第一篇:线性代数期末试题-10
大学职业规划
(一)自我解析
1、自我兴趣爱好盘点
(1)业余爱好:电影,音乐,小说(2)喜欢的歌曲:《启程》,《最初的梦想》
(3)心中的偶像:威尔史密斯,科比布莱恩特
2、自我优势优点盘点
(1)具有冒险精神,积极主动。勤奋向上,只要我认为应该做的事,不管有多难都要去做。
(2)务实、实事求是,有目标有想法,追求具体和明确的事情,喜欢做实际的考虑。喜欢单独思考、收集和考察丰富的外在信息。不喜欢逻辑的思考和理论的应用,对细节很强的记忆力。
(3)与人交往时大方,比较谦逊、有同情心,对朋友忠实友好,有奉献精神,充满一腔热血喜欢关心他人并提供实际的帮助。
(4)做事有很强的原则性,学习生活比较有条理,愿意承担责任,依据明晰的评估和收集的信息来做决定,充分发挥自己客观的判断和敏锐的洞察力。
3、自我劣势缺点盘点
信心不足,不敢去尝试一些新事物;对失败和没有把握的事感到紧张和压力;对于别人对自己的异议不服输;在公众场合不敢展现自己,有些害羞。
4、个人分析(结合职业测评):
职业理想:有份稳定工作 就业方向:造价师
总体目标:完成学业,好好完成实习,提高自己的实践能力和实际工作能力,进入一个正式企业工作。
已进行情况:正在大学学习中。
我的职业兴趣:企业性工作。
我的气质:多血质。活泼好动,反应灵敏,乐于交往,注意力易转移,兴趣和情绪多变,缺乏持久力,具有外倾型。
(二)短期目标规划——大学四年目标
大一:主要是加深对本专业的培养目标和就业方向的认识,增强自己学习专业的自学性,培养自己的专业学习目标并初步了解将来所从事的职业,为将来制定的职业目标打下基础。由于用人单位对毕业生的需求,一般首先选择的是大学生某专业方面的特长,大学生迈入社会后的贡献,主要靠运用所学的专业知识来实现。如果职业生涯设计离开了所学专业,无形当中增加了许多“补课”负担,个人的价值就难以实现。因此,大学生对所学的专业知识要精深、广博,除了要掌握宽厚的基础知识和精深的专业知识外,还要拓宽专业知识面,掌握或了解与本专业相关、相近的若干专业知识和技术。所以要丰富自己各方面的知识,让自己了解的领域尽可能的多,以增强自身在今后就业中的竞争力。
大二:要了解应具备的各种素质,通过参加各项活动,锻炼自己的各种能力,如参加兼职工作、社会实践活动,并要具有坚持性,最好能在课余时间后长时间从事与自己未来职业或本专业有关的工作,如参与学生科研工作,提高自己的责任感、主动性和受挫能力;同时增强英语口语能力和计算机应用能力,通过英语和计算机的相关证书考试,并开始有选择地辅修其他专业的知识充实自己;同时检验自己的知识技能,并要根据个人兴趣与能力修订个人的职业生涯规划设计。大三:由于临近毕业,在指导学生加强专业学习,准备考研的同时,要指导学生开始把目标锁定在提高求职技能上,培养独立创业能力。如可以通过大学生素质拓展活动来锻炼学生的独立解决问题的能力和创造性;鼓励学生参加和专业有关的暑期实践工作;加强和已毕业的校友联系,交流求职工作心得体会,学习写简历、求职信,加大了解搜集工作信息的渠道等。
大四:是一个分化期,大部分学生对自己的出路应该都有了规划,这时可指导学生对前三年的准备做一个总结:首先检验已确立的职业目标是否明确,前三年的准备是否已充分;然后,有针对性的对学生进行专项指导,除了常规的就业指导课,比如可以聘请人力资源方面的专业人士为学生介绍各行业人才要求,让学生接受择业技巧培训、组织参加招聘活动,让学生在实践中校验自己的积累和准备等。最后,指导学生充分利用学校提供的条件,了解就业指导中心提供的用人公司资料信息、强化求职技巧、进行模拟面试等训练,尽可能地让学生在做出较为充分准备的情况下进行施展演练。
(三)中长期目标
中期目标:如果没有读研毕业,先进入事业探索期和事业发展期,希望进入任意公司从事造价工作积累工作经验,并且要一边工作一边深入学习,在努力工作的同时,还要争取扩大发展人际关系,并且要养成好的生活习惯,抓紧时间参加体育锻炼。
长期问题:事业成熟期,奋斗目标——造价师,争取进入外资企业,以成熟职业的姿态去处理遇到的事件
(四)我对于职业生涯规划的看法:
1、虽然可能没有成型的职业规划,但是我觉得每个阶段的前进方向和短期目标要有,比如这段时间我要练好英语听力,提高英语水平。
2、职业规划肯定要有,但是我觉得职业规划不可能现在就定下来,周围的环境随时在变,而且自己随着不断的成熟和接触不同的东西,也会变。作为一个学生,我们还没有任何社会阅历,谈这个就似乎有点纸上谈兵。但是我觉得这次的职业规划是必要的,这不仅仅是一份作业,对大一新生来说,通过这次的思考,可以在短期内找到奋斗的目标。
空间越大,环境变化越快,各人的人生目标也会发生改变。在不同的环境中开发自己不同的潜力,同样也可以实现自己的目标。在环境的改变中,我要学会适应环境,那样才会立于不败之地。未来的事情谁也无法预测,不过对未来有准备的人总能够得到出乎意料的结果。每个人都有美好的将来,并不会对自己的现状感到满足,一个长久当士兵的人,总梦想着自己会当将军。对于我来说也是一样的。我决不会将自己的事业停留在技师的水准上,我还有更高的要求,来完善自己的人生,给自己添加更多的乐趣。
第二篇:线性代数试题
线性代数试题(一)
一、填空(每题2分,共20分)1.N(n12…(n-1))=。
2.设D为一个三阶行列式,第三列元素分别为-2,3,1,其余子式分别为9,6,24,则D=。
3.关于线性方程组的克莱姆法则成立的条件是
,结论是。
4.n阶矩阵A可逆的充要条件是,设A*为A的伴随矩阵,则A-1=。
5.若n阶矩阵满足A2-2A-4I=0,则A-1=。
112212343312344=,46.=。7.设向量组1,2,3线性相关,则向量组1,1,2,2,3,3一定线性。
A1A*A8.设A三阶矩阵,若=3,则= ,=。
9.n阶可逆矩阵A的列向量组为1,2,n,则r(1,2,n)=。10.非齐次线性方程组AmnX=b有解的充要条件是。
二、单项选择题(10分,每题2分)
k12k10的充要条件是()1.2。
(a)k1(b)k3(c)k1,且k3(d)k1,或k3 2.A,B,C为n阶方阵,则下列各式正确的是()(a)AB=BA(b)AB=0,则A=0或B=0(c)(A+B)(A-B)=A2-B2 d)AC=BC且C可逆,则A=B 3.设A为n阶可逆矩阵,则下述说法不正确的是()
A10A0,(a)(b)(c)r(A)=n(d)A的行向量组线性相关 4.设矩阵A=(aij)mn,AX=0仅有零解的充要条件是()(a)A的行向量组线性无关(b)A的行向量组线性相关(c)A的列向量组线性无关(d)A的列向量组线性相关
5.向量组 1,2,s的秩为r,则下述说法不正确的是()(a)1,2,s中至少有一个r个向量的部分组线性无关
(b)1,2,s中任何r个向量的线性无关部分组与1,2,s可互相线性表示
(c)1,2,s中r个向量的部分组皆线性无关(d)1,2,s中r+1个向量的部分组皆线性相关
三、判断题(正确的划√,错误的划х,共10分,每题2分)1.5级排列41253是一个奇排列。()
2.A为任意的mn矩阵, 则ATA, AAT都是对称矩阵。()
3.1,2,s线性无关,则其中的任意一个部分组都线性无关。()
0004.行列式1001001001000=-1()
5.若两个向量组可互相线性表示,则它们的秩相等。()
四、计算n阶行列式(12分)
xaaaxaaaxaaaaaaaaaax
223110121(13分)注:A不可逆,修改为 2.解矩阵方程AX=A+X,其中A=232110122
3.求向量组1(2,4,2),2(1,1,0),3(2,3,1),4(3,5,2)的极大线性无关组,并将其余向量用该极大无关组线性表示。(10分)4.用消元法解下列方程组。(15分)
x1x2x3x41x1x2x3x401xx2x2x12342
五、证明题(从下列三题中任选两道, 每题5分,共10分)
1.设向量组1,2,3线性无关,证明1,12,123也线性无关。(5分)
2.已知向量组,,线性无关,而向量组,,,线性相关,试证明:(1)向量一定可由向量组,,线性表示;(2)表示法是唯一的。(5分)
3. A,B是同阶对称矩阵,证明:AB为对称矩阵的充要条件是A与B可交换。(5分)
线性代数试题(一)答案
一.(1).n(n1)(2).–12 2xjDJD(3).线性方程组的系数行列式D0;方程组有唯一解且
1231*1A(A2I)A0A4(4).;(5).(6).30,41(7).相关(8).3, 9(9).n(10).234468691281216
rAbrA
二.(1)C(2)D(3)D(4)C(5)C 三.(1)×(2)×(3)√(4)×(5)√ 四.n1[x(n1)a](xa)(1).321X40(2).31230412
(3).极大线性无关组为1,2
312;412(4)全部解为: 12
11TT,0c11,1,0,0c20,0,1,1,0,22(c1 ,c2为任意常数)五.略
线性代数试题及答案
说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵。表示方阵A的行列式,r(A)表示矩阵A的秩。
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错癣多选或未选均无分。
1.设3阶方阵A的行列式为2,则()
TA.-1 B.C.D.1
2.设 则方程 的根的个数为()A.0 B.1 C.2 D.3
3.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若 则必有()A.B.C.D.4.设A,B是任意的n阶方阵,下列命题中正确的是()A.B.C.D.5.设 其中 则矩阵A的秩为()A.0 B.1 C.2 D.3
6.设6阶方阵A的秩为4,则A的伴随矩阵A*的秩为()A.0 B.2 C.3 D.4
7.设向量α=(1,-2,3)与β=(2,k,6)正交,则数k为()
A.-10 B.-4 C.3 D.10
8.已知线性方程组 无解,则数a=()A.B.0 C.D.1
9.设3阶方阵A的特征多项式为 则()
A.-18 B.-6 C.6 D.18
10.若3阶实对称矩阵 是正定矩阵,则A的3个特征值可能为()
A.-1,-2,-3 B.-1,-2,3
C.-1,2,3 D.1,2,3
二、填空题(本大题共10小题,每小题2分,共20分)
请在每小题的空格中填上正确答案。错填、不填均无分。
11.设行列式 其第3行各元素的代数余子式之和为__转载自百分网http://www.xiexiebang.com,请保留此标记________.12.设 则 __________.13.设A是4×3矩阵且 则 __________.14.向量组(1,2),(2,3)(3,4)的秩为__________.15.设线性无关的向量组α1,α2,…,αr可由向量组β1,β2,…,βs线性表示,则r与s的关系为__________.16.设方程组 有非零解,且数 则 __________.17.设4元线性方程组 的三个解α1,α2,α3,已知 则方程组的通解是__________.18.设3阶方阵A的秩为2,且 则A的全部特征值为__________.19.设矩阵 有一个特征值 对应的特征向量为 则数a=__________.20.设实二次型 已知A的特征值为-1,1,2,则该二次型的规范形为__________.三、计算题(本大题共6小题,每小题9分,共54分)
21.设矩阵 其中 均为3维列向量,且 求
22.解矩阵方程
23.设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,p+2)T,α4=(3,2,-1,p+2)T问p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组 ,(1)确定当λ取何值时,方程组有惟一解、无解、有无穷多解?
(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示).25.已知2阶方阵A的特征值为 及 方阵
(1)求B的特征值;
(2)求B的行列式.26.用配方法化二次型 为标准形,并写出所作的可逆线性变换.四、证明题(本题6分)27.设A是3阶反对称矩阵,证明|A|=0.线性代数B期末试题
一、判断题(正确填T,错误填F。每小题2分,共10分)1. A是n阶方阵,R,则有AA。()
111AB0(AB)BA。()2. A,B是同阶方阵,且,则3.如果A与B等价,则A的行向量组与B的行向量组等价。()4.若A,B均为n阶方阵,则当AB时,A,B一定不相似。()1,2,3,4线性相关,则1,2,3也线性相关。()5.n维向量组
二、单项选择题(每小题3分,共15分)
1.下列矩阵中,()不是初等矩阵。
001100100100010000020012100(B)010(C)001(D)001(A)2.设向量组1,2,3线性无关,则下列向量组中线性无关的是()。
(A)12,23,31(B)1,2,31(C)1,2,2132(D)2,3,223
12(A2E)()AA5E03.设A为n阶方阵,且。则
11(AE)(AE)(A)AE(B)EA(C)3(D)3
4.设A为mn矩阵,则有()。
(A)若mn,则Axb有无穷多解;
(B)若mn,则Ax0有非零解,且基础解系含有nm个线性无关解向量;(C)若A有n阶子式不为零,则Axb有唯一解;(D)若A有n阶子式不为零,则Ax0仅有零解。
5.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则()
(A)A与B相似(B)AB,但|A-B|=0(C)A=B
(D)A与B不一定相似,但|A|=|B|
三、填空题(每小题4分,共20分)
012n10。1.n*A13AA2.A为3阶矩阵,且满足3,则=______。
1021112423421570是线性(填相关或3.向量组,,无关)的,它的一个极大线性无关组是。
4. 已知1,2,3是四元方程组Axb的三个解,其中A的秩R(A)=3,14241233444,,则方程组Axb的通解为。
231A1a1503,且秩(A)=2,则a=
。5.设
四、计算下列各题(每小题9分,共45分)。
121A342122,求矩阵B。1.已知A+B=AB,且
Tn2.设(1,1,1,1),(1,1,1,1),而A,求A。
3.已知方程组 有无穷多解,求a以及方程组的通解。
4.求一个正交变换将二次型化成标准型
222f(x1,x2,x3)x12x22x34x1x24x1x38x2x3
5. A,B为4阶方阵,AB+2B=0,矩阵B的秩为2且|E+A|=|2E-A|=0。(1)求矩阵A的特征值;(2)A是否可相似对角化?为什么?;(3)求|A+3E|。
五.证明题(每题5分,共10分)。
1.若A是对称矩阵,B是反对称矩阵,ABBA是否为对称矩阵?证明你的结论。
T2.设A为mn矩阵,且的秩R(A)为n,判断AA是否为正定阵?证明你的结论。
第三篇:2014线性代数期末考试题
线性代数期末考试题
第一部分 选择题(共20分)
一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。
1.设行列式A.-81 B.-9 C.9 D.8l
等于()2.设A是m×n 矩阵,B是S×n 矩阵,C是m×s矩阵,则下列运算有意义的是()A.AB B.BC
3.设A,B均为n阶可逆矩阵,则下列各式中不正确的是(B)
4.已知向量中可以由
线性表出的是(D),则下列A.(1,2,3)B.(1,-2,0)C.(0,2,3)D.(3,0,5)
6、阵的秩为()A.1 8.2 C.3 D.4 7.设是任意实数,则必有(B)
8.线性方程组 的基础解系中所含向量的个数为()A.1 B.2 C.3 D.4 9.n阶方阵A可对角化的充分必要条件是(D)A.A有n个不同的特征值 B.A为实对称矩阵
C.A有n个不同的特征向量 D.A有n个线性无关的特征向量
第二部分 非选择题(共80分)
二、填空题(本大题共l0小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。错填或不填均无分。11.行列式 的值为_________.
12.设A为2阶方阵,且
13.设向量α=(6,-2,0,4),β=(一3,l,5,7),则由2α+γ=3β所确定的向量y=_________. 14.已知向量组k=___.
线性相关,则
有解的充分必要条件是t=____.
16.设A是3阶矩阵,秩(A)=2,则分块矩阵的秩为——.5 17.设A为3阶方阵,其特征值为3,一l,2,则|A|=__-6__. 18.设n阶矩阵A的 n个列向量两两正交且均为单位向量,则_______
三、计算题(本大题共6小题。每小题8分,共48分)21.计算行列式的值.
22.设矩阵23.已知向量组,求矩阵B,使A+2B=AB.
分别判定向量组由。
24.求与两个向量向量.
25.给定线性方程组
均正交的单位的线性相关性,并说明理
(1)问λ在什么条件下,方程组有解?又在什么条件下方程组无解?(2)当方程组有解时,求出通解. 26.求二次型的标准形
四、证明题(本大题共2小题,每小题6分,共12分),若Aa≠0,但向量组a,Aa线性无关.
参考答案
一、单项选择题(本大题共l0小题.每小题2分,共20分)1.A 2.C 3.B 4.D 5.A 6.C 7.B 8.C 9.D 10.B
二、填空题(本大题共l0小题,每小题2分,共20分)11.0 12.2 13.(-21,7,15,13)14.2 15.1,证明: 16.5 17.-6 18.E
三、计算题(本大题共6小题,每小题8分,共48分)21.解法一
解法二
经适当的两行对换和两列对换
22.解 由A+28=AB,有(A-2E)B=A,23.解
24.解 设与均正交的向量为,则
这个方程组的一个基础解系为
(一β也是问题的答案)25.解
所以,当时,方程组无解;
(2)当时
方程组有无穷多解.
26.解 此二次型对应的矩阵为
四、证明题(本大题共2小题,每小题6分,共12分)27.证 由行列式乘法公式
28.证
第四篇:线性代数试题及答案
线性代数习题和答案
第一部分
选择题
(共28分)
一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。1.设行列式a11a21a12a22a13a23a11a21a11a21a12a13a22a23=m,=n,则行列式
等于()
A.m+n
C.n-m
B.-(m+n)D.m-n 1002.设矩阵A=020,则A-1等于()
0031
3A.00012000
1
B.10001200013
1003
C.010
1002
12D.000010 3013123.设矩阵A=101,A*是A214的伴随矩阵,则A *中位于(1,2)的元素是()
B.6
A.–6
C.2
D.–2
B.BC时A=0 D.|A|0时B=C 4.设A是方阵,如有矩阵关系式AB=AC,则必有()
A.A =0
C.A0时B=C
A.1 5.已知3×4矩阵A的行向量组线性无关,则秩(AT)等于()
B.2
/ 7
C.3
D.4
和λ1β1+λ6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()
A.有不全为0的数λ1,λ2,…,λβ2+…λsβs=0
B.有不全为0的数λ1,λ2,…,λ(αs+βs)=0
C.有不全为0的数λ1,λ2,…,λ(αs-βs)=0
D.有不全为0的数λ1,λ2,…,λ1+λ2α2+…+λsαs=0
s和不全为
s使λ1(α1-β1)+λ2(α2-β2)+…+λss
s使λ1α1+λ2α2+…+λsαs=0
2使λ1(α1+β1)+λ2(α2+β2)+…+λ
s
0的数μ1,μ2,…,μs使λ1α
和μ1β1+μ2β2+…+μsβs=0
B.所有r-1阶子式全为0 D.所有r阶子式都不为0 7.设矩阵A的秩为r,则A中()
A.所有r-1阶子式都不为0
C.至少有一个r阶子式不等于0 是()
A.η1+η2是Ax=0的一个解
C.η1-η2是Ax=0的一个解
A.秩(A) C.A=0 B.η1+η2是Ax=b的一个解 D.2η1-η2是Ax=b的一个解 B.秩(A)=n-1 D.方程组Ax=0只有零解 12128.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的9.设n阶方阵A不可逆,则必有() 10.设A是一个n(≥3)阶方阵,下列陈述中正确的是() A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量 B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值 C.A的2个不同的特征值可以有同一个特征向量 D.如λ1,λ2,λ于λ1,λ2,λ11.设λ0是矩阵3是 A的3个互不相同的特征值,α1,α2,α3依次是A的属 0的线性无关的特征向量的个3的特征向量,则α1,α2,α3有可能线性相关 A的特征方程的3重根,A的属于λ B.k<3 D.k>3 数为k,则必有() A.k≤3 C.k=3 / 7 12.设A是正交矩阵,则下列结论错误的是() A.|A|2必为1 C.A-1=AT B.|A|必为1 D.A的行(列)向量组是正交单位向量组 13.设A是实对称矩阵,C是实可逆矩阵,B=CTAC.则() A.A与B相似 B.A与B不等价 C.A与B有相同的特征值 D.A与B合同 14.下列矩阵中是正定矩阵的为() A.23343426 B. 100 C.023035111D.120102 第二部分 非选择题(共72分) 二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。错填或不填均无分。15.111356 .9253611111116.设A=,B=123.则 124A+2B= .17.设A=(aij)3×3,|A|=2,Aij表示|A|中元素aij的代数余子式(i,j=1,2,3),则(a11A21+a12A22+a13A23)2+(a21A21+a22A22+a23A23)2+(a31A21+a32A22+a33A23)2= .18.设向量(2,-3,5)与向量(-4,6,a)线性相关,则a= .19.设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为 .20.设A是m×n矩阵,A的秩为r( .3 / 7 21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α-β)= .22.设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为 .23.设矩阵0106A=133,已知α21082=12是它的一个特征向量,则α所对应的特征值为 .24.设实二次型f(x1,x2,x3,x4,x5)的秩为4,正惯性指数为3,则其规范形为 .三、计算题(本大题共7小题,每小题6分,共42分) 12025.设A=340121,B=1105231(2)|4A|..求(1)ABT; 24026.试计算行列式352112341313.42327.设矩阵A=110123,求矩阵B使其满足矩阵方程AB=A+2B.21301301.,α=28.给定向量组α1=,α,α23=4=22404193试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数。 12124229.设矩阵A=210333266.23340求:(1)秩(A); (2)A的列向量组的一个最大线性无关组。30.设矩阵022A=234432的全部特征值为1,1和-8.求正交矩阵T和对角矩阵D,使T-1AT=D.31.试用配方法化下列二次型为标准形 / 7 2f(x1,x2,x3)=x12x223x34x1x24x1x34x2x3,并写出所用的满秩线性变换。 四、证明题(本大题共2小题,每小题5分,共10分) 32.设方阵A满足A3=0,试证明E-A可逆,且(E-A)-1=E+A+A2.33.设η0是非齐次线性方程组Ax=b的一个特解,ξ1,ξ基础解系.试证明 (1)η1=η0+ξ1,η2=η0+ξ 答案: 一、单项选择题(本大题共14小题,每小题2分,共28分)1.D 2.B 3.B 6.D 7.C 8.A 11.A 12.B 13.D 二、填空题(本大题共10空,每空2分,共20分)15.6 16.4.D 9.A 14.C 5.C 10.B 2是其导出组Ax=0的一个 2均是Ax=b的解; (2)η0,η1,η2线性无关。 337137 17.4 18.–10 19.η1+c(η2-η1)(或η2+c(η2-η1)),c为任意常数 20.n-r 21.–5 22.–2 23.1 24.222z1z22z3z4 三、计算题(本大题共7小题,每小题6分,共42分) 12022403425.解(1)AB=312110T 86=1810310(2)|4A|=43|A|=64|A|,而 .|A|=1203402.121所以|4A|=64·(-2)=-128 26.解 352111051234131351105110511311300 / 7 =5111111 55051162620301040.55550=27.解 AB=A+2B即(A-2E)B=A,而 (A-2E)-1223=1101211143153.164所以 B=(A-2E)-114342353110 A=116412338696.=2212928.解一 2130053213011301 0224011234190131121000100005111200088014140002101, 0110003035112 011000所以α4=2α1+α2+α3,组合系数为(2,1,1).解二 考虑α4=x1α1+x2α2+x3α3,即 2x1x23x30x3x112 2x2x4323x14x2x39.方程组有唯一解(2,1,1)T,组合系数为(2,1,1).29.解 对矩阵A施行初等行变换 121000A03209602628232 / 7 212101210328303200000062000217000283=B.31000(1)秩(B)=3,所以秩(A)=秩(B)=3.(2)由于A与B的列向量组有相同的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一个最大线性无关组。(A的第1、2、5列或1、3、4列,或1、3、5列也是) 30.解 A的属于特征值λ=1的2个线性无关的特征向量为 ξ1=(2,-1,0)T,ξ2=(2,0,1)T.25/525/15经正交标准化,得η 1,η 25/5=5/15=4.05/3λ=-8的一个特征向量为 1/3ξ=13,经单位化得η2 3=2/3.22/325/5215/151/3所求正交矩阵为 T=.5/545/152/305/32/31对角矩阵 D=00010.00825/5215/151/3(也可取T=.) 05/32/35/545/152/331.解 f(x1,x2,x3)=(x1+2x2-2x3)2-2x22+4x2x3-7x32 =(x1+2x2-2x3)2-2(x2-x3)2-5x32.y1x12x22x3x1y12设yy22x2x3,即x2y2y3xyy3x333因其系数矩阵C=12011可逆,故此线性变换满秩。0001经此变换即得f(x1,x2,x3)的标准形 y12-2y22-5y32.四、证明题(本大题共2小题,每小题5分,共10分)32.证 由于(E-A)(E+A+A2)=E-A3=E,所以E-A可逆,且(E-A)-1= E+A+A2.33.证 由假设Aη0=b,Aξ1=0,Aξ2=0.(1)Aη1=A(η0+ξ1)=Aη0+Aξ1=b,同理Aη2= b,所以η1,η2是Ax=b的2个解。(2)考虑l0η0+l1η1+l2η2=0,即 (l0+l1+l2)η0+l1ξ1+l2ξ2=0.则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾。所以 l1ξ1+l2ξ2=0.又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而 l0=0.所以η0,η1,η2线性无关。 / 7, (101)北京理工大学远程教育学院2007-2008学年第一学期 《线性代数》期末试卷(A卷) 教学站 学号 姓名 成绩 一.填空题(每小题4分,共20分) x1211.已知A,则XTAX_______; ,X13x22.设向量1(0,1,1),2(0,t,2)线性相关,则t _____; 3.设A是秩为1的3阶矩阵,则齐次线性方程组AX=0 的基础解系含_____个解; 1114.已知矩阵001,则其秩为__________; 0015.已知2是矩阵A的一个特征值,则 |2EA| __________。 二.选择题(每小题4分,共20分) 1.设A与B是两个同阶可逆矩阵,则(); A.(AB)1A1B1 B.|A||B||B||A| C.|AB||A||B| D.ABBA 2.设A是12矩阵,B是2阶方阵,C是21矩阵,则()A.ABC是1阶方阵 B.ABC是21阶矩阵 C.ABC是2阶方阵 D.ABC是12阶矩阵 3.已知向量组1,2,3满足3k11k22,则()A.k1,k2不全为零 B.1,2线性无关 C.30 D.1,2,3线性相关 4.设1,2是非齐次线性方程组AXb的两个解,则下述说法不正确的是(); A.12是导出组AX0的1解 B.(12)是AX0的解 21C.12是AXb的解 D.(12)是AXb的解 5.设A是一个方阵,则(); A.由| A | = 0可得 A = 0 B.由| A | = 0可得 0是A的一个特征值 C.由| A | = 1可得 A = E D.由| A | = 1可得 1是A的一个特征值 三.计算题(每小题10分,共50分) 131.计算行列式 3233333333 342.求解下列线性方程组 x15x22x333x1 x24x32 5x3x6x1123用导出组的基础解系表示通解。 0111203.解矩阵方程 X101 110021 1104.已知矩阵A110,求A的特征值和特征向量。 002 5.求非退化线性替换,把实二次型 f(x1,x2,x3)4x1x32x2x3 化为规范形。 四.其它(每小题5分,共10分) 1.设同阶方阵A与B满足ABE,证明:|A||B|1; 2.举例说明:由|A||B|1不能导出ABE。第五篇:线性代数试题(B)