2198线性代数试题[精选5篇]

时间:2019-05-14 03:07:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2198线性代数试题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2198线性代数试题》。

第一篇:2198线性代数试题

2008年4月高等教育自学考试全国统一命题考试

线性代数 试卷 课程代码

2198 说明:在本卷中,A表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设A为m×n矩阵,B为n×m矩阵,m≠n, 则下列矩阵中为n阶矩阵的是()A.BA C.ABA

a11a12a22a32a13a33a11a31TTT

B.AB D.BAB

5a112a125a212a225a312a32a13a23,则D1的值为()a33TT2.设行列式D=a21a31a23=3,D1=a21A.-15 B.-6 C.6 D.15 3.设A为n阶方阵,n≥2,则|-5A|=()A.(-5)|A| C.5|A| 4.设A=A.-4 132,则|A*|=()4n

B.-5|A| D.5n|A|

B.-2 C.2 D.4 5.向量组α1,α2…,αS(s>2)线性无关的充分必要条件是()A.α1,α2,…,αS均不为零向量

B.α1,α2,…,αS中任意两个向量不成比例 C.α1,α2,…,αS中任意s-1个向量线性无关

D.α1,α2,…,αS中任意一个向量均不能由其余s-1个向量线性表示

6.设3元线性方程组Ax=b,A的秩为2,η1,η2,η3为方程组的解,η1+η2=(2,0,4)T,η1+η3=(1,-2,1)TTT,则对任意常数k,方程组Ax=b的通解为()

B.(1,-2,1)T+k(2,0,4)T A.(1,0,2)+k(1,-2,1)

C.(2,0,4)T+k(1,-2,1)T D.(1,0,2)T+k(1,2,3)T

7.设3阶方阵A的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是()A.E-A B.-E-A C.2E-A D.-2E-A

8.设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于()A.14 B.C.2 D.4

9.设3阶方阵A的秩为2,则与A等价的矩阵为()

1A.001C.2010012010 012 01B.001D.2311012311 012 322210.二次型f(x1,x2,x3,x4,)=x12x2x3x42x3x4的秩为()

A.1 B.2 C.3 D.4

二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。

a1b1a1b2a2b2a3b2a1b3a2b3=__________.a3b311.行列式a2b1a3b112.设矩阵A=1321,P=041T,则AP=__________.102020,则秩(AB)=__________.3113.设A是4×3矩阵,秩(A)=2,若B=0011t14.已知向量组11,22,31的秩为2,则数t=__________.211115.设矩阵A=232t423,若齐次线性方程组Ax=0有非零解,则数t=__________.522222的2重特征值,则A的另一特征值为________.2016.已知λ=0为矩阵A=2217.已知向量α=(2,1,0,3)T,β=(1,-2,1,k)T, α与β的内积为2,则数k=________.18.设向量α=(b,12,12)T

为单位向量,则数b=________.225x34x1x22x2x3的矩阵为________.19.二次型f(x1,x2,x3)=x122x2220.已知二次型f(x1,x2,x3)=(k+1)x12+(k-1)x2+(k-2)x32正定,则数k的取值范围为________.

三、计算题(本大题共6小题,每小题9分,共54分)

***.计算行列式D=111的值.122.已知矩阵A=10011-

1130,B=10201110,4(1)求A的逆矩阵A;

(2)解矩阵方程AX=B.23.设向量α=(1,-1,-1,1),β=(-1,1,-1),求(1)矩阵A=αβ;(2)A。

24.设向量组α1=(1,-1,2,4)T,α2=(0,3,1,2)T,α3=(3,0,7,14)T,α4=(1,-1,2,0)T,求向量组的秩和一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.x1x2x3x4125.求线性方程组3x12x2x3x40的通解(要求用它的一个特解和导出组的基础解x22x32x43T

2系表示).226.用正交变换化二次型f(x1, x2, x3)=x124x1x343为标准形,并写出所用的正交变换.四、证明题(本大题6分)

27.设a,b,c为任意实数,证明向量组α1=(1,a,1,1)T,α2=(1,b,1,0)T,α3=(1,c,0,0)T线性无关.

第二篇:线性代数试题

线性代数试题(一)

一、填空(每题2分,共20分)1.N(n12…(n-1))=。

2.设D为一个三阶行列式,第三列元素分别为-2,3,1,其余子式分别为9,6,24,则D=。

3.关于线性方程组的克莱姆法则成立的条件是

,结论是。

4.n阶矩阵A可逆的充要条件是,设A*为A的伴随矩阵,则A-1=。

5.若n阶矩阵满足A2-2A-4I=0,则A-1=。

112212343312344=,46.=。7.设向量组1,2,3线性相关,则向量组1,1,2,2,3,3一定线性。

A1A*A8.设A三阶矩阵,若=3,则= ,=。

9.n阶可逆矩阵A的列向量组为1,2,n,则r(1,2,n)=。10.非齐次线性方程组AmnX=b有解的充要条件是。

二、单项选择题(10分,每题2分)

k12k10的充要条件是()1.2。

(a)k1(b)k3(c)k1,且k3(d)k1,或k3 2.A,B,C为n阶方阵,则下列各式正确的是()(a)AB=BA(b)AB=0,则A=0或B=0(c)(A+B)(A-B)=A2-B2 d)AC=BC且C可逆,则A=B 3.设A为n阶可逆矩阵,则下述说法不正确的是()

A10A0,(a)(b)(c)r(A)=n(d)A的行向量组线性相关 4.设矩阵A=(aij)mn,AX=0仅有零解的充要条件是()(a)A的行向量组线性无关(b)A的行向量组线性相关(c)A的列向量组线性无关(d)A的列向量组线性相关

5.向量组 1,2,s的秩为r,则下述说法不正确的是()(a)1,2,s中至少有一个r个向量的部分组线性无关

(b)1,2,s中任何r个向量的线性无关部分组与1,2,s可互相线性表示

(c)1,2,s中r个向量的部分组皆线性无关(d)1,2,s中r+1个向量的部分组皆线性相关

三、判断题(正确的划√,错误的划х,共10分,每题2分)1.5级排列41253是一个奇排列。()

2.A为任意的mn矩阵, 则ATA, AAT都是对称矩阵。()

3.1,2,s线性无关,则其中的任意一个部分组都线性无关。()

0004.行列式1001001001000=-1()

5.若两个向量组可互相线性表示,则它们的秩相等。()

四、计算n阶行列式(12分)

xaaaxaaaxaaaaaaaaaax

223110121(13分)注:A不可逆,修改为 2.解矩阵方程AX=A+X,其中A=232110122

3.求向量组1(2,4,2),2(1,1,0),3(2,3,1),4(3,5,2)的极大线性无关组,并将其余向量用该极大无关组线性表示。(10分)4.用消元法解下列方程组。(15分)

x1x2x3x41x1x2x3x401xx2x2x12342 

五、证明题(从下列三题中任选两道, 每题5分,共10分)

1.设向量组1,2,3线性无关,证明1,12,123也线性无关。(5分)

2.已知向量组,,线性无关,而向量组,,,线性相关,试证明:(1)向量一定可由向量组,,线性表示;(2)表示法是唯一的。(5分)

3. A,B是同阶对称矩阵,证明:AB为对称矩阵的充要条件是A与B可交换。(5分)

线性代数试题(一)答案

一.(1).n(n1)(2).–12 2xjDJD(3).线性方程组的系数行列式D0;方程组有唯一解且

1231*1A(A2I)A0A4(4).;(5).(6).30,41(7).相关(8).3, 9(9).n(10).234468691281216

rAbrA

二.(1)C(2)D(3)D(4)C(5)C 三.(1)×(2)×(3)√(4)×(5)√ 四.n1[x(n1)a](xa)(1).321X40(2).31230412

(3).极大线性无关组为1,2

312;412(4)全部解为: 12

11TT,0c11,1,0,0c20,0,1,1,0,22(c1 ,c2为任意常数)五.略

线性代数试题及答案

说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵。表示方阵A的行列式,r(A)表示矩阵A的秩。

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错癣多选或未选均无分。

1.设3阶方阵A的行列式为2,则()

TA.-1 B.C.D.1

2.设 则方程 的根的个数为()A.0 B.1 C.2 D.3

3.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若 则必有()A.B.C.D.4.设A,B是任意的n阶方阵,下列命题中正确的是()A.B.C.D.5.设 其中 则矩阵A的秩为()A.0 B.1 C.2 D.3

6.设6阶方阵A的秩为4,则A的伴随矩阵A*的秩为()A.0 B.2 C.3 D.4

7.设向量α=(1,-2,3)与β=(2,k,6)正交,则数k为()

A.-10 B.-4 C.3 D.10

8.已知线性方程组 无解,则数a=()A.B.0 C.D.1

9.设3阶方阵A的特征多项式为 则()

A.-18 B.-6 C.6 D.18

10.若3阶实对称矩阵 是正定矩阵,则A的3个特征值可能为()

A.-1,-2,-3 B.-1,-2,3

C.-1,2,3 D.1,2,3

二、填空题(本大题共10小题,每小题2分,共20分)

请在每小题的空格中填上正确答案。错填、不填均无分。

11.设行列式 其第3行各元素的代数余子式之和为__转载自百分网http://www.xiexiebang.com,请保留此标记________.12.设 则 __________.13.设A是4×3矩阵且 则 __________.14.向量组(1,2),(2,3)(3,4)的秩为__________.15.设线性无关的向量组α1,α2,…,αr可由向量组β1,β2,…,βs线性表示,则r与s的关系为__________.16.设方程组 有非零解,且数 则 __________.17.设4元线性方程组 的三个解α1,α2,α3,已知 则方程组的通解是__________.18.设3阶方阵A的秩为2,且 则A的全部特征值为__________.19.设矩阵 有一个特征值 对应的特征向量为 则数a=__________.20.设实二次型 已知A的特征值为-1,1,2,则该二次型的规范形为__________.三、计算题(本大题共6小题,每小题9分,共54分)

21.设矩阵 其中 均为3维列向量,且 求

22.解矩阵方程

23.设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(3,2,-1,p+2)T问p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组 ,(1)确定当λ取何值时,方程组有惟一解、无解、有无穷多解?

(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示).25.已知2阶方阵A的特征值为 及 方阵

(1)求B的特征值;

(2)求B的行列式.26.用配方法化二次型 为标准形,并写出所作的可逆线性变换.四、证明题(本题6分)27.设A是3阶反对称矩阵,证明|A|=0.线性代数B期末试题

一、判断题(正确填T,错误填F。每小题2分,共10分)1. A是n阶方阵,R,则有AA。()

111AB0(AB)BA。()2. A,B是同阶方阵,且,则3.如果A与B等价,则A的行向量组与B的行向量组等价。()4.若A,B均为n阶方阵,则当AB时,A,B一定不相似。()1,2,3,4线性相关,则1,2,3也线性相关。()5.n维向量组

二、单项选择题(每小题3分,共15分)

1.下列矩阵中,()不是初等矩阵。

001100100100010000020012100(B)010(C)001(D)001(A)2.设向量组1,2,3线性无关,则下列向量组中线性无关的是()。

(A)12,23,31(B)1,2,31(C)1,2,2132(D)2,3,223

12(A2E)()AA5E03.设A为n阶方阵,且。则

11(AE)(AE)(A)AE(B)EA(C)3(D)3

4.设A为mn矩阵,则有()。

(A)若mn,则Axb有无穷多解;

(B)若mn,则Ax0有非零解,且基础解系含有nm个线性无关解向量;(C)若A有n阶子式不为零,则Axb有唯一解;(D)若A有n阶子式不为零,则Ax0仅有零解。

5.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则()

(A)A与B相似(B)AB,但|A-B|=0(C)A=B

(D)A与B不一定相似,但|A|=|B|

三、填空题(每小题4分,共20分)

012n10。1.n*A13AA2.A为3阶矩阵,且满足3,则=______。

1021112423421570是线性(填相关或3.向量组,,无关)的,它的一个极大线性无关组是。

4. 已知1,2,3是四元方程组Axb的三个解,其中A的秩R(A)=3,14241233444,,则方程组Axb的通解为。

231A1a1503,且秩(A)=2,则a=

。5.设

四、计算下列各题(每小题9分,共45分)。

121A342122,求矩阵B。1.已知A+B=AB,且

Tn2.设(1,1,1,1),(1,1,1,1),而A,求A。

3.已知方程组 有无穷多解,求a以及方程组的通解。

4.求一个正交变换将二次型化成标准型

222f(x1,x2,x3)x12x22x34x1x24x1x38x2x3

5. A,B为4阶方阵,AB+2B=0,矩阵B的秩为2且|E+A|=|2E-A|=0。(1)求矩阵A的特征值;(2)A是否可相似对角化?为什么?;(3)求|A+3E|。

五.证明题(每题5分,共10分)。

1.若A是对称矩阵,B是反对称矩阵,ABBA是否为对称矩阵?证明你的结论。

T2.设A为mn矩阵,且的秩R(A)为n,判断AA是否为正定阵?证明你的结论。

第三篇:线性代数试题及答案

线性代数习题和答案

第一部分

选择题

(共28分)

一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。1.设行列式a11a21a12a22a13a23a11a21a11a21a12a13a22a23=m,=n,则行列式

等于()

A.m+n

C.n-m

B.-(m+n)D.m-n 1002.设矩阵A=020,则A-1等于()

0031

3A.00012000

1

B.10001200013

1003

C.010

1002

12D.000010 3013123.设矩阵A=101,A*是A214的伴随矩阵,则A *中位于(1,2)的元素是()

B.6

A.–6

C.2

D.–2

B.BC时A=0 D.|A|0时B=C 4.设A是方阵,如有矩阵关系式AB=AC,则必有()

A.A =0

C.A0时B=C

A.1 5.已知3×4矩阵A的行向量组线性无关,则秩(AT)等于()

B.2

/ 7

C.3

D.4

和λ1β1+λ6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()

A.有不全为0的数λ1,λ2,…,λβ2+…λsβs=0

B.有不全为0的数λ1,λ2,…,λ(αs+βs)=0

C.有不全为0的数λ1,λ2,…,λ(αs-βs)=0

D.有不全为0的数λ1,λ2,…,λ1+λ2α2+…+λsαs=0

s和不全为

s使λ1(α1-β1)+λ2(α2-β2)+…+λss

s使λ1α1+λ2α2+…+λsαs=0

2使λ1(α1+β1)+λ2(α2+β2)+…+λ

s

0的数μ1,μ2,…,μs使λ1α

和μ1β1+μ2β2+…+μsβs=0

B.所有r-1阶子式全为0 D.所有r阶子式都不为0 7.设矩阵A的秩为r,则A中()

A.所有r-1阶子式都不为0

C.至少有一个r阶子式不等于0 是()

A.η1+η2是Ax=0的一个解

C.η1-η2是Ax=0的一个解

A.秩(A)

C.A=0

B.η1+η2是Ax=b的一个解 D.2η1-η2是Ax=b的一个解 B.秩(A)=n-1

D.方程组Ax=0只有零解

12128.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的9.设n阶方阵A不可逆,则必有()

10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()

A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量

B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值

C.A的2个不同的特征值可以有同一个特征向量

D.如λ1,λ2,λ于λ1,λ2,λ11.设λ0是矩阵3是

A的3个互不相同的特征值,α1,α2,α3依次是A的属

0的线性无关的特征向量的个3的特征向量,则α1,α2,α3有可能线性相关

A的特征方程的3重根,A的属于λ

B.k<3

D.k>3 数为k,则必有()

A.k≤3

C.k=3

/ 7

12.设A是正交矩阵,则下列结论错误的是()

A.|A|2必为1

C.A-1=AT

B.|A|必为1

D.A的行(列)向量组是正交单位向量组

13.设A是实对称矩阵,C是实可逆矩阵,B=CTAC.则()

A.A与B相似

B.A与B不等价

C.A与B有相同的特征值

D.A与B合同

14.下列矩阵中是正定矩阵的为()

A.23343426

B. 100

C.023035111D.120102

第二部分

非选择题(共72分)

二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。错填或不填均无分。15.111356

.9253611111116.设A=,B=123.则

124A+2B=

.17.设A=(aij)3×3,|A|=2,Aij表示|A|中元素aij的代数余子式(i,j=1,2,3),则(a11A21+a12A22+a13A23)2+(a21A21+a22A22+a23A23)2+(a31A21+a32A22+a33A23)2=

.18.设向量(2,-3,5)与向量(-4,6,a)线性相关,则a=

.19.设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为

.20.设A是m×n矩阵,A的秩为r(

.3 / 7

21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α-β)=

.22.设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为

.23.设矩阵0106A=133,已知α21082=12是它的一个特征向量,则α所对应的特征值为

.24.设实二次型f(x1,x2,x3,x4,x5)的秩为4,正惯性指数为3,则其规范形为

.三、计算题(本大题共7小题,每小题6分,共42分)

12025.设A=340121,B=1105231(2)|4A|..求(1)ABT;

24026.试计算行列式352112341313.42327.设矩阵A=110123,求矩阵B使其满足矩阵方程AB=A+2B.21301301.,α=28.给定向量组α1=,α,α23=4=22404193试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数。

12124229.设矩阵A=210333266.23340求:(1)秩(A);

(2)A的列向量组的一个最大线性无关组。30.设矩阵022A=234432的全部特征值为1,1和-8.求正交矩阵T和对角矩阵D,使T-1AT=D.31.试用配方法化下列二次型为标准形

/ 7

2f(x1,x2,x3)=x12x223x34x1x24x1x34x2x3,并写出所用的满秩线性变换。

四、证明题(本大题共2小题,每小题5分,共10分)

32.设方阵A满足A3=0,试证明E-A可逆,且(E-A)-1=E+A+A2.33.设η0是非齐次线性方程组Ax=b的一个特解,ξ1,ξ基础解系.试证明

(1)η1=η0+ξ1,η2=η0+ξ

答案:

一、单项选择题(本大题共14小题,每小题2分,共28分)1.D

2.B

3.B

6.D

7.C

8.A

11.A

12.B

13.D

二、填空题(本大题共10空,每空2分,共20分)15.6 16.4.D 9.A 14.C

5.C 10.B

2是其导出组Ax=0的一个

2均是Ax=b的解;

(2)η0,η1,η2线性无关。

337137

17.4 18.–10 19.η1+c(η2-η1)(或η2+c(η2-η1)),c为任意常数 20.n-r 21.–5 22.–2 23.1 24.222z1z22z3z4

三、计算题(本大题共7小题,每小题6分,共42分)

12022403425.解(1)AB=312110T

86=1810310(2)|4A|=43|A|=64|A|,而

.|A|=1203402.121所以|4A|=64·(-2)=-128 26.解 352111051234131351105110511311300

/ 7

=5111111 55051162620301040.55550=27.解

AB=A+2B即(A-2E)B=A,而

(A-2E)-1223=1101211143153.164所以

B=(A-2E)-114342353110 A=116412338696.=2212928.解一 2130053213011301

0224011234190131121000100005111200088014140002101, 0110003035112

011000所以α4=2α1+α2+α3,组合系数为(2,1,1).解二

考虑α4=x1α1+x2α2+x3α3,即 2x1x23x30x3x112 2x2x4323x14x2x39.方程组有唯一解(2,1,1)T,组合系数为(2,1,1).29.解

对矩阵A施行初等行变换

121000A03209602628232

/ 7

212101210328303200000062000217000283=B.31000(1)秩(B)=3,所以秩(A)=秩(B)=3.(2)由于A与B的列向量组有相同的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一个最大线性无关组。(A的第1、2、5列或1、3、4列,或1、3、5列也是)

30.解 A的属于特征值λ=1的2个线性无关的特征向量为

ξ1=(2,-1,0)T,ξ2=(2,0,1)T.25/525/15经正交标准化,得η

1,η

25/5=5/15=4.05/3λ=-8的一个特征向量为

1/3ξ=13,经单位化得η2

3=2/3.22/325/5215/151/3所求正交矩阵为

T=.5/545/152/305/32/31对角矩阵

D=00010.00825/5215/151/3(也可取T=.)

05/32/35/545/152/331.解

f(x1,x2,x3)=(x1+2x2-2x3)2-2x22+4x2x3-7x32

=(x1+2x2-2x3)2-2(x2-x3)2-5x32.y1x12x22x3x1y12设yy22x2x3,即x2y2y3xyy3x333因其系数矩阵C=12011可逆,故此线性变换满秩。0001经此变换即得f(x1,x2,x3)的标准形

y12-2y22-5y32.四、证明题(本大题共2小题,每小题5分,共10分)32.证

由于(E-A)(E+A+A2)=E-A3=E,所以E-A可逆,且(E-A)-1= E+A+A2.33.证

由假设Aη0=b,Aξ1=0,Aξ2=0.(1)Aη1=A(η0+ξ1)=Aη0+Aξ1=b,同理Aη2= b,所以η1,η2是Ax=b的2个解。(2)考虑l0η0+l1η1+l2η2=0,即

(l0+l1+l2)η0+l1ξ1+l2ξ2=0.则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾。所以 l1ξ1+l2ξ2=0.又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而

l0=0.所以η0,η1,η2线性无关。

/ 7,

第四篇:线性代数试题(B)

(101)北京理工大学远程教育学院2007-2008学年第一学期

《线性代数》期末试卷(A卷)

教学站 学号 姓名 成绩

一.填空题(每小题4分,共20分)

x1211.已知A,则XTAX_______; ,X13x22.设向量1(0,1,1),2(0,t,2)线性相关,则t _____;

3.设A是秩为1的3阶矩阵,则齐次线性方程组AX=0 的基础解系含_____个解;

1114.已知矩阵001,则其秩为__________;

0015.已知2是矩阵A的一个特征值,则 |2EA| __________。

二.选择题(每小题4分,共20分)

1.设A与B是两个同阶可逆矩阵,则();

A.(AB)1A1B1

B.|A||B||B||A|

C.|AB||A||B| D.ABBA

2.设A是12矩阵,B是2阶方阵,C是21矩阵,则()A.ABC是1阶方阵

B.ABC是21阶矩阵

C.ABC是2阶方阵

D.ABC是12阶矩阵

3.已知向量组1,2,3满足3k11k22,则()A.k1,k2不全为零

B.1,2线性无关 C.30

D.1,2,3线性相关

4.设1,2是非齐次线性方程组AXb的两个解,则下述说法不正确的是(); A.12是导出组AX0的1解

B.(12)是AX0的解

21C.12是AXb的解

D.(12)是AXb的解

5.设A是一个方阵,则();

A.由| A | = 0可得 A = 0

B.由| A | = 0可得 0是A的一个特征值

C.由| A | = 1可得 A = E

D.由| A | = 1可得 1是A的一个特征值

三.计算题(每小题10分,共50分)

131.计算行列式

3233333333

342.求解下列线性方程组

 x15x22x333x1 x24x32

 5x3x6x1123用导出组的基础解系表示通解。

0111203.解矩阵方程 X101 110021

1104.已知矩阵A110,求A的特征值和特征向量。

002

5.求非退化线性替换,把实二次型

f(x1,x2,x3)4x1x32x2x3

化为规范形。

四.其它(每小题5分,共10分)

1.设同阶方阵A与B满足ABE,证明:|A||B|1;

2.举例说明:由|A||B|1不能导出ABE。

第五篇:自考线性代数试题

全国2010年10月高等教育自学考试

线性代数(经管类)试题 课程代码:04184 说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式,r(A)表示矩A的秩.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设A为3阶矩阵,|A|=1,则|-2AT|=()A.-8 C.2 12.设矩阵A=1,B=(1,1),则AB=()B.-2 D.8 A.0 1C.1

B.(1,-1)11D.11

3.设A为n阶对称矩阵,B为n阶反对称矩阵,则下列矩阵中为反对称矩阵的是()A.AB-BA C.AB

B.AB+BA D.BA 12-14.设矩阵A的伴随矩阵A*=34,则A=()A.1 24321 1234 

B.1 21 21234 4231 C.1 2D.5.下列矩阵中不是初等矩阵的是()..101A.010 000100C.030

001

001

B.010

100100D.010

201═════════════════════════════════════════════════════════════════════

本套试题共分11页,当前页是第2

132516.已知Ax=b为4元线性方程组,r(A)=3, α1, α2, α3为该方程组的3个解,且1,13,则该线性方程

3749组的通解是_________.1117.已知P是3阶正交矩,向量3,0,则内积(P,P)_________.2218.设2是矩阵A的一个特征值,则矩阵3A必有一个特征值为_________.1219.与矩阵A=03相似的对角矩阵为_________.12T20.设矩阵A=2k,若二次型f=xAx正定,则实数k的取值范围是_________.

三、计算题(本大题共6小题,每小题9分,共54分)0121.求行列式D=201012210102的值.1001012022.设矩阵A=100,B210,求满足矩阵方程XA-B=2E的矩阵X.001000112223.若向量组11,21,36,40的秩为2,求k的值.13k2k232224.设矩阵A110,b1.1210(1)求A-1;(2)求解线性方程组Ax=b,并将b用A的列向量组线性表出.25.已知3阶矩阵A的特征值为-1,1,2,设B=A2+2A-E,求(1)矩阵A的行列式及A的秩.(2)矩阵B的特征值及与B相似的对角矩阵.═════════════════════════════════════════════════════════════════════

本套试题共分11页,当前页是第4

C.| A |=| B |

D.A与B有相同特征值

9.若向量α=(1,-2,1)与β=(2,3,t)正交,则t=()A.-2 C.2

B.0 D.4 10.设3阶实对称矩阵A的特征值分别为2,1,0,则()A.A正定 C.A负定

B.A半正定 D.A半负定

二、填空题(本大题共10小题,每小题2分,共20分)3 22 1 111.设A=0 1,B=,则AB=_________________.0 1 02 412.设A为3阶方阵,且| A |=3,则| 3A-1 |=______________.13.三元方程x1+x2+x3=1的通解是_______________.14.设α=(-1,2,2),则与α反方向的单位向量是_________________.15.设A为5阶方阵,且r(A)=3,则线性空间W={x | Ax=0}的维数是______________.116.设A为3阶方阵,特征值分别为-2,1,则| 5A-1 |=______________.217.若A、B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=_________________. 2 1 018.实对称矩阵1 0 1 所对应的二次型f(x1, x2, x3)=________________. 0 1 11119.设3元非齐次线性方程组Ax=b有解α1=2,α2= 2且r(A)=2,则Ax=b的通解是_______________.3 3120.设α=2,则A=ααT的非零特征值是_______________.3

三、计算题(本大题共6小题,每小题9分,共54分)2 0 0 0 1 0 2 0 0 0 21.计算5阶行列式D=

0 0 2 0 0 1 0 0 0 222.设矩阵X满足方程

═════════════════════════════════════════════════════════════════════

本套试题共分11页,当前页是第6

A.PA C.QA

B.AP D.AQ

5.已知A是一个3×4矩阵,下列命题中正确的是()A.若矩阵A中所有3阶子式都为0,则秩(A)=2 B.若A中存在2阶子式不为0,则秩(A)=2 C.若秩(A)=2,则A中所有3阶子式都为0 D.若秩(A)=2,则A中所有2阶子式都不为0 6.下列命题中错误的是()..A.只含有一个零向量的向量组线性相关 B.由3个2维向量组成的向量组线性相关 C.由一个非零向量组成的向量组线性相关 D.两个成比例的向量组成的向量组线性相关

7.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则()A.α1必能由α2,α3,β线性表出 C.α3必能由α1,α2,β线性表出

B.α2必能由α1,α3,β线性表出 D.β必能由α1,α2,α3线性表出

8.设A为m×n矩阵,m≠n,则齐次线性方程组Ax=0只有零解的充分必要条件是A的秩()A.小于m C.小于n

B.等于m D.等于n

9.设A为可逆矩阵,则与A必有相同特征值的矩阵为()A.AT C.A-1

B.A2 D.A

*22210.二次型f(x1,x2,x3)=x1x2x32x1x2的正惯性指数为()

A.0 C.2

B.1 D.3

二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.行列式***0的值为_________________________.11320,则ATB=____________________________.12.设矩阵A=,B=2010113.设4维向量(3,-1,0,2)T,β=(3,1,-1,4)T,若向量γ满足2γ=3β,则γ=__________.114.设A为n阶可逆矩阵,且|A|=,则|A-1|=___________________________.n15.设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=__________________.═════════════════════════════════════════════════════════════════════

本套试题共分11页,当前页是第8

226.设矩阵A=0003a01-1a的三个特征值分别为1,2,5,求正的常数a的值及可逆矩阵P,使PAP=03002000。5

四、证明题(本题6分)

27.设A,B,A+B均为n阶正交矩阵,证明(A+B)-1=A-1+B-1。

全国2010年1月高等教育自学考试

说明:本卷中,AT表示矩阵A的转置,αT表示向量α的转置,E表示单位矩阵,|A|表示方阵A的行列式,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩.一、单项选择题(本大题共10小题,每小题2分,共30分)

2x2y2z41.设行列式4031,则行列式01()

3111111xyzA.2 3B.1 C.2

8D.32.设A,B,C为同阶可逆方阵,则(ABC)-1=()A.A-1B-1C-1 C.C-1A-1B-1

B.C-1B-1A-1 D.A-1C-1B-1

3.设α1,α2,α3,α4是4维列向量,矩阵A=(α1,α2,α3,α4).如果|A|=2,则|-2A|=()A.-32 C.4

B.-4 D.32 4.设α1,α2,α3,α4 是三维实向量,则()A.α1,α2,α3,α4一定线性无关 C.α1,α2,α3,α4一定线性相关

B.α1一定可由α2,α3,α4线性表出 D.α1,α2,α3一定线性无关

5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为()A.1 C.3

B.2 D.4 6.设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是()

A.1 C.3

B.2 D.4 7.设A是m×n矩阵,已知Ax=0只有零解,则以下结论正确的是()A.m≥n

B.Ax=b(其中b是m维实向量)必有唯一解

═════════════════════════════════════════════════════════════════════

本套试题共分11页,当前页是第10

a11x11x11a117.设线性方程组2有无穷多个解,则a=_________.11ax3218.设n阶矩阵A有一个特征值3,则|-3E+A|=_________.19.设向量α=(1,2,-2),β=(2,a,3),且α与β正交,则a=_________.2220.二次型f(x1,x2,x3)4x23x34x1x24x1x38x2x3的秩为_________.三、计算题(本大题共6小题,每小题9分,共54分)2321.计算4阶行列式D=453456456756.78231-145222.设A=,判断A是否可逆,若可逆,求其逆矩阵A.57323.设向量α=(3,2),求(αTα)101.24.设向量组α1=(1,2,3,6),α2=(1,-1,2,4),α3=(-1,1,-2,-8),α4=(1,2,3,2).(1)求该向量组的一个极大线性无关组;

(2)将其余向量表示为该极大线性无关组的线性组合.x1x22x4025.求齐次线性方程组4x1x2x3x40的基础解系及其通解.3xxx012332226.设矩阵A=010,求可逆方阵P,使P-1AP为对角矩阵.423

四、证明题(本大题6分)

27.已知向量组α1,α2,α3,α4线性无关,证明:α1+α2,α2+α3,α3+α4,α4-α1线性无关.═════════════════════════════════════════════════════════════════════

-本套试题共分11页,当前页是第11

下载2198线性代数试题[精选5篇]word格式文档
下载2198线性代数试题[精选5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线性代数试题及答案

    线性代数(经管类)试题答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或......

    线性代数较难试题

    一、设A相似于对角阵,0是A的特征值,X0是A对应于0的特征向量. 证明: (1) 秩(A0I) 秩(A0I)2; (2) 不存在Y,使得(A0I)YX0. 证:(1)设A则A0I故 =diag{0,k,0,k1,,n},i0,ik1,,n. 0I,(A0I)......

    线性代数试题及答案

    04184线性代数(经管类) 一 、 二 、单选题 1、 B:-1 A:-3 C:1 D:3 做题结果:A 参考答案:D 2、 B:d A:abcd C:6 D:0 做题结果:A 参考答案:D 3、 B:15 A:18 C:12 D:24 做题结果:A 参......

    线性代数试题1(推荐)

    线性代数试题 课程代码:02198 说明:|A|表示方阵A的行列式 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题2分,共24分)......

    线性代数试题4

    1 试题二参考答案 一、1. √ 2. × 3. × 4. × 5. √ 二、1. D 2. D 3.B 4. C 5. D 三、 1. -5 2. -36 O3.B2AO1O=1A12B。 O14. 2 5. |A1|3=164。 6. R(A*B*)= 1 7.a12 8.(1,2,1)T。......

    08线性代数试题

    08-09学年线性代数试题 一、填空题(每小题2分,共10分) 1、设1,2,3均为3维列向量,记B(1,2231,4321), 若|A|2,则|B| _______. 1A2、设11a101a122,且R(A)2,则a_______. 23、_______时......

    线性代数试题3

    线性代数综合练习题(三) 一、 选择题 1. 设是矩阵,是阶可逆矩阵,矩阵的秩为,矩阵的秩为,则( ). (A) (B) (C) (D)的关系依而定 2. 若为正交阵,则下列矩阵中不是正交阵的是( ). (A) (B) (C) (D) 3. 值不......

    线性代数试题三

    线性代数B第三套练习题及答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多......