合成氨生产尿素原理

时间:2019-05-14 03:29:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《合成氨生产尿素原理》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《合成氨生产尿素原理》。

第一篇:合成氨生产尿素原理

尿素合成氨生产原理

一、生产原理

尿素分子式(NH2)2C0,是由液氨和二氧化碳,在尿素合成塔反应生成铵基甲酸铵(甲铵),其中一部分脱水生成尿素,其反应式为: 2NH3十C02=NH2COON4 NH2C00NH4 = NH2CONH2十H20 根据此反应机理,采用不同的压力、温度、氨碳比,形成各种生产工艺。二、二氧化碳汽提工艺

二氧化碳汽提工艺特点是合成压力低,氨碳比低,反应率高而不设中压回收系统,流程短。缺点是由于氨碳比低,反应物料为酸性介质腐蚀性较强,为防腐蚀在二氧化碳气中添加氧较多达到0.55%~0.7%,如操作不当在合成塔顶排气中会产生过量氧与氢的爆炸性气体,故在高压洗涤器设有防爆板。在改进型二氧化碳汽提工艺中,为防止合成塔排气形成爆炸性气体,而采取了将二氧化碳气中氢脱除的方法即二氧化碳压缩机出口气体先经过气体加热器将气体加热,进入脱氢反应器(装有把催化剂),然后再将气体冷却,这样增加了三个高压设备,增加了投资。在70年代一些二氧化碳气提尿素老厂进行技术改造,采用加双氧水技术进行防腐蚀,减少了向二氧化碳气中加氧气量,使其达不到氧氢混合爆炸范围,该项技术己得到推广应用。现将典型的二氧化碳汽提尿素的生产流程介绍如下: 1.原料液氨和气体二氧化碳的压缩

由界外供给的液氨,用高压氨泵将压力提高到16.0兆帕,经氨加热器进一步加热到70℃,送入高压喷射器,将高压洗涤器出来的甲铵液增压,一并送人高压冷凝器的顶部。由界外送来二氧化碳气体,经二氧化碳压缩机压缩至13.79兆帕进入其汽提塔底部。2.合成和汽提

在高压甲铵冷凝器上部送人新鲜的液氨,含有氨和二氧化碳的气提气以及循环返回系统的甲铵液也在14兆帕下送入,出口温度为168~170℃,氨/二氧化碳为2.8~2.9。换热器用压力0.4兆帕温度143℃的沸水冷却,物料中的气体被冷凝,并反应生成甲铵,放出冷凝热和生成热,产生0.4兆帕的蒸汽,用于后续工序。

在高压冷凝器中,使氨与二氧化碳全部生成甲铵,大约有78%的氨和70%二氧化碳冷凝成液体,生成的甲铵液与末冷凝的气体从底部各自的管离开高压甲铵冷凝器,进入合成塔底部。反应物在合成塔内自下而上通过,在温度180~185℃、压力13.5~14.0兆帕下,将甲铵转化为尿素,二氧化碳转化率为57%~58%,从内部溢流管离开送人气提塔。

在合成塔顶部出气中除氨、二氧化碳外,还有氧、氮、氢、惰性气体等,送人高压洗涤器。高压洗涤器下部是直立管壳式浸没冷凝器,器内充满液体,气体鼓泡向上通过,上部为鼓泡段。液体出鼓泡段,一部分从内溢流管返回浸没冷凝段底部,一部分外流出去进入喷射泵的吸入口。出口甲铵液的温度保持在160℃,为了防止冷却过度,管外用热水冷却,热水在一个封闭的加压系统中用循环水泵循环。从高压洗涤器顶部出来还含氨、二氧化碳气的惰性气进入吸收塔,被冷凝液吸收后放空。送入吸收塔的冷凝液是从氨水贮槽分别用解吸塔给料泵及升压泵经过顶部加料冷却器送人吸收塔的上段填料层,用闪蒸槽冷凝液泵将闪蒸槽冷凝液送人下段填料层,在塔底所得的稀甲铵液,部分返回下段填料层循环吸收,部分送人低压洗涤器中吸收从低压甲铵冷凝器出来的氨和二氧化碳。最终甲铵液从低压洗涤器或吸收器液位槽底部进入高压甲铵泵,升压后经高压洗涤器返回甲铵冷凝器。

因高压甲铵冷凝器中的压力要比高压洗涤器约高0.3兆帕,因此甲铵液必须在高压喷射器中用16.0兆帕液氨喷射才能返回到反应系统中去。

气提塔,亦称高压热交换器,从合成塔底部出来反应混合物从上部进入向下流入管束并以液膜状态沿管壁向下流,然后在165~175℃下从底部离开。从二氧化碳压缩机来二氧化碳气体从底部进入,将溶液中氨和二氧化碳赶出,实际上约有85%的氨及75%二氧化碳从反应混合物中被气提出来,同时也有一些水蒸发出来,出口液体含氨6%~8%。从气提塔顶部出来气体送入高压冷凝器的顶部。气提塔用2.0兆帕饱和蒸汽进行加热,与工艺液体相接触的管子的温度不能高于200℃,否则会发生严重腐蚀。3.循环

离开气提塔的尿素减压到0.25~0.35兆帕,送入精馏塔。尿液中的一部分甲铵分解,所需的热由溶液本身供给,从而使溶液的温度下降到105~110℃。溶液从精馏塔底进入循环加热器,在此溶液的温度升高到135℃,结果使甲铵再一次分解。在精馏塔底部的分离器中进行液气分离,气体通过填料上升,被下流的冷尿液所冷却。

而出精馏塔的气体与解吸塔来的气体一并进人低压甲铵冷凝器的底部。为了取走甲铵生成热与冷凝热用调温水冷却,而调温水又在循环水冷却器中冷却,这样可避免冷却水温度过低而引起固体甲铵生成。

低压甲铵冷凝器顶部的气液混合物进人液位槽,进行气液分离。大部分甲铵液循环回低压甲铵冷凝器,而一部分从底部抽出,用高压甲铵泵送人高压洗涤器的顶部。

从液位槽的液体中分离出来的气体随即进入低压吸收器被甲铵液洗涤,除惰性气体外全部气体被吸收下来,末冷凝的气体离开吸收器顶部放空。

从精馏塔底部出来的溶液减压后进入闪蒸槽,在溶液减压时少量的氨同较大量蒸汽从溶液中逸出,使溶液在温度从135℃降到90~95℃,得到尿素溶液浓度约为73%,经过大气腿流入尿液贮槽。4.尿液蒸发与造粒

在蒸发系统中将尿素溶液中的水蒸发,浓缩成浓度为99.7%的尿液,蒸发采用两段真空蒸发。二段蒸发器用0.9兆帕蒸汽供热,此时溶液浓缩到99.7%。离开二段蒸发器底部的尿素熔体,由熔融尿素泵送人造粒塔顶的造粒喷头,喷淋造粒。颗粒状尿素从造粒塔底出来被送往贮存包装。产品尿素含氮≥46.3%(质量),缩二脲≤0.9%(质量)。5.解吸

在闪蒸槽及蒸发系统中蒸发出来的水蒸气在冷凝器中冷凝后,含有少量的尿素、氨和二氧化碳,经过大气腿流人氨水贮槽。从蒸发冷凝器来的含有少量尿素和氨的冷凝液流入氨水贮槽另一小室,被送到解吸塔的顶部。

解吸塔是浮阀塔,进入的液体经过各层塔板上的溢流管逐层流下,从塔底出去。蒸汽从塔底进入,由于液体与蒸汽的逆流接触,液体中的氨和二氧化碳愈来愈少,而离开塔顶的蒸汽中含有全部解吸出来的氨和二氧化碳以及水蒸气。混合气通过调节引人低压冷凝器,将解吸的氨和二氧化碳循环回到反应系统中去。解吸塔底部出来的液体通过换热器与入塔溶液换热后,再通过塔底液位自动控制减压后送人下水道,水中含有尿素0.2%,含氨0.05%,温度约70℃。吨尿素耗氨580千克。

80年代引进的尿素装置将解吸塔排出水再经高压水解器用高压蒸汽将水中含尿素和氨分解回收,使排水中含尿素和氢达到5×10—6以下,可以用作锅炉用水,不再排入下水道。

三、新一代改进二氧化碳气提工艺

新一代改进二氧化碳气提工艺,将原来立式高压冷凝器改为卧式池式冷凝器,将布置高压设备的框架降低了。特点是采用池式冷凝器,将原来立式降膜式甲铵冷凝器改为卧式结构,工艺介质走壳侧,低压蒸汽走管侧,壳侧为高压简体内衬316L,筒体内设U型管束,材质为25-22-2,U型管与管板的焊接采用内孔焊,即管子不穿过管板,只对管端头与管板上的25-22-2衬里相焊接,施工难度较大。管内通入蒸汽冷凝液用泵强制循环,利用甲铵冷凝反应热副产低压蒸汽。汽提气在卧式壳侧的甲铵液中鼓泡湍动冷凝吸收,大大提高了甲铵液在甲铵冷凝器中的停留时间,大约有63%的尿素在甲铵冷凝器中生成,而可将尿素合成塔容积减少,降低合成塔的高度。由原来布置高压设备高框架由65米降到38.5米,随之工艺框架也降低了。改进二氧化碳气提尿素合成塔采用了新型高效塔板,防止塔内反应溶液的返混现象,合成塔容积较一般的二氧化碳气体合成塔减少20%~25%。池式冷凝器为高压设备,材质要求高,设备造价也高,日产1000吨尿素装置,设备费超过1000万人民币,是其缺点。该工艺消耗指标较先进。

四、氨汽提工艺 工艺特点是:

(1)氨/二氧化碳比较高,为防腐蚀在二氧化碳气中加氧量少,二氧化碳转化率较高。(2)在高压合成后,设有中低压分解循环回收系统,操作弹性大,在50%负荷下能正常运转。(3)气提塔的操作温度、压力较高,采用钦材或衬铬的双金属管材,防止腐蚀。(4)尿素合成塔、甲铵冷凝器均布置在地面,没有高框架,维修安装均方便。(5)热回收完善,蒸汽消耗量较少。工艺流程说明如下。尿素合成与高压回收

来自界区外的液氨,经氨升压泵升压,再经高压氨泵送入氨预热器,高压液氨用作氨基甲酸铵喷射泵的驱动流体,使来自甲铵分离器的氨基甲酸铵溶液升至合成压力。氨与甲铵的混合液进入合成塔与人塔的二氧化碳进行反应,生成氨基甲酸铵和尿素。

由界区外送来二氧化碳经压缩机压缩至15.69兆帕,在二氧化碳压缩机人口前加入少量空气用以纯化不锈钢表面,防止由于反应物所造成的腐蚀。

混合物在降膜式加热器向下流动的同时被蒸汽加热。溶液中的二氧化碳由于氨的气提作用而从溶液中沸腾逸出,从而使溶液中的二氧化碳含量得到降低。

来自气提塔顶部的气体和中压吸收塔并经高压碳铵泵增压的回收液,送往高压甲铵冷凝器,全部混合物在此冷凝并经喷射泵返回合成塔。2.中压分解与回收

从气提塔底部出来的含有低残留量二氧化碳的溶液减压至1.765兆帕,进人中压分解分离器顶部,减压释放出的气体和溶液在此进行分离。溶液中残留的甲铵在底部分解器分离。含氨和二氧化碳的中压分解气体离开分离器顶部进入真空预浓缩器,被来自低压分解回收的一部分碳铵溶液吸收,所产生的热量供尿素蒸发使用中压分解气最终在中压冷凝器中冷凝,冷凝热量由冷却水移走。在冷凝器中二氧化碳几乎全部被吸收。从冷凝器来的混合物流人中压吸收塔的下部,未吸收和末冷凝的气体进入上部精馏段,二氧化碳在过程中被吸收,氨则被精馏出来。

回流氨送入顶部塔板,除去出塔气体中的微量二氧化碳和水。

回流液氨经氨升压泵从液氨贮槽抽出送往中压吸收塔顶部。中压吸收塔出塔的溶液经高压碳铵液泵再经高压碳铵预热器预热后,返回到合成回收。

含有惰性气体的氨气离开中压吸收塔顶部在氨冷凝器中冷凝,冷凝的液氨和含有氨的惰气进人液氨贮槽,由氨回收塔出来的氨和惰性气体则送往中压氨洗涤吸收塔,与逆流冷凝液进行接触洗涤,将气氨回收。从中压氨洗涤吸收塔底部出来的氨水溶液经离心泵返回到中压吸收塔。

低压分解与回收:离开中压分解器收集罐底部的溶液减压到0.44兆帕后进入低压分解器顶部分离器,减压释放出的闪蒸气体在此分离,残留的甲铵在底部分解加热段分解。离开低压分解器分离器顶部的气体与来自解吸塔的气体汇合,首先进入氨预热器进行吸收和冷凝,然后进入低压冷凝器,用冷却水进行再吸收和将冷凝热带走。惰性气体在洗涤塔中被清洗后排放。

混有残留情性气体的液体被送到碳铵液贮槽,再经离心泵将碳铵液送至真空预浓缩器分离器。

真空预浓缩:由低压分解器收集器底部出来的溶液减压到0.034兆帕,进入降膜式真空预浓缩器。顶部减压释放分离闪蒸气体,残留的甲铵在底部分解加热段分解。从顶部出来的气体进人真空系统。真空预浓缩器底部液位罐的尿素溶液经尿液泵送到真空浓缩系统。3.尿素浓缩及造粒

来自尿素溶液泵的浓度约为85%的尿素溶液送往真空浓缩器,蒸发汽液被真空系统抽走。由二段真空分离器分离下来的熔融尿素经熔融尿素泵送往造粒塔顶部喷头喷淋造粒,经造粒塔形成颗粒状成品尿素。4.废水处理

来自真空系统的工艺冷凝液含有氨、二氧化碳和尿素,收集于工艺冷凝液贮槽中。然后由冷凝液泵先经预热器预热后送入解吸塔。经过塔上部的初步汽提以后,由水解槽给料泵送入水解槽预热器中换热,然后进入尿素水解槽。由尿素水解槽出来的气体与解吸塔顶部出来的气体汇合并与低压分解器分离出来的气体混合在一起,然后送入氨预热器。

由解吸塔底部出来的净化废水含氨和尿素小于5×10-6,换热冷却后送出尿素界区,再经离子交换树脂处理后可用作锅炉给水。

五、水溶液循环法与二氧化碳气提技术相结合

该法是将水溶液循环法与二氧化碳气提技术相结合。其特点是较高氨/二氧化碳比,转化率较高;气提塔上部设置塔板,下部为液膜换热器,气提效率高;高压甲铵冷凝器的热量用于回收副产蒸汽,热利用率较高。其工艺流程说明如下。1.合成

由界外送来液氨经高压氨泵加压后经氨预热器送入尿素合成塔。

由界外送来二氧化碳经二氧化碳压缩机压缩至18.2兆帕,送入气提塔,在二氧化碳压缩机的中段加入防腐用的空气。

来自回收工段的循环甲铵溶液由高压甲铵泵送到2号甲铵冷凝器和高压洗涤器。合成塔操作压力18.04兆帕,操作温度190℃,氨与二氧化碳分子比为4,二氧化碳转化率为邱%,合成反应生成物从中心管溢流从塔底排入气提塔。在气提塔上部,来自合成塔的合成尿素溶液与来自下部的二氧化碳气体接触,进行有效的二氧化碳气提。在气提塔下部,合成尿素溶液中所含的氨基甲酸铵和过量的氨通过二氧化碳气提和在降膜式换热器中的蒸汽进行分解和分离出来。气提塔的操作压力为18.04兆帕,温度为177℃,塔顶气体送到1号和2号甲铵

冷凝器中。

在甲铵冷凝器中,气提塔的塔顶气体被冷凝下来,并被来自回收工段的循环甲铵溶液吸收,在此冷凝热和吸收热用于1号甲铵冷凝器中产生0.59兆帕的蒸汽和在2号甲铵冷凝器中加热气提塔出口尿素溶液。甲铵冷凝器底部的气体和溶液都送到合成塔中。

从合成塔顶部出来气体含有少量氨、二氧化碳,送到高压洗涤器进行回收。在洗涤器中,利用循环甲铵溶液回收氨和二氧化碳,然后送入l号甲铵冷凝器作吸收剂。从洗涤器顶部出来气体送人高压分解器,以进一步回收氨和二氧化碳。2.净化

从气提塔底出来尿素溶液先经2号甲铵冷凝器预热至155℃,然后送往高压分解器,由内部热交换器中的蒸汽冷凝液进一步加热,将氨基甲酸铵分解成气氨和二氧化碳,然后将气体送到高压吸收塔中。当大部分氨基甲酸铵在高压分解器中分离出来后,尿素溶液在降压到0.35兆帕情况下被送入低压分解器,溶液进一步提纯到残余氨和二氧化碳含量分别为0.5%和0.4%。

低压分解器分离出来的气体送到低压吸收塔,尿素溶液被送到闪蒸分离器进行最后阶段提纯,通过真空闪蒸将残余的氨和二氧化碳进一步分离出来。

在尿素溶液槽出口处的尿素溶液中含有大约70%的尿素和大约0.4%的氨,此尿素溶液被尿液泵送到浓缩工序。3.浓缩,造粒

尿素溶液首先送到真空浓缩器,浓缩至大约84%尿素。

尿素溶液在0.02兆帕真空下,由低压蒸汽加热至132℃,使出真空浓缩器的尿素浓度达95.5%。经过浓缩的尿素溶液被送到最终浓缩器,由低压蒸汽加热至138℃,在最终分离器,在0.肋3兆帕真空下,溶液浓缩至含尿素99.8%,由熔融尿素泵送往造粒塔顶部。通过造粒喷头向塔内喷洒造粒,落在塔底尿素经皮带送往仓库贮存或进行包装。4.回收

来自低压分解器的塔顶气体被送到低压吸收塔。在高压吸收塔中形成的甲铵溶液,经甲铵泵输送,其中一部分循环至2号甲铵冷凝器,另一部分经过合成工段的洗涤塔循环至1号甲铵冷凝器。

5.工艺冷凝液的处理

来自最终浓缩器表面冷凝器的冷凝液在工艺冷凝槽中收集后经吸收泵送入洗涤塔,用于洗涤来自高压吸收塔的放空气体。来自第一和第二表面冷凝器的工艺冷凝液在工艺冷凝液贮槽贮存,然后经工艺冷凝液泵送至工艺冷凝液气提塔,通过蒸汽气提从冷凝液中将氨和二氧化碳汽提出来,塔顶气体送至低压分解器进行回收。来自工艺冷凝气提塔中间段的气提冷凝液用泵送到尿素水解器,在该水解器中尿素全部水解为氨和二氧化碳。来自尿素水解器的工艺冷凝液再次送到工艺冷凝液气提塔下部,其中的氨和二氧化碳气提出来。处理后的工艺冷凝液中尿素和氨含量均小于1×10—6,送出界区可用作锅炉给水。

六、全循环改良法工艺

其特点是尿液先结晶,再熔融造粒以降低缩二服。

其工艺流程简述如下: 1.尿素合成

来自界外的液氨经高压液氨泵加压至26兆帕送人合成塔。

来自界外的二氧化碳气经二氧化碳压缩机加压至26兆帕,送入合成塔。

氨和二氧化碳在塔内反应,合成塔操作压力25兆帕,顶部温度200℃,氨/二氧化碳为4,水/二氧化碳为0.37,二氧化碳转化率为71.7%。2.尿液的分解和结晶分离

(1)高压分解:从合成塔顶出来的反应物经减压阀减压至1.7兆帕进入高压分解塔,由高压分解塔再沸器来提供攘俊?/span>(2)低压分解:高压分解塔底部出来的溶液经过液位调节阀减压至0.25兆帕进入低压分解塔上部,在低压分解塔上部,利用显热使部分氨和二氧化碳气化,然后分两路同时进入换热器和再沸器,再回到低压分解塔下部填料段,与上升的二氧化碳气逆流接触,进行气提,使甲铵进一步分解成氨和二氧化碳。

(3)气体分离:从低压分解塔底部出来含有少量氨和二氧化碳的尿素溶液继续减压至0.03兆帕,进入气体分离塔上部。利用显热进行氨和二氧化碳分离。闪蒸后溢流到塔下部,;塔下部设填料段和U型管加热器,尿液经填料与由尾气循环鼓风机送来的空气逆流接触进行气提,使氨和二氧化碳分离,再经U型管力口热器将尿液加热,这时尿液浓度达74%。

(4)尿液结晶:从气体分离塔底部出来的浓度为74%尿素溶液,由尿液泵送到结晶器。结晶器上部采用真空结晶,经过上部真空蒸发,尿液浓度达到82%~86%,在结晶器下部有结晶尿素形成/含结晶尿素的浓尿液,由料浆泵送至离心机分离,经离心机分离后出来的结晶尿素含水2.4%以下,缩二脲0.1%,缩二脲的下降是靠加入的缩二脲洗涤水将缩二脲洗人母液中。从离心机出来伪母液收集在母液贮槽,—由母液泵送出一部分进人低压吸收塔,并最终返回合成塔,其余大部分返回结晶器继续浓缩结晶。3.干燥和造粒

从离心机出来的粉状尿素进入气流于燥器,经送风机及造粒塔顶的气流干燥器引风机抽吸,将尿素经气流输送管送至塔顶,进入旋风分离器,将尿素分离下来,送入熔融器,将尿素熔融后送至造粒塔喷头造粒。粒状尿素落至沸腾床冷却器,将尿素冷却后从沸腾床溢出经皮带输送机将产品尿素输往仓库或进行包装。4.回收

将各段分解塔分解出来的氨和二氧化碳分别回收,再返回合成塔。

七、HEC尿素工艺

HEC尿素工艺其特点是:

(1)设有两个尿素合成塔。第一塔为主合成塔,操作压力22~24兆帕,温度195℃,氨/二氧化碳=3.6,水/二氧化碳=0,二氧化碳转化率为75%。第二塔为辅助合成塔亦称副塔,操作压力16兆帕,温度190℃,氨/二氧化碳=4.5,水/二氧化碳=1.3,二氧化碳转化率61.0%。两塔平均转化率达71%较其他尿素工艺均高。(2)中压、低压回收系统设备小。

(3)物料、动力消耗较少。采用该法对全循环法尿素装置进行技术改造可降低氨耗、汽耗,经济效益较好。蒸发话系统与其他工艺大致相同,兹将高压部分及回收部分工艺流程介绍如下:

来自界外二氧化碳经二氧化碳压缩机加压至25兆帕与高压液氨泵加压后的液氨混合后先进入甲铵冷凝器,氨和二氧化碳反应生成热用来副产低压蒸汽,出甲铵冷凝器反应混合物进入第一合成塔,从塔顶部出来进入高压分解器上部分离器,高压分解器是用2.45兆帕蒸汽加热

产生气提作用。从分离器上部出来溶液进入第二合成塔,从中压吸收塔回收甲铵液经高压甲铵泵送入第二合成塔,从第二合成塔出来尿素溶液也送人高压分解器上部分离器,一塔、二塔的尿素溶液在高压分解器底部出来进入中压分解器,从中压分解器出来进入低压分解器,从底压分解器出来尿素溶液送往蒸发器,在真空下蒸发水分,尿素浓度达四%,然后用熔融尿素泵送往造粒塔造粒。从低压分离器上部分离器出来气体送人低压冷凝器,从低压冷凝器出来碳铵溶液经气液分离器出来用低压碳铵泵送人中压吸收塔底部。

从第二合成塔顶部出来气体送人中压分解器上部分离器,从上部分离器出来气体先经一段蒸发器下加热器回收热量,然后送往中压吸收塔与塔上部喷淋下来液氨接触被吸收生成甲铵液/经高压甲铵泵送入第二合成塔。从中压吸收塔顶部出来气氨送入氨冷凝器,冷凝成 液氨流人液氨贮槽,循环使用。

八、大颗粒尿素的制造

大颗粒尿素肥效好,更适宜机械施肥,可与磷铵渗混制成混复肥,不但用作农作物施肥,还可用飞机撒播对森林进行施肥。而且大颗粒尿素生产装置排放空气中含尿素粉尘少,小于25毫克/米3(标),更有利环保。大颗粒尿素在世界尿素年总产量比例由20世纪70年代的3.6%提高到目前的20.5%左右。

生产大颗粒尿素有转鼓造粒和流化床造粒技术,我国现都采用了流化床造粒,兹将生产流程介绍如下:

采用流化床生产大颗粒可省去二段蒸发器,从熔融尿素泵送来浓度为96%尿液,温度128~135℃人尿液甲醛混合器。甲醛溶液贮槽内的溶液通过两台计量泵,一台送人尿液甲醛混合器,另一台的甲醛溶液加水混合后送入造粒器至造粒器洗涤器的气相管内。出尿液甲醛混合器的溶液进人造粒器的雾化喷嘴,在雾化空气的作用下被喷洒在悬浮在造粒器流化床上的尿素粒子上。雾化空气由空气鼓风机提供,送人造粒器下部,通过多孔板人流化床层。出造粒器顶部的气体含有尿素粉尘,在进入造粒器洗涤器以前喷人甲醛与水混合后的溶液,可促使气相中的氨被吸收。

在造粒器洗涤器内,气相中的尿素粉尘被上部喷洒的尿液吸收。增浓后的尿液从循环泵出口抽出排入循环槽,同时从冷却器洗涤器循环泵抽出部分稀尿液人造粒洗涤器作为补充水,洗涤后气体通过抽风机排出,与冷却器洗涤器抽风机来的气体混合后,通过排气筒排气,气体含尿素粉尘小于25毫克/米3(标)。

造粒器内的尿素粒子通过取出器取出,经安全筛入第一流化床冷却器,经安全筛分出的结块尿素入循环槽。在槽内部.溶解,尿液浓度约为45%,通过循环泵送回真空浓缩器进行浓缩成96%尿素溶液。

在第一流化床冷却器内,尿素粒子从95℃降至60℃,冷却用空气由第一冷却器流化风机提供。冷却器的尿素粒子经斗式提升机,给料器人振动筛。振动筛有两层筛网,上层不合格的大尺寸粒子入破碎机料斗,经破碎机破碎后的粒子与下层来的不合格的小尺寸粒子一起经溜管人造粒器。从振动筛上下两层筛网之间来的合格粒子人最终冷却器。

最终冷却器是为了在夏季气温高的地区仍能将产品粒子温度降到50℃。最终冷却器流化空气在空气冷却器中用氨冷到6℃,分离凝结水后,再将空气预热到13℃用风机送人最终冷却器。出最终冷却器尿素产品可送往仓库或包装厂房进行包装。

出第一流化床冷却器及最终冷却器的气体,被抽出送至冷却器洗涤器,在此用冷却器洗涤器循环泵来的稀尿液进行洗涤,以回收气休中的尿素粉少。

尿素主要生产技术进展

一CO2气提工艺

1.主要技术特点:

①流程简单:由于合成工段气提效率很高,减小了下游工序的复杂程度,是目前惟一工业化、只有单一低压回收工序的尿素生产工艺,操作方便、投资小、可靠性强、运转率高、维修费用低; ②

高压圈工艺优化组合:操作压力为l3.6MPa、氨/碳比为1∶2.95、合成温度180~183℃、冷凝温度为167℃、气提温度190℃、气提效率为80%以上,这些参数都比较温和,采用25-22-2 CrNiMo材料即可达到材质耐腐蚀性的要求,设备制造和维修费用低;

③电耗低:因为操作压力低,因而高压氨泵、高压甲铵泵的功耗也低。由于气提效率高且没有中压回收工段,没有单独的液氨需循环回收,甲铵液的循环量也少,因而进一步降低了循环氨、甲铵所必须的功耗;

④采用池式冷凝器:池式冷凝器作为初级反应器使合成塔的体积减少了约50%、尿素框架的高度为76m左右;

⑤安全系数高:在脱氢转化器中,通过钝化燃烧除去原料CO2中的H2、CO等可燃性气体,使高压和低压放空气均处于爆炸范围之外,工艺装置安全性高;

⑥污染小:工艺冷凝液经水解解析后,不仅降低了氨损失,也消除了对环境的污染。2.技术进展 2000+TM超优工艺: 其主要优点:

①采用了新型高效的塔盘,新塔盘上设有气体分布系统的液体上升管,以使塔盘上气相和液相混合均匀,可消除常规塔盘上存在沟流和返混的现象;

②卧式池式冷凝器取代原立式池式冷凝器,并且具有浸没U型管束;

③进一步降低了尿素主框架的高度:通过采用新型高效塔盘、卧式池式冷凝器、减少合成塔的容积和降低塔的高度、增设借液氨为动力的高压氨喷射器等方法,主框架的高度由原76m降到38.5m;

④增设CO2脱H2装置,使CO2气中H2体积分数由0.5%降到0.005%以下。大颗粒尿素流化床工艺: 挪威海德鲁公司大颗粒尿素流化床造粒技术主要特点:

①采用浓度为95%~96%的尿素液作原料,尿素液只需一段蒸发浓缩,简化了尿素系统流程; ②由于省去了二段蒸发系统,节省了二段蒸发加热和抽真空所消耗的蒸汽,减少了工艺冷凝液,相应也降低了水解负荷,同时也降低了冷却水用量;

③造粒机采用空气雾化和流化相结合的造粒技术,效率高,生产能力大,成品质量好、强度高;

④操作简单,开车时间短,投料后1h内即可出产品;操作弹性大,负荷变化范围为30%~110%;

⑤与其他机械造粒装置相比,返料比低,从而强化了设备能力并降低了造粒过程中的能耗;

⑥采用添加剂使流化床生成的粉尘少,且含尘尾气采用湿式洗涤,吸收效率高,放空尾气中尿素粉尘含量达到环保要求;

⑦装置可靠性高,造粒机、粉尘洗涤器等因无磨损部件,寿命可达25年以上。二NH3气提工艺 1.主要技术特点: ①合成塔进料NH3/CO2摩尔比为3.3~3.6,CO2转化率较高,减少了高压回路以后的循环回收负荷;

②由于合成系统NH3/CO2摩尔比较高和设备选材恰当,大大减轻了设备的腐蚀问题,无需专门钝化高压系统没备,另外,即使事故停车,可以封塔几天而无需排放,封塔3天再开车后尿素产品仍为白色;

③中、低压分解加压器均为降膜式,操作过程积液量少,即使停车排放,NH3和CO2的损失量也少;

④由于采用了甲铵喷射泵,所有高压设备均可布置在地面上,无需高层框架,可节约投资,大大加快建设进度;

⑤由于有中压分解段,增加了操作的灵活性和弹性,可通过改变气提效率和高压甲铵冷凝器的副产蒸汽量来调节整个装置的蒸汽平衡,使之在最佳的条件下操作;

⑥工艺冷凝液经水解解析处理后,不但彻底消除了污染,减少了氨和尿素的损失,而且处理后的冷凝液还可作为锅炉给水;

⑦造粒改用转鼓造粒技术,克服了原来喷淋造粒尿素硬度小、粒柱小、易结块且从塔顶排放的氨和尿素粉污染环境的缺点。2.技术进展:

目前该工艺技术的最新进展为:增加吸收塔来回收低压系统放空的氨,可降低尿素装置氨耗,预计每年可回收氨300~500t;气提塔换热管由衬锆双金属不锈钢材质代替钛材,这种材料可有效地防止冲刷腐蚀;BD放空管线及放空烟筒由不锈钢材质代替碳钢材料;柱式高压氨泵以脱盐水来代替密封油,每年节油20kL;采用转鼓造粒技术,可增强成品的硬度,使颗粒增大,不易结块。三ACES工艺 1.主要技术特点:

①合成塔的操作条件优化、气提塔内结构特殊设计以及分解、分离所需的热量不需外部供应,能耗降低;

②该法NH3/CO2摩尔比高达4.0,相应转化率也高达68%;

③在腐蚀性强的部位采用双相不锈钢,减小腐蚀,装置可以连续运转; ④采用获得专利的特殊气提塔,具有高效的CO2气提设施。2.技术进展

改进ACES21 ①高压容器呈平面分布,安装简便;

②整个工艺将氨基甲酸盐生成、热回收、尿素合成等过程全部整合到竖式埋入式氨基甲酸盐冷凝器中,高压容器的数量和热传递面积减少; ③降低反应器和气提塔的体积和质量,二者装配简化;

④在合成压力较低的条件下对不同的氨基甲酸盐冷凝器反应摩尔比和反应器反应摩尔比进行优

化,降低了高压容器和转动设备的构造设计压力并降低了能源消耗。大颗粒尿素喷射流化床造粒工艺技术:

日本东洋工程公司的大颗粒尿素喷射流化床造粒技术特点主要包括:

①工艺流程及设备比较简单:该工艺造粒机分流化成粒和冷却两部分,造粒喷嘴采用一般压力式喷嘴,结构简单、单台能力大,粉尘洗涤塔与造粒机顶部相连接,简化流程和减少设备; ②造粒时间短、造粒效率高:该工艺流化床内返料晶种依次在串联的小室内被喷射尿液液滴包裹而长大,且流化床层较薄,有利于粒子的形成;

③造粒机流化床床层高度较低:在50%~100%负荷范围内床层高仅400mm,流化床阻力小,流化空气的风机压头低,耗电省;

④生产操作灵活方便:可调节返料比,其生产控制方案可靠,负荷变化时,调节喷嘴简单; ⑤采用95%左右的尿液作原料:可简化尿液加工工序,节省尿液浓缩的能耗; ⑥粉尘回收系统采取集中收尘和高效的湿式洗涤吸收,放空尾气中尿素粉尘含量小; ⑦设置添加剂MMU自备系统:MMU溶液由甲醛和尿液制备,过程简单,灵活方便,不需外购UF85,可克服甲醛尿液混合不均匀而影响产品质量的弊端。四IDR工艺

①合成系统压力温度较高,NH3/CO2摩尔比也较高,CO2的转化率高达70%以上;②气提塔为2台,第1气提塔以氨为气提剂,部分未转化为尿素的甲铵被分解,并以气相形式返回合成塔,第2气提塔以CO2为气提剂,使大部分过剩氨蒸出;③高压甲铵冷凝器为卧式,具有列管与管段间不存在应力裂蚀腐蚀的优点,高压甲铵冷凝器为2台,副产蒸汽压力较高,可提高各加压设备的传热温差,从而减少各加热设备的传热面积,节省投资;④为达到设备的防腐,在管线上加入少量液体钝化剂,较好地解决了设备的防腐问题。五MEC热循环工艺

①采用特殊设计的“等温合成塔”,该塔装有一个贯穿合成塔且内部开口的原料盘管;②从全系统的热平衡出发,将占总量40%的CO2直接加到中压吸收系统,然后与尿素溶液间接换热,使该溶液中所含的氨基甲酸铵分解,并将尿素溶液浓缩到88%;③冷凝液的处理采用单一的水解气提塔,水解气提塔操作力为0.9MPa,最低操作温度l80℃;④尿素产品中缩二脲含量低,提高了尿素质量;⑤造粒塔直径变小、高度降低,空气从塔底吹入,从塔顶中心抽出,尿素造粒喷头安装在空气抽初和塔壁之间,这种“错流设计”使造粒塔内的冷却效率提高2倍以上;⑥设备造价低,由于CO2转化率高,相应的合成塔设备和循环系统设备投资降低。

第二篇:30万吨合成氨联产50万吨尿素项目简介

30万吨合成氨联产50万吨尿素项目

一、项目概况

本项目是以煤为原料生产合成氨联产尿素(氮肥),合成氨是生产氮肥和磷肥的中间产品。近年来合成氨工业发展很快,大型化、低能耗、清洁生产均是合成氨设备发展的主流。目前合成氨产量规模以中国、俄罗斯、印度等国最大,约占世界总产量的一半以上。合成氨主要原料有天然气、石油、重质油和煤等,但是自从石油涨价后,由煤制氨法重新受到重视,因从世界燃料储量来看,煤的储量约为石油、天然气总和的10倍。另从氮肥产品结构看,由于原来生产碳铵的中氮肥厂转产尿素,使尿素产品成为主要产品,因而煤制氨-尿素厂在氮行业中占主要地位。

二、国内外生产消费情况及需求预测 国内生产能力现状

中国合成氨工业经过40多年的发展,产量已跃居世界第一位,2004年产量达4222万吨,目前我国合成氨生产设备是大、中、小规模并存,总生产能力为4.4×107吨/年。目前我国已投产的在大型合成氨设备有30套,设计总能力为1.8×107吨/年,实际生产能力为2.0×107吨/年,约占我国合成氨总生产能力的23%。中国内地中型合成氨生产设备有48套,生产能力为9.2×107吨/年,约占我国合成氨总生产能力的11%,我国小型合成氨设备有500多套,生产能力为5.6×107吨/年,约占我国合成氨总生产能力的66%。中国合成氨生产主要集中在华东、华南及华北地区,合成氨产量分别占全国总产量的29.46%、23.73%和16.15%。

国内市场供需情况分析及预测

2000年中国合成氨产量为3.3×107吨/年,进口量为9.2×105吨,出口量为1.34×106吨。2004年中国合成氨产量为4.2×107吨,进口量为6.29×104吨,出口量为零,1995—2004年中国大陆合成氨表观需求量为年均增长4.83%。预计2006年对合成氨的需求量将达到5670万吨,现在生产只能满足70%的国内需求。氮肥生产是合成氨主要需求领域。2004年我国氮肥生产量(折N100%)为3.7×107吨,所消费合成氨约占我国合成氨总需求量的90.1%,其中尿素为2.4×107吨。

国外市场供需情况分析及预测

由于过去几年合成氨产能的削减,全球合成氨市场目前供求趋紧,2004年美国合成氨生产装置的开工率已处于90%的高位。未来几年全球合成氨市场需求有望以年均1.3%的速度增长,这种需求的良好增长使2004年合成氨价格上涨了约17%。

2003年全球合成氨产能为1.28亿吨,同年的市场需求量为1.4亿吨,其中尿素占22.5%,直接用作肥料的占20.4%,磷酸二氢氨占17.5%,硝酸占10.9%,硝酸铵占7.3%,用作化学品占5.1%,硫酸铵占3.6%,其他用途占12.7%。

三、生产工艺及流程

(一)合成氨工艺流程及概述

工艺流程大概可以分为:原料气的制备;原料气的净化;气体压缩和氨的合成四大部分

1、原料气的制备

目前我国煤焦制氨采用的气化技术主要有固定床间歇气化、水煤浆加压气化两种。

该项目拟采用德士古水煤浆气化技术。德士古水煤浆气化是一种以水煤浆和氧气为进料的加压气流床气化工艺,主要工艺特点有:

(1)煤种适应性较广,可以使用高硫、高灰分获得高纯还原气;(2)碳转化率高(94—99%);

(3)气化炉的气化及净化系统压力高(2.5—20MPa),所以设备十分紧凑;气化炉结构简单,无运动部件,核心部件是水煤浆氧燃烧喷枪,气化炉工作稳定,单炉作业率可达85%,有备用炉保证维修时作业率可达95%—99%,影响德士古操作和气化的主要工艺指标为水煤浆浓度、氧煤比和气化炉操作压力;(4)德士古煤气化炉的另一个显著特点是环保效果好,由于气化炉内温度高达15000C,因此煤气中不含焦油,与传统的煤气化方法相比,德士古气化法排放的CO2减少40%,NOX减少了86.2%,SO2减少了81.2%,因此,这是一种适合我国国情的洁净煤气技术。

2、原料气的净化

在制得的原料气中,除有用成分氢和氨外,还有不同数量的H2S、有机硫化物、CO2、CO等,为此必须将原料气进行净化。

3、气体的压缩

原料气的净化和氨的合成都必须在加压和高温中进行。必须使用原料气压缩机、循环压缩机和氨压缩机等进行压缩。压缩机的类型很多,但在合成氨生产过程中一般常用的都是往复式压缩机。如氢氮压缩机大多采用H22和3D22等系列。

4、氨合成

氨合成丛压力来分有高压法、中压法、低压法三种,我国目前煤焦制氨的34家合成氨厂均采用中压法,其合成压力除大化肥厂为26MPa外,其他均为31.4MPa。

合成塔的直径一般为Φ800—Φ100mm,但大多数为Φ1000mm。只有大化肥厂采用德国的Krnp公司的Φ1300mm的合成塔。至于合成塔的台数主要根据各厂的实际情况来定。

(二)尿素生产工艺流程及概述

制造尿素的方法有50余种,但实现工业化的只有氢氨化钙(石灰氮)法,和氨与CO2直接合成法两种。

合成氨生产为氨与CO2直接合成尿素技术提供了氨和CO2,因原料获得方便,产品浓度高,现在广泛采用此法生产尿素。我国尿素生产主要采用水溶液全循环法。

水溶液全循环法是将未反应的氨和CO2用水吸收生成甲胺或碳酸铵水溶液循环返回系统。我国在煤焦制氨—尿素厂26家中有22家均采用水溶液全循环法。采用Φ1400mm的尿素合成塔,Φ9000—1600mm的自然 通风造粒塔。

工业上由NH3与CO2直接合成尿素分下列四个步骤进行:(1)NH3与CO2的原料供应及净化(2)NH3与CO2合成尿素

(3)尿素熔融业与未反应生成尿素物质的分离和回收。(4)尿素溶液的加工

一般来说,上述四个步骤中,第一步和第二步除工艺条件稍有差别外,在设备构造和操作原则上几乎差不多。第四步尿素溶液加工,实际上是尿素溶液浓缩结晶造粒生产尿素颗粒成品或液态尿素的过程。造粒塔排放的粉尘和NH3会对大气环境造成污染,但对水环境不会有很大的影响。第三步差异较大,在合成尿素工艺流程分类时,是按第三步来分,大致分为不循环法、部分循环法、半循环法和全循环法。即将NH3与CO2在尿素合成系统中循环使用。气提法是全循环法的发展。在简化流程、热能回收,延长运转周期和减少费用等方面较水溶液全循环法优越。目前我国中氮尿素厂生产方法以水溶液全循环法为主,并引进了氨气和CO2气提法。

四、产业优势

三门峡位于河南省西部,煤炭资源丰富,煤田面积368平方公里,保有储量18亿吨,远景储量27亿吨,居河南省第二位,现有生产能力3000万吨/年,主要煤种为长焰煤、焦煤等,具有挥发分高、活性好、低硫磷等特点,是煤化工产业理想的原料用煤。到2010年,煤炭产量将达到5000万吨,可以为本项目提供充足的原料保障。

五、投资估算及经济效益

项目总投资11亿元,建成后年均销售收入7.8亿元,年利税2.8亿元,投资利润率13.5%,投资回收期6.88年。

第三篇:合成氨(范文)

合成氨生产技术综述

一.合成氨生产技术的发展过程及生产技术现状

1.传统型蒸汽转化制氨工艺阶段

从20世纪20年代世界第一套合成氨装置投产,到20世纪60年代中期,合成氨工业在欧洲、美国、日本等国家和地区已发展到了相当高的水平。美国Kellogg公司首先开发出以天然气为原料、日产1 000 t的大型合成氨技术,其装置在美国投产后每吨氨能耗达到了42.o GJ的先进水平。Keuogg传统合成氨工艺首次在合成氨装置中应用了离心式压缩机,并将装置中工艺系统与动力系统有机结合起来,实现了装置的单系列大型化(无并行装置)和系统能 量自我平衡(即无能量输入),是传统型制氨工艺的最显著特征,成为合成氨工艺的“经典之作”。之后英国ICI、德国uhde、丹麦T0psoe、德国Br肌n公司等合成氨技术专利商也相继开发出与KeⅡogg工艺水平相当、各具特色的工艺技术,其中Topsoe、ICI公司在以轻油为原料的制氨技术方面处于世界领先地位。这是合成氨工业历史上第一次技术变革和飞跃。

2.低能耗制氨工艺阶段

2.1低能耗制氨工艺

具有代表性的低能耗制氨工艺有4种:Kellogg公司的KREP工艺、Braun公司的低能耗深冷净化工艺、uHDE—ICI—AMv工艺、Topsoe工艺。与上述4种代表性低能耗工艺同期开发成功的工艺还包括:①以换热式转化工艺为核心的IcI公司LCA工艺、俄罗斯GIAP公司的Tandem工艺、Kel.1099公司的KRES工艺、Uhde公司的CAR工艺;②基于“一段蒸汽转化+等温变换+PSA”制氢工艺单元和“低温制氮”工艺单元,再加上高效氨合成工艺单元等成熟技术结合而成的德国Linde公司IAC工艺;③以“钌基催化剂”为核心的Kellogg公司的KAPP工艺。低能耗制氨工艺技术主要以节能降耗为目的,立足于改进和发展工艺单元技术,其主要技术进展包括:

①温和转化。一段转化炉采用低水碳比、低出口温度、较高的出口cH4含量操作,将负荷转移至二段转化炉;同时二段转化炉引入过量空气,以提高转化系统能力。②燃气轮机。使用燃气轮机驱动空气压缩机,并与一段转化炉紧密结合。③低热耗脱碳。采用低热耗Be面eld或。一MDEA脱碳,以降低能量消耗。

④深冷净化。Braun公司采用深冷净化,在合成气进入氨合成回路之前脱除其中的cH4和部分Ar,并调节合成气中H2与N2摩尔比为3:1;uhde—IcI—AMV采用深冷净化,在氨合成回路之中回收弛放气中的H2。

⑤效率更高的合成回路。采用新型氨合成塔和低压高活性催化剂,以提高氨合成转化率、降低合成压力、减小回路压降、合理利用能量。Kellogg公司采用卧式径向合成塔和小颗粒、高活性催化剂;uhde公司和T0psoe公司均采用了立式径向流动合成塔 和小颗粒、高活性催化剂。

2.2 以部分氧化工艺为核心的重油或煤气化

(1)重油气化。以部分氧化工艺为核心的重油气化技术,主要有SheⅡ和Texaco两家公司的技术。自1956年开发出第一台渣油气化炉至今,世界上先后建成了140多套装置,用于合成氨、甲醇、纯氢和羰基合成等。由于国外以重油为原料的合成氨装置所占比例很小,且近年来受到石油危机和洁净煤气化技术的挑战,竞争力较差,其技术进展不大。主要 的进展包括:①结构多样化、气化压力提高、设备大型化;②改进气化炉烧嘴,以降低氧/油比、蒸汽/油比,从而降低氧耗、汽耗,改善经济性;③改进雾化喷嘴的结构和材质,以适应石油深加工带来的重油重度加重的问题;④炭黑回收部分开路,以适应石油深 加工带来的重油原料中重金属含量升高的问题。

(2)煤气化。20世纪80年代初到90年代末,煤气化技术再度引起人们重视,对洁净煤气化技术进行了大量的开发研究,取得了重大的进展,开发出众多的煤气化技术,包括:以Texaco公司和Destec公司为代表的水煤浆气化、以sheu公司和德国Prenno公司为代表的粉煤气化、以Lu蛹公司为代表的固定床煤气化等。并率先在IGcc领域进行了示范性大型化商业化装置的运转,Texaco工艺和Lu蛹工艺在合成氨生产中也得以应用,并取得了良好的效果。2.3 传统型制氨装置的节能增产改造 以节能降耗为目的的技术开发成果,在传统型合成氨装置的节能改造和增产改造中也得到了广泛的应用;同时针对传统型合成氨装置,也开发出了许多新的节能和增产技术。在20世纪80年代中期到90年代中期,传统型合成氨装置大多进行了2轮技术改造,基本实现了节能增产的目标,技术水平大大提高,缩小了与低能耗制氨工艺的差距。

(1)第一轮改造。主要采用节能降耗新技术,改造后,传统天然气合成氨装置每吨氨的能耗由41.87 GJ降至35.7 GJ左右,传统轻油合成氨装置每吨氨的能耗下降为37.16 GJ。其采用的技术主要包括:一段转化炉烟气余热回收预热燃烧空气;增设转化炉蒸汽过热烧嘴;脱碳改为低热Benfield;合成气压缩机前加氨冷器;采用casale或Topsoe轴径向内件对合成塔内件进行改造。

(2)第二轮改造。主要采用节能增产新技术,将产量扩充至日产l 200 t以上,传统天然气合成氨装置吨氨能耗进一步降至32.7 GJ,其采用的技术主要包括:空气压缩机、合成气压缩机汽轮转子扩能增效;一段转化炉管更新为大口径薄壁HP50管;一段转化炉对流段空气预热器盘管改造;二段转化炉更换新型烧嘴;高温变换炉和低温变换炉安装内件,成为轴径向炉;增设小低变炉;脱碳在四级闪蒸的基础上进一步改造。

3.装置单系列产量最大化阶段

近10年来,由于低能耗装置吨氨能耗已经降至28 GJ的水平,接近了理论能耗数值(22 GJ),节能降耗的余地已经很小(预计合成氨装置吨氨能耗将难以降低到26 GJ以下),而且即使能够降低,其对装置的经济性也将很小。基于此,为了进一步改善装置的经济性,技术专利商均开始转向以实现单系列合成氨装置产量最大化为首要目标的研究开发。与此同时,在高油价背景下,用煤等劣质原料制氨重新受到重视,以Texaco水煤浆气化和Shell粉煤气化为代表的煤气化技术在改造和新建装置中得到了使用。3.1装置单系列产量最大化

世界级合成氨装置的规模越来越大,以利用较大的产量带来规模经济效益。20世纪80年代投产的世界级合成氨装置的平均产量为1 120 t/d,而最近投产的世界级合成氨装置的产量大多已接近2 000 t/d,且主要按照现有技术进行放大。至今为止,uhde公司已经推出了日产3 300 t合成氨技术,KBR、Topsoe、Lu蛹公司均推出了日产2 000 t合成氨技术。(1)uhde技术

①加氢脱硫原料气在脱硫工段对加氢反应器和脱硫反应器的尺寸没有限制,很容易增加气体流量。必要时可以安装2台脱硫反应器,从而允许装置运行时更换反应器中的氧化锌。②工艺实践证明,离心式压缩机和整体齿轮式离心压缩机适用于产量高达3 000 t/d的装置。

③开发出具有内部绝热冷气出口管的顶烧式一段转化炉,易于应用任何产能的装置,而不需改变其基本结构。2台最大的一段转化炉为甲醇生产合成气装置,分别装有630根和920根管子。3 000 t/d合成氨装置所用的一段转化炉采用最新设计和材料,只用了460根管子。④二段转化炉也可用于产能增加的装置,其特点是通过安装在容器壁的喷嘴增加工艺空气。其优点是通过涡流形式注入空气,可以达到工艺空气与转化气的适当混合。充分的驻留时间允许在燃烧区完全反应,同时避免内件过热和火焰冲击。⑤为满足大型装置一氧化碳变换对催化剂容量的要求,可以设计用于高温和低温一氧化碳变换的反应器。

⑥二氧化碳脱除推荐使用BAsF公司的MDEA工艺,在能量和热量平衡方面最符合uhde公司的理念,并且将对大型装置没有限制。

⑦合成气压缩对于当前2 200 t/d装置,制约产能的主要因素是合成气压缩机。uhde公司正在开发一种新型合成气压缩机,这种压缩机适用于未来产能可高达3 000 t/d的装置。⑧氨合成回路设计基础是3层2个合成塔,废热锅炉位于各反应器下游。所有工艺和容器的设计参数都满足大规模装置的要求。

⑨uhde公司在sAFcO合成氨装置中,通过采用“双压氨合成工艺”,巧妙地突破和解决了合成气压缩机和合成回路对装置单系列产能为3 000 t/d的限制,应用于已在2 000 t/d合成氨装置中验证过的工艺过程和设备,率先实现了3 300 t/d合成氨的目标。BAsF公司在比利时采用uhde技术建成了2 060 t/d的合成氨装置。“双压氨合成工艺”在合成气压缩机2个压缩气缸之间设置新鲜合成气的低压氨合成系统,低压缸出口压力为11 MPa,与低压法氨合成相匹配,并在此系统中分离部分产品;之后在低温下进一步压缩至21 MPa,进入氨合成回路进行高压氨合成。这样不仅减少了合成气压缩的量,而且也减小了合成回路的设备尺寸。

减小了合成回路的设备尺寸。(2)Kellogg技术

①Kellogg公司和Bm帅&Root公司合并为KBR公司之后,在特立尼达采用KBR(KAAP)工艺建设了4套2 000 t/d的合成氨装置。

②KAAP工艺以钌基催化剂为核心,由于该催化剂具有低压、高活性的特点,与其他催化剂相比其用量较少;合成回路能够在较低压力下运行,且合成回路的氨转化率高。低压操作可以使用单系列合成气压缩机,并节省装置投资。KAAP催化剂的高活性使大产能成为可能,同时不需要较高的压力和多台合成塔。

③KBR公司也设计了4 000 t/d装置,除了一段转化炉和氨合成塔为并列设置外,其他设备均为单系列。(3)Topsoe技术

Topsoe公司合成氨技术的最新进展包括:改进的转化炉设计;用于二段转化炉的新型管式烧嘴;改进的S一200氨合成塔设计;中压蒸汽冷凝液汽提;改进的触媒结构。这些新技术在拉丁美洲的2个世界级规模的项目中得到应用。Pmfeni项目的特点是2 050 t/d合成氨装置与3250 t/d尿素装置单系列配套生产。该装置构成世界上最大的农用合成氨/尿素联合工厂,其最终产品是粒状尿素。其合成氨装置采用Topsoe公司低能耗合成氨工艺,包括脱硫、一段和二段转化、二步变换、MDEA法二氧化碳脱除、甲烷化、压缩、S一200氨合成回路、氢气回收装置和产品回收。转化炉使用现代转化炉管材,并对侧烧炉设计进行了改进,允许在更高的压力和热流下操作。转化炉设计紧凑,只用了264根管子。通过引入新的管口烧嘴,增加了整套装置的稳定性。改进的催化剂允许减小转化炉尺寸。当原料气中碳氢化合物比例较高时,Topsoe工艺包括1台预转化炉,将碳氢化合物转化为甲烷、碳氧化合物和氢气。如果把来自预转化炉的气体加热到650℃左右,那么一段转化炉的负荷可降低25%以上。这样,为3 000 t/d装置设计一段转化炉就不再困难了。二氧化碳脱除采用BASF公司的MDEA工艺,该部分装置的流体流速非常高,因此需要大型设备,低压容器的直径在6 m左右。氨合成系统以T0psoe s一200径流式氨合成塔为基础,回路压力19.12 MPa,以获得较高的单程氨转化率,氨合成塔的直径只有3 m。如果要求产量达到3 000 t/d,那么可以在s一200合成塔后再增加一个单层径流式S一50合成塔。(4)Lurgi技术

h蛹公司开发出以“自热转化ATR”为核心技术的Megammonia工艺。Megammonia工艺装置包括自热转化(6 MPa,ATR)、高温变换(5.5 MPa,HrI's)、气体净化(5.2 MPa,RNwu)、氨合成(20 MPa,Synth.)等工艺单元。3.2合成氨装置的结构调整

由于石油价格的飞涨和深加工技术的进步,以“天然气、轻油、重油、煤”作为合成氨原料结构、并以天然气为主体的格局有了很大的变化。基于装置经济性考虑,“轻油”和“重油”型合成氨装置已经不具备市场竞争能力,绝大多数装置目前已经停车或进行以结构调整为核心内容的技术改造。其结构调整包括原料结构、产品结构调整。由于煤的储量约为天然气与石油储量总和的10倍,以煤为原料制氨等煤化工及其相关技术的开发再度成为世界技术开发的热点,煤有可能在未来的合成氨装置原料份额中再次占举足轻重的地位,形成与天然气共为原料主体的格局。

原料结构调整主要是“油改气”(利用部分氧化工艺将原料改为天然气)和“油改煤”(利用煤气化工艺将原料改为煤或石油焦)。原料结构调整方案中主要考虑的是资源条件及其地理位置,以经济效益(包括装置投资、操作费用、生产成本)为标准进行确定。天然气是合成氨装置最理想的原料,且改造时改动量最小、投资最省,应以优先考虑;但如果不具备以天然气为原料的基本条件(资源和地理位置),则以“原料劣质化”为主,进行“煤代油”或“渣油劣质化”的技改。为了尽可能地增大投资效益,可以适当扩大气化部分的规模,通过“配气方案”实现氮肥一C,化工及其衍生物产品的联合生产,以实现产品结构的调整。这样不仅联合生产装置投资较低,而且能够实现合成气的有效合理利用,操作费用和生产成本将会大幅度降低,经济上将更加具有竞争力。目前上述结构调整工程已经开始实施,由于资源条件及其地理位置的原因,对轻油型合成氨装置进行了“油改煤”的技术改造,而重油型合成氨装置则进行了“油改气”技术改造,并取得了预期效果,有力地推动了天然气部分氧化工艺技术和煤气化工艺技术的进步。

4.现状

中国的氨气大多数产自煤气化,世界氨气主要由天然气生产.目前我国是世界上合成氨量最大的国家,拥有大型氮肥装置共计三十四套,有十七套以天燃气为原料,六套以轻油为原料,九套以重油为原料,还有两套以煤为原料。这三十四套大型氨肥装置每年可以生产大约一千万吨氨肥,其下游产品主要包括了硝酸磷肥和尿素。除此之外,我国还有五十五套中型合成氨装置,包括三十四套以煤和焦油为原料的装置,九套以渣油为原料和十二套以气为原料的装置。这五十五套中型合成氨装置年生产能力约为五百万吨,下游产品主要是尿素和硝酸铵,我国还有一百一十二套经过改造生产尿素,原料以煤,焦炭为主的氨合成装置。其中以煤,焦炭为原料的占 96%,以气为原料的仅占 4%。我国引进大型合成氨装置的总生产能力为1000万t/a,只占我国合成氨总能力的1/4左右,因此可以说我国氮肥工业主要是依靠自力更生建设起来的。在此过程中,研究开发了许多工艺技术,促进了氮肥生产的发展和技术水平的提高,包括:合成气制备、CO变换、脱硫脱碳、气体精制和氨合成技术。除上海吴泾化工厂为国产化装置外,其他均系从国外引进,按照专利技术分:以天然气和轻油为原料的有Kellogg传统工艺(10套)、Kellogg-TEC工艺(2套)、Topsoe工艺(3套),及20世纪90年代引进的节能型AMV工艺(2套)、Braun工艺(4套)、KBR工艺(1套);以渣油为原料的Texaco工艺(6套)和Shell工艺(3套);以煤为原料的Lurgi工艺(1套)和Texaco工艺(1套),荟萃了当今世界上主要的合成氨工艺技术。20世纪七八十年代引进的天然气合成氨装置均已对其进行了以节能降耗和扩能增产为目的的两轮与国外装置类似的技术改造,合成氨能耗由4187GJ/t降至3349GJ/t,生产能力提高了15%~22%;轻油型合成氨装置也进行了类似的增产节能技改,将能耗降至372GJ/t,生产能力提高了15%左右。20世纪80年代引进的渣油型合成氨装置也进行过增产10%的改造,主要改造内容是气化装置增设第3系列,空分工艺改为分子筛流程,目前已经具备了实现1100万t/a合成氨的条件。20世纪90年代,在高油价和石油深加工技术进步的双重压力下,为了改善装置的经济性,多套装置开始进行以原料结构和产品结构调整为核心内容的技术改造,原料结构调整包括轻油型装置的油改煤(采用Shell或Texaco煤气化工艺,以煤替代轻油)、渣油型装置的油改气(采用天然气部分氧化工艺,以天然气替代渣油)或渣油劣质化(使用脱油沥青替代渣油);产品结构调整包括转产或联产氢气、甲醇等。

中国科技大学及中国科学院大连化学物理研究所等科研机构在NsR催化技术领域催化剂性能和结构方面作了初步研究。目前,日本丰田汽车公司和美国福特(Ford)汽车公司在NsR催化技术领域的研究成果显著,前者占据了日本国内市场,正在开拓欧美市场;后者正向工业化迈进。瑞典、德国、意大利和英国的科研机构在催化剂性能、反应机理等方面做了许多卓有成效的工作。

二.比较不同原料生产合成氨的生产过程

不同的生产原料采用不同的生产工艺,比如以煤和天燃气为原料的氨合成,通常是采用原料气制备将原料制成含氢和氮的粗原料气。对以煤和焦炭等固体原料的氨合成,通常采用气化的方法制取合成气;对于以渣油为原料的氨合成一般采用非催化部分氧化的方法;对气态烃类和石脑油,工业中一般采用二段蒸汽转化法。合成氨原料气制备完成后一般要进行净化处理,净化处理的主要目的是除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程;

净化:首先包括进行一氧化碳变换,因为在合成氨的过程中不论采用哪种方式都会产生一氧化碳,这是合成氨中多余的成分.一氧化碳的变换:过程中要放出大量的热,因此对一氧化碳的清除必须分段进行。首先是通过高温变换将一氧化碳转变成二氧化碳和氢气,然后再通过低温变换将一氧化碳含量降低至 0.3%左右;

脱硫脱碳:因为各种原料制取的粗原料气,都含有一些硫和碳的氧化物,这些硫和碳的氧化物如果不清除就可能在合成氨生产过程中造成催化剂的中毒,因此在氨合成工序前必须对其进行脱除处理。首先是脱硫处理,脱硫的方法很多,最常用的是采用化学和物理吸收法,可以采用低温甲醇洗法,也可以采用聚乙二醇二甲醚法等。因为在一氧化碳的变换中会残留一些二氧化碳、一氧化碳等成分,粗原料气经 CO 变换以后,变换气中除 H2 外,还有 CO2、CO 和 CH4 等组分,这些成分尤其是二氧化碳会影响着氨合成催化剂,因此要注意对这些气体的排除。排除二氧化碳可以采用溶液吸收法脱除;

气体精制过程,精制过程是指在原料气在进入合成工序前,清除残留的二氧化碳和一氧化碳气体,进行原料气的最终净化,主要方法有甲烷化和液氮洗等。

1.以焦炭(无烟煤)为原料的流程

以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作 为产品。所以,流程的特点是气体净化与氨加工结合起来。三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替 代传统的铜氨液洗涤工艺。

2.以天然气为原料的流程

天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到0.1ppm以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件

3.以重油为原料的流程

以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。

4.以渣油为原料

采用非催化部分氧化的方法

第四篇:合成氨生产企业安全培训

合成氨生产危险有害因素识别 火灾、爆炸危险

1.1合成氨生产采用的主要原料为煤,属可燃固体,这些物质在常温下不易引起燃烧,但如遇高温可能引起燃烧,在煤堆场,大量的煤堆积在一起,热量如无法及时散出,煤可能产生自燃,而引发火灾。

1.2 合成氨生产系统中存在大量的塔、槽、罐等静设备,由于其大部分承受高温高压,且压力和温度是经常变化的,同时参与工艺过程的介质绝大多数是易燃易爆、有腐蚀性和有毒的,因此如有操作失误、违章动火,或因密封装置失效、设备管道腐蚀,或因受设备、管道、阀门制造缺陷的影响等,将会引起泄漏,形成爆炸性混合物,造成爆炸事故。

1.3 合成氨生产系统中存在大量的换热器,有的换热工作条件要求在高温高压条件下进行,有的工作流体具有易燃易爆、有毒、腐蚀性的特点。如果换热器的设计不合理、制造缺陷、材料选择不当、腐蚀严重、违章作业、操作失误和维护管理不善,可能发生换热器发生燃烧爆炸、严重泄漏和管束失控等事故。

1.4 造气炉是合成氨生产系统的生成合成氨原料气的关键设备,由于半水煤气的主要成分有氢气、一氧化碳和少量的硫化氢、甲烷等,这些气体不仅极易燃烧、爆炸,有的还具有腐蚀性、毒性,而且造气炉在高温条件下运行,其操作条件恶劣、造气周期短,如果稍有不慎或违反操作规程等都有可能导致造气炉发生炉爆炸事故。

经分析,发生造气炉爆炸的主要原因如下:

(1)过氧操作致使造气炉爆炸。在半水煤气生产过程中,为防止后工序变换工段触煤活性降低或被烧坏和引起造气系统发生爆炸,氧含量要求控制在0.5%以下。如果半水煤气中氧含量增加,达到爆炸极限时,遇明火和其他激发能源,就会引起爆炸事故。

(2)空气、煤气倒流形成爆炸性混合物。主要表现在:

a、检修时,未采取盲板与系统切断措施,又未关闭下行阀,到气柜的煤气总管和气柜水封积水造成憋压,致使煤气冲破洗气塔水封,或盲板强度不够而被冲破,倒流到炉内引起爆炸。

b、水封放水后或洗气箱上水阀损坏,致使水封破坏,空气流入炉内,或洗气箱水封漏气,煤气倒流入炉内。

c、用煤烘炉时产生煤气、或炉内残存煤气、不慎空气进入炉内而爆炸。d、检修自动调节阀时,未开副线,蒸汽中断,致使煤气倒流。e、洗气塔溢流管被异物堵塞。f、炉盖不严,防爆板破裂。

g、因设备与管道腐蚀穿孔,致使煤气倒流。

h、检修时未关煤气阀门或关不严,在大量煤气存在下动火而爆炸。

(3)水蒸汽压力剧升,正致使造气炉水夹套憋压爆炸。水夹套内的水在炉内高温气体的辐射下,迅速汽化,水蒸汽压力升高,如果由于种种原因(如为提高造气炉生产负荷,有意关小水夹套进(水)、出口(水蒸汽)阀门,以提高煤气发生炉炉温和加速反应;交接班制度不严、操作失误等原因),使水夹套或汽包构成密闭系统,其温度和压力将越来越高,以至材料受不了高压而发生物理爆炸。(4)违章动火引起煤气发生炉爆炸。(5)设备缺陷、检修不良致使造气炉爆炸。

(6)燃料质量不佳、操作不当引起煤气发生炉炉口爆炸。主要原因有:

a、燃料的挥发份高,停车时炉面温度较低,致使挥发份集聚在炉的上部,或燃料温度过大,遇灼热的煤后产生水煤气。

b、炉内炭层中结块严重且有大块悬空现象,内部残存煤气未能排净。c、总蒸汽阀门、上吹蒸汽阀门漏气或未关闭,致使水煤气从炉口逸出。

d、灼热的灰渣或煤落入到积水的灰斗中产生水蒸汽,通过汽化而产生水煤气。e、加煤时,将炉内火苗压灭,致使馏出物和水煤气得不到完全燃烧。

(7)二次上吹结束、空气吹除开始时发生炉底爆炸。主要原因有:二次上吹时,上吹蒸汽阀未打开或开得太慢,致使炉底水蒸气未吹净;炉底灰斗内有大块料,二次上吹时吹不净;吹风阀漏气,使空气和下吹时的炉底煤气混合。

1.5 半水煤气中的H2,CO,CH4和H2S等都是易燃易爆的气体。在脱硫工段,常因设备或管道泄漏造成火灾、爆炸;也会因操作不慎、设备缺陷等原因,导致罗茨鼓风机抽负压,使得空气进入系统,与半水煤气混合,形成爆炸性混合气体,引起爆炸事故。在生产系统的设备和管道表面,由于H2S气体的作用,常会生成一层疏松的铁的硫化物(FeS与Fe2S),该硫化物遇到空气中的氧,极易引起氧化反应,放出大量的热,很快使自身温度升高并达到其燃点而引起自燃。同时,在检修时,设备管道敞开后,也常会因其内部表面铁的硫化物和煤焦油与进入的空气迅速发生氧化反应而引起自燃着火的现象。

1.6 变换工段是在一定的温度和压力下进行的,既存在物理爆炸的危险性,又存在化学爆炸的危险性。在生产过程中,由于设备和管道在制造、检维修中本身存在缺陷或者气体的长期冲刷,设备、管道会因腐蚀等造成壁厚减薄、疲劳,进而产生裂纹等缺陷,如果不能及时发现,及时消除,极易因设备、管道因为承受不了正常工作压力而发生物理爆炸,其后果又可能引发次生火灾及化学爆炸。半水煤气转换为变换气后,气体中的H2含量显著增加,高温气体一旦泄漏出来,遇空气易形成爆炸性混合物,遇火或高热很容易引起火灾、爆炸事故;如果设备或生产系统形成负压,空气被吸入与煤气混合,形成爆炸性混合物,在高温、摩擦、静电等作用下,也会引起化学爆炸;如果生产系统半水煤气中氧含量超过工艺指标,会引起过氧爆炸,违章动火,违章检修,也会引起化学爆炸。

1.7 氮氢压缩机是合成氨生产的关键设备,压缩介质是易燃易爆气体,而且有高压条件下极易泄漏。容易引起燃烧爆炸事故。主要有:

(1)可燃性气体通过缸体连接处、吸排气阀门、设备和管道的法兰、焊口和密封等缺陷部位泄漏;压缩机零件部位疲劳断裂、高压气体冲出至厂房空间;空气进入压缩机系统,形成爆炸性混合物,此时,如果在操作、维护和检修过程中操作、维护不当或检修不合理,达到爆炸极限浓度的可燃性气体与空气的混合物一遇火源就会发生异常激烈燃烧,甚至引起爆炸事故。

(2)气缸润滑采用矿物润滑油,它是一种可燃物,当气体的温度剧升,超过润滑油的闪点后就会产生强烈的氧化,将有燃烧爆炸的危险,另外呈悬浮状存在的润滑油分子,在高温高压条件下,很容易与空气中的氧发生反应,特别是附着在排气阀、排气管道灼热金属壁面油膜上,其氧化就更为剧烈,生成酸、沥青及其他化合物,它们与气体中的粉尘、机械磨擦产生的金属微粒结合在一起,在气缸盖、活塞环槽、气阀、排气管道、缓冲罐、油水分离器和贮气罐中沉积下来形成积炭。积炭是一种易燃物,在高温过热、意外机械撞击、气流冲击、电器短路、外部火灾及静电火花等条件下都有可能引起积炭自燃,甚至爆炸。(3)在压缩机启动过程加,没有用惰性气体置换或置换不彻底就启动;因缺乏操作知识,没有打开压缩机出口阀、旁路阀引起超压;在操作过程中因压缩气体调节系统仪表失灵,引起气体压力过高等,都会引起燃烧爆炸事故。

(4)压缩机的机械事故,如活塞杆断裂、气缸开裂、气缸和气缸盖破裂、曲轴断裂、连杆断裂和变形、连杆螺栓断裂、活塞卡住与开裂、机身断裂、压缩机组振动等,可能酿成破坏性事故,有时会因机械事故而引发可燃性气体的二次爆炸。1.8 铜洗工段的压力及H2浓度很高。同时,高、低压连通部位多,容易发生高压串到低压部分,导致发生物理爆炸、化学爆炸和火灾危险。

1.9 合成工段属于高温、高压工段,且高压、低压并存,这决定了对生产合成氨的设备、管道必须有更高要求。如果因为材质本身的缺陷,制造质量不过关,维修质量不合格,外界压力超过设备、管道的承受压力,便会发生物理爆炸,同时也会引发化学爆炸。在高温高压下,H2对碳钢有着较强的渗透能力,形成氢腐蚀,使钢材脱碳而变脆(即氢脆);N2也会对设备发生渗氮作用,从而减弱其机械性能;材料自身在高温高压下会发生持续的塑性变形,改变其金相组织,从而引起材料强度、延伸等机械性能下降,使材料产生拉伸、起泡、变裂和裂纹而破坏。氢脆、氮蚀、塑性变形的发生,也可引起爆炸事故的发生。

合成工段主要使用H2为原料,反应生成了氨。H2和NH3,是易燃易爆气体,而且其爆炸极限在高温高压下将扩大,一旦发生泄漏而与空气混合,极易发生爆炸。1.10 食品二氧化碳的冷冻介质为液氨,液氨如有泄漏,可能会形成氨和空气的爆炸性混合气体,遇明火或高热,引起爆炸事故。

1.11 甲醇为易燃液体,在甲醇精馏过程中,如果甲醇或甲醇蒸汽发生泄漏,就会与空气形成爆炸性混合物,遇明火或高热,就会引发爆炸事故。1.12 电气火灾事故的原因包括电气设备缺陷或导线过载、电气设备安装或使用不当等,如危险区域分级不准确,电气设备防爆性能不合格,电气设备发生短路、漏电或过负荷,从而造成温度升高至危险温度,引起设备本身或周围物体燃烧、爆炸。锅炉爆炸

在合成氨生产系统有废热锅炉,如因严重缺水、水质不良、设备缺陷等原因,均有可能引发锅炉爆炸。具体分析如下:(1)严重缺水事故

由于操作工误操作、水位计或自动给水装置失灵、排污阀关闭不严、止回阀故障等原因均可造成缺水事故,严重缺水事故可能导致受热面过热烧毁,降低受热面钢材的承受能力,金相发生劣化,炉管爆破,形成锅炉爆炸。(2)满水事故

由于操作工误操作、水位计或自动上水装置失灵会造成满水事故,蒸汽大量带水会降低蒸汽品质甚至发生水击,损坏管道,破坏用汽设备。

(3)水质不合格,锅炉水含盐量达到临界量,或超负荷运行,用气量突然加大,压力降低过快可造成汽水共沸,破坏水循环,恶化蒸汽品质,水击振动,影响用汽设备的安全运行。

(4)锅炉选用钢材或焊接质量低劣,水质不良严重腐蚀、结垢,水循环故障等还可造成炉体爆炸事故。

(5)运行压力超过锅炉最高允许工作压力,钢板(管)应力增大超过极限值,同时安全阀与超压连锁失灵也将造成超压爆炸。3 容器爆炸 各生产装置中存在大量高压设备、压力容器,这些设备、容器如果本身设计、安装存在缺陷;安全附件或安全防护装置存在缺陷或不齐全;在使用过程中如发生侵蚀、腐蚀、疲劳、蠕变等现象;未按规定由有资质的质检单位检验或办理安全准用证;人员误操作等原因,均有可能发生容器爆炸事故。4 中毒和窒息事故

4.1 在合成氨生产过程中,系统中存在的半水煤气、氨均为有毒物质,这些物质如大量泄漏,会造成大面积中毒事故。

4.2 甲醇生产过程中,甲醇也是有毒物质,当甲醇发生泄漏,其蒸汽或液体被人吸入或食入,会发生人员中毒事故。

4.3 二氧化碳属窒息性气体,食品二氧化碳生产过程中如发生二氧化碳泄漏会造*员窒息。5 灼烫

5.1 高温水蒸汽作为一种最常见的热载体的贯穿了整个生产系统,其泄漏可能会造*员的高温灼伤。

5.2 氨(包括氨气和液氨)存在于合成以后的系统中,其经压缩冷凝后成为液氨,是生产中的一种重要的中间产品和制冷剂,常压下,-33.3℃时液氨就会挥发为气氨,挥发的同时吸收大量的热,因此,液氨触及人体,会造成皮肤严重冻伤。液氨系统压力一般都在1.6MPa~2.0MPa之间,一旦泄漏,有可能造成严重危害。6 起重伤害

厂内有多台吊车、电动葫芦,在起重作业(包括安装、使用、维修)过程中有可能发生挤压、坠落、(吊具、吊物)物体打击和触电等人员伤害事故。7 高处坠落

该厂生产厂房多为多层厂房,在二层以上的楼层或操作平台距离地面或楼面大于2米处作业,若防护栏杆设置不规范、防护栏杆腐蚀损坏和其他防护措施不到位等原因,均有可能造成高处坠落事故。8 机械伤害

各种机械设备的运转部位,如果没有设置防护罩等防护措施,人体触及运转部位,可能造成机械伤害事故。9 触电

各带电设备若因防护措施不到位(如触电保护、漏电保护、短路保护、过载保护、绝缘、电气隔离、屏护、电气安全距离等方面不可靠),均有可能造*员触电。10 车辆撞击

厂内行走的车辆,若厂内设施防护不当,易造成车辆撞冲厂内设施,另一方面也易对人员造成碰撞伤害。11 噪声危害

在生产过程中使用各类生产设备(如各类压缩机(特别是合成氨生产系统的高压机、循环机等)、泵、鼓风机、起重机、破碎机、各类物料运输机等)在运行过程都会产生不同程度的噪声,如果降噪设施缺乏或效果不好,作业人员防噪保护措施不到位,存在的噪声对接触噪声作业人员的听力脑神经等身体系统造成危害。粉尘危害

该公司在合成氨的造气等生产过程中,均会产生生产性粉尘,若防尘、除尘措施不完善、个体防护不当,则会污染环境和危害职工的身体健康。13 高温危害 在造气、合成氨等生产过程都存在高温作业,变配电系统中存在大量的电气设备、电气线路以及大、中型生产设备,在运行过程中产生大量热量,使作业场所的空气温度升高,若作业环境的通风和空气调节不良、防暑降温措施不当,将使作业人员受到高温危害。

第五篇:我国合成氨生产工艺技术现状

我国合成氨生产工艺技术现状

2009年07月10日09:27 1装置现状

我国合成氨装置是大、中、小规模并存的格局,总生产能力为4260万t/a。大型合成氨装置有30套,设计能力为900万t/a,实际生产能力为1000万t/a;中型合成氨装置有55套,生产能力为460万t/a;小型合成氨装置有700多套,生产能力为2800万t/a。

目前我国已投产的大型合成氨装置有30套,设计总能力为900万t/a,实际生产能力为1000万t/a,约占我国合成氨总生产能力的23%。除上海吴泾化工厂为国产化装置外,其余均系国外引进,荟萃了当今世界上主要的合成氨工艺技术,如 以天然气和石脑油为原料的凯洛格传统工艺(9套)、凯洛格-TEC工艺(2套)、托普索工艺(3套)、节能型的AMV工艺(2套)和布朗工艺(4套);以渣油为原料的德士古渣油气化工艺(4套)和谢尔气化工艺(3套);以煤为原料的鲁奇粉煤气化工工艺(1套)和德士古水煤浆气化工艺(1套)。

我国大型合成氨装置所用原料天然气(油田气)占50%,渣油和石脑油占43%,煤占7%,其下游产品除1套装置生产硝酸磷肥外,其余均生产尿素。70年代引进的大型合成氨装置均进行了技术改造,生产能力提高了15%~22%,合成氨吨综合能耗由41.87GJ降到33.49GJ,有的以石油为原料的合成氨装置(如安庆、金陵、广石化)用炼油厂干气顶替一部分石脑油(每年大约5 万t)。

另外,我国还有3套大型合成氨装置在建,南化公司计划投料,吉化在设计中,卢天化公司购买的墨西哥二手设备在着手建设,届时,我国大型合成氨装置总生产能力将达1205万t/a。

我国中型合成氨装置有55套,生产能力为460万t/a;约占我国合成氨总生产能力的11%,下游产品主要是尿素和硝酸铵,其中以煤、焦为原料的装置有34套,占中型合成氨装置的62%;以渣油为原料的装置有9套,占中型合成氨装置的16%;,以气为原料的装置有12套,占中型合成氨装置的22%;

我国小型合成氨装置有700多套,生产能力为2800万t/a,约占我国合成氨总生产能力的66%,原设计下游产品主要是碳酸氢铵,现有112套的装置经改造生产尿素。原料以煤、焦为主,其中以煤、焦为原料的占96%,以气为原料的占4%。

2生产技术水平

2.1以煤、焦为原料的合成氨装置技术状况

我国以煤为原料大型合成氨装置1套采用鲁奇粉煤气化工工艺,1套采用德士古水煤浆气化工艺,以煤、焦为原料中小型合成氨装置大多采用固定床常压气化传统工艺,现平均吨能耗为68.74GJ。现在国内普遍认为:德士古水煤浆气化技术成熟,适用煤种较宽,气化压力高,能耗低,安全可靠,三废处理简单,投资相对其它煤工艺节省。水煤浆加压气化的引进、消化和改造,解决了用煤造气的技术难题,使我国的煤制氨技术提高到国际先进水平。虽然德士古水煤浆气化理论上适合于很宽范围的煤种,但国内生产经验是原料煤要满足热值高(大于20.9kJ/g)、灰熔点低(T3小于1350℃)、灰分少等要求。

2.2以渣油为原料的合成氨装置技术状况

我国以渣油为原料的合成氨合成工艺很不平衡,以渣油为原料的大型合成氨装置中,4套采用德士古渣油气化工艺,3套采用谢尔气化工艺,平均吨能耗为45.66GJ,最低为40.82GJ。大多数以渣油为原料的中型合成氨装置采用60年代比较流行的通用设计工艺,采用3.0MPa部分氧化法加压气化、无毒脱碳、ADA脱硫、3.2MPa 3套管合成技术,吨能耗在65GJ左右,进行改造的装置的吨能耗在56GJ左右。

2.3

我国以天然气、轻油为原料的合成氨装置主要是大型合成氨装置,目前已建成的大型合成氨装置中,以天然气为原料的有14套,以石脑油为原料的有6套,采用了凯洛格传统工艺、凯洛格-TEC工艺、丹麦托普索工艺、节能型的AMV工艺和美国布朗工艺。以天然气为原料(传统工艺)的平均吨能耗为36.66GJ,最低为32.84GJ;以天然气为原料(节能型工艺)的平均吨能耗为34.12GJ,最低为31.05GJ;以石脑油为原料的平均吨能耗为38.68GJ,最低为37.01GJ。以天然气、轻油为原料的合成氨装置技术状况

下载合成氨生产尿素原理word格式文档
下载合成氨生产尿素原理.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    化工合成氨生产实习报告

    二.武汉有机实业股份有限公司介绍 武汉有机实业有限公司是国际领先的食品防腐、保鲜、抗氧化的专业公司,运用科技、创新以及人的力量,不断推动人类和动物营养保健的进步。公司......

    合成氨生产危险有害因素识别

    新山达化肥有限公司火灾、爆炸危险辨识 1.1合成氨生产采用的主要原料为煤,属可燃固体,这些物质在常温下不易引起燃烧,但如遇高温可能引起燃烧,在煤堆场,大量的煤堆积在一起,热量如......

    尿素部百日安全生产大检查总结报告

    尿素部百日安全生产大检查总结报告 按照公司开展百日安全生产大检查活动要求,我部门认真开展企业安全生产大检查。部门领导高度重视,积极抓好组织发动工作,成立以部门负责人为......

    合成氨工艺流程

    合成氨工艺流程 尽管氨合成工艺流程各异,但合成基本原理相同,故有许多相同之处。 由于氨合成率不高,大量氢气、氨气未反应,需循环使用,故氨合成是带循环的系统。 氨合成的平衡氨......

    合成氨论文

    论文写作与指导 姓 名: 学 号: 专业班级: 指导老师: 合成氨合成工艺的现状 The present status of synthetic ammonia process Wang 西北民族大学化工学院,甘肃兰州 7......

    合成氨论文

    合成氨 王俊丽 一、氨合成(一)氨合成概述成氨工业诞生于本世纪初,其规模不断向大型化方向发展,目前大型氨厂的产量占世界合成氨总产量的80%以上。氨是重要的无机化工产品之一,在......

    尿素厂 2006年度总结

    尿素厂 2006年度 工作总结 在2006年度工作中,尿素厂在党中央正确路线、方针、政策的指导下,在集团公司党委的直接领导下,紧紧围绕集团公司的生产目标和经营方针,带领全厂职工学......

    尿素培训教案

    尿素事业部1月第一周班中培训教案 组织单位: 新疆宜化尿素事业部 授课教师:高照权、舒淼富 培训对象: 运行一班、二班、三班、四班 、维修班 培训时间: 2012年1月2日至2012年1月......