响电源设备可靠性的最重要因素。根据有关资料分析表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的工作寿命只有温升25℃时的1/6,为了避免功率器件过热造成损坏,在开关电源中亦需要设置过热保护电路。图4是仅用一个4比较器LM339及几个分立元器件构成的过压、欠压、过热保护电路。取样电压可以直接从辅助控制电源整流滤波后取得,它反映输入电源电压的变化,比较器共用一个基准电压,N1.1为欠压比较器,N1.2为过压比较器,调整R1可以调节过、欠压的动作阈值。N1.3为过热比较器,RT为负温度系数的热敏电阻,它与R7构成分压器,紧贴于功率开关器件IGBT的表面,温度升高时,RT阻值下降,适当选取R7的阻值,使N1.3在设定的温度阈值动作。N1.4用于外部故障应急关机,当其正向端输入低电平时,比较器输出低电平封锁PWM驱动信号。由于4个比较器的输出端是并联的,无论是过压、欠压、过热任何一种故障发生,比较器输出低电平,封锁驱动信号使电源停止工作,实现保护。如将电路稍加变动,亦可使比较器输出高电平封锁驱动信号。
图4 过压、欠压、过热保护电路
2.3 缺相保护电路
由于电网自身原因或电源输入接线不可靠,开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。检测电网缺相通常采用电流互感器或电子缺相检测电路。由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。图5是一个简单的电子缺相保护电路。三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。比较器的基准可调,以便调节缺相动作阈值。该缺相保护适用于三相四线制,而不适用于三相三线制。电路稍加变动,亦可用高电平封锁PWM信号。
图5 三相四线制的缺相保护电路
图6是一种用于三相三线制电源缺相保护电路,A、B、C缺任何一相,光耦器输出电平低于比较器的反相输入端的基准电压,比较器输出低电平,封锁PWM驱动信号,关闭电源。比较器输入极性稍加变动,亦可用高电平封锁PWM信号。这种缺相保护电路采用光耦隔离强电,安全可靠,RP1、RP2用于调节缺相保护动作阈值。
图6 三相三线制的缺相保护电路
2.4 短路保护
开关电源同其它电子装置一样,短路是最严重的故障,短路保护是否可靠,是影响开关电源可靠性的重要因素。IGBT(绝缘栅双极型晶体管)兼有场效应晶体管输入阻抗高、驱动功率小和双极型晶体管电压、电流容量大及管压降低的特点,是目前中、大功率开关电源最普遍使用的电力电子开关器件。IGBT能够承受的短路时间取决于它的饱和压降和短路电流的大小,一般仅为几μs至几十μs。短路电流过大不仅使短路承受时间缩短,而且使关断时电流下降率di/dt过大,由于漏感及引线电感的存在,导致IGBT集电极过电压,该过电压可在器件内部产生擎住效应使IGBT锁定失效,同时高的过电压会使IGBT击穿。因此,当出现短路过流时,必须采取有效的保护措施。为了实现IGBT的短路保护,则必须进行过流检测。适用IGBT过流检测的方法,通常是采用霍尔电流传感器直接检测IGBT的电流Ic,然后与设定的阈值比较,用比较器的输出去控制驱动信号的关断;或者采用间接电压法,检测过流时IGBT的电压降Vce,因为管压降含有短路电流信息,过流时Vce增大,且基本上为线性关系,检测过流时的Vce并与设定的阈值进行比较,比较器的输出控制驱动电路的关断。
在短路电流出现时,为了避免关断电流的di/dt过大形成过电压,导致IGBT锁定无效和损坏,以及为了降低电磁干扰,通常采用软降栅压和软关断综合保护技术。在检测到过流信号后首先是进入降栅保护程序,以降低故障电流的幅值,延长IGBT的短路承受时间。在降栅动作后,设定一个固定延迟时间用以判断故障电流的真实性,如在延迟时间内故障消失则栅压自动恢复,如故障仍然存在则进行软关断程序,使栅压降至0V以下,关断IGBT的驱动信号。由于在降栅压程序阶段集电极电流已减小,故软关断时不会出现过大的短路电流下降率和过高的过电压。采用软降栅压及软关断栅极驱动保护,使故障电流的幅值和下降率都能受到限制,过电压降低,IGBT的电流、电压运行轨迹能保证在安全区内。
在设计降栅压保护电路时,要正确选择降栅压幅度和速度,如果降栅压幅度大(比如7.5V),降栅压速度不要太快,一般可采用2μs下降时间的软降栅压,由于降栅压幅度大,集电极电流已经较小,在故障状态封锁栅极可快些,不必采用软关断;如果降栅压幅度较小(比如5V以下),降栅速度可快些,而封锁栅压的速度必须慢,即采用软关断,以避免过电压发生。
为了使电源在短路故障状态不中断工作,又能避免在原工作频率下连续进行短路保护产生热积累而造成IGBT损坏,采用降栅压保护即可不必在一次短路保护立即封锁电路,而使工作频率降低(比如1Hz左右),形成间歇“打嗝”的保护方法,故障消除后即恢复正常工作。
下面介绍几种IGBT短路保护的实用电路及工作原理。
图7是利用IGBT过流时Vce增大的原理进行保护的电路,用于专用驱动器EXB841。EXB841内部电路能很好地完成降栅及软关断,并具有内部延迟功能,以消除干扰产生的误动作。含有IGBT过流信息的Vce不直接送至EXB841的集电极电压监视脚6,而是经快速恢复二极管VD1,通过比较器IC1输出接至EXB841的脚6,其目的是为了消除VD1正向压降随电流不同而异,采用阈值比较器,提高电流检测的准确性。如果发生过流,驱动器EXB841的低速切断电路慢速关断IGBT,以避免集电极电流尖峰脉冲损坏IGBT器件。
图7 采用IGBT过流时Vce增大的原理进行保护
图8是利用电流传感器进行过流检测的IGBT保护电路,电流传感器(SC)初级(1匝)串接在IGBT的集电极电路中,次级感应的过流信号经整流后送至比较器IC1的同相输入端,与反相端的基准电压进行比较,IC1的输出送至具有正反馈的比较器IC2,其输出接至PWM控制器UC3525的输出控制脚10。不过流时,VA
(a)电路原理图
(b)PWM控制电路的输出驱动波形图
图8 利用电流传感器进行过流检测的IGBT保护电路
图9是利用IGBT(V1)过流集电极电压检测和电流传感器检测的综合保护电路,电路工作原理是:负载短路(或IGBT因其它故障过流)时,V1的Vce增大,V3门极驱动电流经R2,R3分压器使V3导通,IGBT栅极电压由VD3所限制而降压,限制IGBT峰值电流幅度,同时经R5C3延迟使V2导通,送去软关断信号。另一方面,在短路时经电流传感器检测短路电流,经比较器IC1输出的高电平使V3导通进行降栅压,V2导通进行软关断。
图9 综合过流保护电路
图10是应用检测IGBT集电极电压的过流保护原理,采用软降栅压、软关断及降低工作频率保护技术的短路保护电路。
图10
正常工作状态,驱动输入信号为低电平时,光耦IC4不导通,V1,V3导通,输出负驱动电压。驱动输入信号为高电平时,光耦IC4导通,V1截止而V2导通,输出正驱动电压,功率开关管V4工作在正常开关状态。发生短路故障时,IGBT集电极电压增大,由于Vce增大,比较器IC1输出高电平,V5导通,IGBT实现软降栅压,降栅压幅度由稳压管VD2决定,软降栅压时间由R6C1形成2μs。同时IC1输出的高电平经R7对C2进行充电,当C2上电压达到稳压管VD4的击穿电压时,V6导通并由R9C3形成约3μs的软关断栅压,软降栅压至软关断栅压的延迟时间由时间常数R7C2决定,通常选取在5~15μs。
V5导通时,V7经C4R10电路流过基极电流而导通约20μs,在降栅压保护后将输入驱动信号闭锁一段时间,不再响应输入端的关断信号,以避免在故障状态下形成硬关断过电压,使驱动电路在故障存在的情况下能执行一个完整的降栅压和软关断保护过程。
V7导通时,光耦IC5导通,时基电路IC2的触发脚2获得负触发信号,555输出脚3输出高电平,V9导通,IC3被封锁,封锁时间由定时元件R15C5决定(约1.2s),使工作频率降至1Hz以下,驱动器的输出信号将工作在所谓的“打嗝”状态,避免了发生短路故障后仍工作在原来的频率下,连续进行短路保护导致热积累而造成IGBT损坏。只要故障消失,电路又能恢复到正常工作状态。结语 开关电源保护功能虽属电源装置电气性能要求的附加功能,但在恶劣环境及意外事故条件下,保护电路是否完善并按预定设置工作,对电源装置的安全性和可靠性至关重要。验收技术指标时,应对保护功能进行验证。
开关电源的保护方案和电路结构具有多样性,但对具体电源装置而言,应选择合理的保护方案和电路结构,以使得在故障条件下真正有效地实现保护。
文中所述的保护电路可以灵活组合使用,以简化电路结构和降低成本。
第三篇:LED灯具失效分析及电路保护
LED灯具失效分析及电路保护
一、LED灯具失效一是来源于电源和驱动的失效,二是来源于LED器件本身的失效。通常LED电源和驱动的损坏来自于电源的过电冲击(EOS)以及负载端的断路故障。输入电源的过电冲击往往会造成驱动电路中驱动芯片的损坏。LED器件本身的失效有主要有一下几种情况:
1、瞬态过流事件
瞬态过流事件是指流过LED的电流超过该LED技术数据手册中的最大额度电流,这可能是由于大电流直接产生,也可能是高电压间接产生,如瞬态雷击,开关电源的瞬态开关嘈音,电网波动等过压事件引起的过流。这些事件都是瞬态的,持续时间极短,通常我们将其称为尖峰,如“电流尖峰”、“电压尖峰”。造成瞬态过流事件的情况还包括LED接通电源,或是带电插拔时的瞬态过电流。
对于汽车中的LED照明,ISO7637-2的瞬态抛负载浪涌冲击后的失效模式并非固定,但通常会导致焊接线损坏。这种损坏通常由极大的瞬态过流引起,除了导致焊接线烧断以外,还可能导致靠近焊接线其他部分损坏,如密封材料。
2、静电放电事件
静电放电(ESD)损坏是目前高集成度半导体器件制造、运输和应用中最为常见的一种瞬态过压危害,而LED照明系统则须满足IEC61000-4-2标准的“人体静电放电模式”8KV接触放电,以防止系统在静电放电时间有可能导致的过点冲击失效。
LED PN结阵列性能将出现降低或损坏,ESD事件放电通路导致的LED芯片的内部失效,这种失效可能只是局部功能损坏,严重的话会导致LED永久损坏。
3、电源及驱动电路的保护
由于LED电源和驱动电路容易遭受过电冲击和短路故障而损坏,因此在驱动电路设计中药充分考虑各种故障状态的保护以提高电路的可靠性
第四篇:LED数码管介绍范文
供应LED数码管
LED-3006 LED数码管
灯体尺寸:L1000*W50*H95MM mm
净重: 1.0 Kg
分类: LED数码管系列LED
LED 光源:48红/48绿/48蓝(1000mm long)
高度智能化产品,特别适应高楼大厦外墙及高级娱乐场所使用,效果可实时设定。
专为大厦、酒店、桥梁轮廓装饰而设计的最具灯光效果的灯具,以超高亮LED为光源,PC管材,防紫外线、抗老化、防水、防潮。色彩艳丽,具有流水扫描等千变万化效果,同时也可根据用户实际需求进行效果设计。
型号与技术参数:
灯体尺寸:L1000*W50*H95MM mm
净重: 1.0 Kg
LED 光源:48红/48绿/48蓝(1000mm long)
材料: 乳白色聚碳酸酯(抗紫外线)
控制模式:DMX 512
电压: AC 90-240V/50-60HZ(开关电源, 90V-240V 自动转换)
操作温度::-20℃ ~ +45℃
Net/Gross Weight:1.0kg/1.5kg
Size: L 1000*W50 *H 95MM
IP:44
型号: LED 3006C LED数码管控制器
带DMX 512通信功能
自动走灯模式25种
有单独可调走灯模式29种
最少可以控制4000跟LED数码管
自动存储模式参数
预置参数设置模式
全彩六段护栏管,采取进口PC 材料,可以根据客户要求设计各种LED程序变化,以实现美化效果,产品广泛应用于户可以根据客户要求设计各种LED程序变化,以实现美化效果外工程、城市景观、娱乐场所。是采用进口台湾超高亮度LED芯片及进口PC管材,其基本特性是以RGB三基色及PCB电路板串(并)联混合连接,内置微处理器,执行主机传送的各种程序命令,能使众多光源组合时产生色彩和动态上的变化,有纵向分层追逐扫描、流水、扩张、渐变、同步等几十种变化程序,灯光效果有单色(红,黄,蓝,绿,白)、三色变化、七色变化、三段变化、六段变化、九段变化、十二段变化等循环切换,除了推荐的几十种变化程序外,还可以根据客户的要求随机进行变幻花样的设计,七彩流水型护拦灯是通过新型的电
脑编程控制,使其变化多达几十种,还可以根据客户需求而设定或自动变化。每米功率不超过12W,电压12V,PC管材直径可以为26mm,30mm,50mm,80mm,110mm, 灯泡粒数可以为96粒、108粒、120粒、144粒,150粒,亮度高、寿命长达100000小时。广泛适用于桥梁、广场、大楼轮廓、跨街空中走廊、建筑物轮廓、道路灯饰、各种灯光广告牌、橱窗、舞台、大厦、酒店等场所装饰,是城市亮化工程的主导产品,夜晚效果格外醒目,并能引导车辆行进方向,可有效的防治交通事故的发生,并且对美化城市、塑造景观有着特别重要的意义
LED护栏管——介绍:
以RGB三基色及PCB电路板串(并)联混合连接,内置微处理器,执行主机传送的各种程序命令,能使众多光源组合时产生色彩和动态上的变化,有纵向分层追逐扫描、流水、扩张、渐变、同步等几十种变化程序,灯光效果有单色、三色变化、七色变化、三段变化、六段变化、八段变化、十二段、十六段变化等循环切换,除了推荐的几十种变化程序外,还可以根据客户的要求随机进行变幻花样的设计,七彩流水型护拦灯是通过新型的电脑编程控制,使其变化多达几十种,还可以根据客户需求而设定或自动变化。
LED护栏管——用途:
主要应用于桥梁栏杆,楼体轮廓,招牌,酒吧KTV等场所。广泛应用于舞台、酒吧、酒店、的士高、KTV歌舞厅、桥梁、花园、沟道河岸、各交通立交桥、建筑物轮廓、建筑物的装饰及轮廓勾勒。是取代传统霓虹灯和荧光灯的新一代照明解决案。
LED护栏管——技术参数:
光源:采用进口台湾超高亮度LED芯片
材质:进口PC管材
功率:每米功率不超过12W
电压:12V
PC管材直径:50mm,80mm,110mm
灯泡粒数:108粒、120粒、144粒,150粒
工作寿命:长达100000小时。
LED护栏管——其它说明:
包装方式:每件LED护栏管都是独立环保包装
品质保证:本产品严格按照ISO9001:2000国际质量管理体系标准进质量 控制,确保LED护栏管质量符合国家标准,完全达到设计要求。
2.LED护栏管需要解决的可靠性问题
2.1防水
以前的LED护栏管是在外罩接口处用硅胶密封,内部LED、电路都是裸露的,由于昼夜温差大,外罩的端头与外罩热胀冷缩不同,导致硅胶密封处出现缝隙,下雨后雨水渗进内部,可想而知结果会怎么样。要解决这个问题,一定要求对内部电路和LED灌胶处理,外面外罩硅胶密封固然简单,但可靠性达不到在户外大规模应用的要求。
另一个问题就是电气连接的接头问题。很多厂家为了便宜往往选择塑胶接头,或者选择质量较差的金属接头,短时间的测试和使用,塑胶还没有变形,防水是没有问题,但是经过太阳的照射和昼夜温差变化,四季气候变化,塑胶就会变形,从而导致防水胶圈失效,雨水渗进接头内部导致电线短路,特别在带电状态,电线的腐蚀比不带电状态下高若干个数量级。本人曾经做的实验,信号线接触水后在8个小时通电状态下就已经腐蚀的象铁锈一样。较差的金属接头的价格只有正规厂家的几分之一,由于表面处理和本身材料问题,也容易被雨水腐蚀,导致信号短路。
2.2防紫外线
LED护栏管由于要求混光,在外面都会加上外罩,外罩的材料选择是很多不规范公司降低成本的又一个手段,质量好的产品都会使用增加了抗紫外线的材料,如GE,拜尔等材料,而质量不好的LED护栏管很多使用混合了水口料的材料,谈不上抗紫外线,太阳光比较大的地方,不到一个月,外罩就变成$的了,从而出光效果变差,透光率也大大减小。
2.3防开裂
这个问题,还是外罩的问题,如果选择的是带水口料的材料,材料内应力很难去除,导致材料开裂。即使选择比较好的材料,如果设计,生产工艺不合理,也会产生很多内应力,有经验的公司都会在注塑时选择恒温保护,尽量减少内应力,还有一个去除内应力很好的办法,如果对此有兴趣的读者可以咨询材料方面的专家。
2.4线损
铜是一些厂家节省成本的地方,大家都知道,一般好的生产厂家都会在内部使用1mm2以上的导线,而且导线使用的是符合国标的产品。如果导线面积不够,电阻较大,前面的护栏管和后面的护栏管就有较大的电压差,为了让后面的LED电流与前面的一致,一定需要增加输入电压,这样无形中就增加了功耗,很多电能不是驱动LED,而是浪费在导线和恒流芯片上。一般来说如果设计的产品前后电压超过15%,问题就很严重了,因为现在通用的恒流芯片都是有功耗要求的,如果功耗太大,热量散不出去就会导致芯片烧毁。大家现在应该明白为什么很多级连的LED护栏管都是前面坏的多了。
2.5散热
这个问题不仅体现的成本问题上,更多的是体现一个厂家的技术实力上,现在有些LED护栏管外罩和低座完全是一体的,都是塑胶材料,而且LED排布很密,这样当达到热平衡时,LED的结温已经很高了,如果工作时的环境温度较高,LED的寿命会急剧减少。实力强的LED护栏管公司肯定会有热设计人员,在设计护栏管时要将LED的热量和恒流芯片的热量有效的导到大气中去。大家应该想到使用铝材是比较好的解决方案,铝的导热系数高,可以有效的将内部热量导出。另外在设计时也要尽量将PCB靠近铝底座,从而减少灌封胶部分产生的热阻。这个问题又涉及到另一个问题,即灌封胶的选择上,好的灌封胶不仅要求硬度适中,也要求有比较高的导热系数,目前很多护栏管厂家借鉴LED大屏的经验,使用韩国的灌封胶,这是个不错的选择,本人综合的比较后发现某家德国公司的灌封胶在综合性能上更胜一筹。
一、LED外控和内控护栏管安装方法及常见问题
主要材料:
LED护栏灯;护栏灯安装卡子,防水变压器,LED护栏灯主控器,LED护栏灯分控器,辅助材料:
公母插头,超五类网线,两芯电源线,自攻螺丝,胶粒等
LED外控护栏灯安装步骤:
第一步:先将LED护栏灯安装到墙体上:在墙体上打孔,装膨胀螺钉,再装LED护栏灯,用自攻螺丝锁住;护栏灯之间的距离根据客户的要求而定;一般是1CM到3CM之间。
第二步:检查接头上是否有防水胶圈,一般为白色或红色硅胶圈.然后将LED护栏灯的信号线、电源线对接起来,一定要对接紧密,然后把螺母扭紧.(最好外面再打上玻璃胶或黑色胶布绕一下,这样对防水更有好处.)不要因为马虎或难扭紧而没有扭紧,造成进水,给后来维护带来不少麻烦.信号线公司采用的一般两芯的小公母插头;电源线是两芯的大公母插;
第三步:安装电源(变压器或开关电源);
根据变压器的功率以及护栏灯的功率来计算每台变压器可以带多少条护栏灯;比如108灯的LED七彩护栏灯是10W/M;144灯的LED护栏灯是12W/M;若用400W的防水变压器,则可以带108灯36M管;144灯的则带32 M管。若变压器可以带36M管;变压器则放在第18和19条中间,接两条线出来,再接几个分接口,每边各带18条。
注:1.变压器一般只用到80%到90%的功率;
2.不管变压器的功率再大,每边接的管最好不要超过8M;高压220V的连接最好不要超过10米;因为电源导线有功率损耗;越到后面的LED护栏灯亮度越低;而且电流过大对线路板,灯珠,线头都会有影响。
第四步:LED护栏灯控制器的安装;
先装分控器,直接将分控器接在LED护栏灯上;分控器两端一般有三个出线头,一端一条的一般是电源线接24V或12V,注意这个电源线只是分控器的供电,护栏管的供电要另外联接,另外一端两条接线头一条是从主控器输入的信号线,一条是接护栏管的输出的信号线,分控器上会标出哪条接主控哪条接分控!
信号接信号(目前公司主要采用两芯公母插小头),电源接电源(两芯公母插大头);然后将分控器与主控器的信号对接,如果分控与主控的距离将远时可以用超五类网线连接起来,这样信号比较好;每个分控只能带固定数量的LED数码管,一般可以带到100M;现在公司用的两芯数码管数据线,可控制1000米,也可订做到2000米,信号强.易安装.做楼体轮廓时,每一个分控带一路;具体的情况根据LED效果图安装(公司会帮您算好要多少分控,每个分控带哪一路,一般会有安装图纸)。分控与主控之间亦采用超五线网线连接;网线都是八条线的,采用公母信号插与网线对接起来,先接到分控上;不同回路的数码管之间的信号线需要断开。
第五步:通电,通信号。
将变压器全部接到一条220V主电源上,然后采用一个空气开关和时间开关;控制LED数码管(LED护栏灯)统一通电;然后将主控器上的变压器插头插在220V的电源上。
LED内控,单色常亮护栏管的安装:
单色护栏管直接按护栏管的电压接电就行了,内控护栏灯的安装,直接接在对应的电源上就行了;这里还要提到就是内控编号LED护栏灯的安装:内控编号护栏灯的安装必须按管的顺序一个一个安装;如果不按顺序安装最后会出现整体不同步现像。内控和内控编号护栏管必须同时通电,才能保证变化效果同步!低压的必须接变压器或开关电源,变压器或开关电源装在护栏管的中间,这样护栏管的效果才会更统一!
二、常见问题:
1.若LED数码管不能正常走程序,如果为外控管,首先确认此管是否信号线有问题,请把不能运作的管换下,还有一个问题,这条管的可能信号线只有输入没有输出,导致后面的管变化效果不能同步,这种情况下可以把装在最后一条护栏管装在这里,把这条护栏管装在最后面那边,可以恢复正常!若恢复正常,就确认是此管问题,若不行可以换个分控试试,若无法解决安装中出现的问题请与厂家联系。如果为内控管,首先确定公母接头有没有接反,现在经过改良后的新管子和程序,一般公母接头的顺序,根据公司配的接头接就行了。然后把电断开几分钟,再送电,看是否正常。也可及时与公司联系,分析是什么问题。
2. LED护栏灯一般安装要的楼体上,安装成本比较高,具有一定的危险性;如果
有坏管了,需要吊人或架手脚架上去拆换;所以公司把品质放到第一位,请各位客户和朋友放心,公司出厂产品都是经过老化,检验合格才出厂的,若安装时仍有不良品,请及时给公司联系,我们会用最快的速度解决问题。
3.最后再提醒安装时,一定检查是否有防水胶圈,要把公母接头对紧,把螺母扭紧接好。工程主管要培训,监督做好。
第五篇:LED灯具失效分析及其电路保护措施
LED灯具失效分析及其电路保护措施
LED灯具损坏的原因
LED灯具失效一是来源于电源和驱动的失效,二是来源于LED器件本身的失效。通常LED电源和驱动的损坏来自于输入电源的过电冲击(EOS)以及负载端的断路故障。输入电源的过电冲击往往会造成驱动电路中驱动芯片的损坏,以及电容等被动元件发生击穿损坏。负载端的短路故障则可能引起驱动电路的过电流驱动,驱动电路有可能发生短路损坏或有短路故障导致的过热损坏。LED器件本身的失效主要有以下几种情况。
1.瞬态过流事件
瞬态过流事件是指流过LED的电流超过该LED技术数据手册中的最大额定电流,这可能是由于大电流直接产生也可能是由高电压间接产生,如瞬态雷击、开关电源的瞬态开关噪声、电网波动等过压事件引起的过流。这些事件都是瞬态的,持续时间极短,通常我们将其称为尖峰,如“电流尖峰”、“电压尖峰”。造成瞬态过流事件的情况还包括LED接通电源,或是带电插拔时的瞬态过电流。
对于汽车中的LED照明,ISO7637-2的瞬态抛负载浪涌冲击则是其正常工作的一个重要威胁。
LED遭受过电冲击后的失效模式并非固定,但通常会导致焊接线损坏,如图1所示。这种损坏通常由极大的瞬态过电流引起。除了导致焊接线烧断外,还可能导致靠近焊接线的其他部分损坏,例如密封材料。
2.静电放电事件
静电放电(ESD)损坏是目前高集成度半导体器件制造、运输和应用中最为常见的一种瞬态过压危害,而LED照明系统则须满足IEC61000-4-2标准的“人体静电放电模式”8kV接触放电,以防止系统在静电放电时有可能导致的过电冲击失效。
LED PN结阵列性能将出现降低或损坏,如图2所示。ESD事件放电通路导致的LED芯片的内部失效,这种失效可能只是局部功能损坏,严重的话也会导致LED永久损坏。参考资料: