X射线衍射的定量物相分析

时间:2019-05-14 05:03:45下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《X射线衍射的定量物相分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《X射线衍射的定量物相分析》。

第一篇:X射线衍射的定量物相分析

摘要

X射线在晶体中的衍射,实质上是大量原子散射波互相干涉的结果。每种晶体所产生的衍射花样都是其内部原子分布规律的反映。研究X射线衍射,可归结为衍射方向和衍射强度两方面问题。衍射方向由晶胞大小、晶胞类型和位向等因素决定,衍射强度主要与原子类型及其在晶胞中位置有关。本文简单介绍了X射线衍射物相定量分析的基本原理以及几种典型的分析方法,即直接对比法、内标法和外标法。

0、引言

X射线衍射物相定量分析已被广泛应用于材料科学与工程的研究中。X射线衍射物相定量分析有内标法、外标法、绝热法、增量法、无标样法、基本冲洗法和全谱拟合法等常规分析方法。内标法、绝热法和增量法都需要在待测样品中加入参考标相并绘制工作曲线,如果样品含有物相较多,谱线较复杂,再加入参考标相会进一步增加谱线的重叠机会,给定量分析带来困难。无标样法、基本冲洗法和全谱拟合法等分析方法,虽然不需要配制一系列内标标准物质和绘制标准工作曲线,但需要烦琐的数学计算,其实际应用也受到了一定限制。外标法虽然不需要在样品中加入参考标相,但需要用纯的待测物质制作工作曲线,这在实际应用中也是极为不便的。

1、X射线定量物相分析的基本原理

物相分析与化学分析方法不同,化学分析仅仅是获得物质中的元素组分,物相分析则是得到这些元素所构成的物相,而且物相分析还是区分相同物质同素异构体的有效方法。X射线定量物相分析,是在已知物相类别的情况下,通过测量这些物相的积分衍射强度,来测算它们的各自含量。多相材料中某相的含量越多,则它的衍射强度就越高。但由于衍射强度还受其它因素的影响,在利用衍射强度计算物相含量时必须进行适当修正。

定量分析的依据,是物质中各相的衍射强度。设试样是由 n 个相组成的混合物,则其中第 j 相的衍射相对强度可表示为

式中(2μl)-1 对称衍射即入射角等于反射角时的吸收因子,μl 试样平均线吸收系数,V 试样被照射体积,Vc 晶胞体积,P 多重因子,|F|

2结构因子,Lp 角因子,e-2M 温度因子。

由于材料中各相的线吸收系数不同,因此当某相 j 的含量改变时,平均线吸收系数μ

l 也随之改变。若第 j 相的体积分数为 fj,并假定试样被照射体积 V 为单位体积,则 j 相被照射的体积为

Vj = V fj = fj

当混合物中j相的含量改变时,强度公式中除fj 及μl 外,其余各项均为常数,它们的乘积定义为强度因子,则第 j 相某根线条的强度 Ij 和强度因子 Cj 分别为

用试样的平均质量吸收系数μ

m 代替平均线吸收系数μl,可以证明

式中 wj 及 ρj 分别是第 j 相的重量分数和质量密度。

当试样中各相均为晶体材料时,体积分数fj和质量分数wj必然满足

这就是定量物相分析的基本公式,通过测量各物相衍射线的相对强度,借助这些公式即可计算出它们的体积分数或质量分数。这里的相对强度是相对积分强度,而不是相对计数强度,对此后面还要说明。

2、X射线定量物相分析的分析方法

X射线定量物相分析,又称定量相分析或定量分析,其常用方法包括直接对比法、内标法以及外标法等。

2.1、直接对比法

直接对比法,也称强度因子计算法。假定试样中共包含j种类型的相,每相各选一根不相重叠的衍射线,以某相(例如假设第1相)的衍射线作为参考。其它相的衍射线强度与参考线强度之比为

Ij / I1 =(Cj fj)/(C1 f1)

可变换为如下等式

如果试样中各相均为晶体材料,则全部体积分数 fj 之和为1,此时不难证明

这就是第 j 相的体积分。

因此,只要确定各物相的强度因子比 C1/Cj 和衍射强度比 Cj /C1,就可以利用上式计算出每一相的体积分数。

直接对比法适用于多相材料,尤其在双相材料定量分析中的应用比较普遍。例如钢中残余奥氏体含量测定,双相黄铜中某相含量测定,钢中氧化物 Fe3O4 以及 Fe2O3 测定等。残余奥氏体含量一直是人们关心的问题。如果钢中只包含奥氏体及铁素体(马氏体)两相,则

式中 fγ 为钢中奥氏体的体积分数,Cγ 及 Cα分别奥氏体和铁素体的强度因子,Iγ 及 Iα 分别奥氏体和铁素体的相对积分衍射强度。

必须指出的是,由于高碳钢试样中的碳化物含量较高,此时实际上已变为铁素体、奥氏体和碳化物的三相材料体系。因此,不能直接利用上式来计算钢材中的奥氏体含量,需要对其进行适当地修正。比较简单的修正方法是公式中分子项减去钢材中碳化物的体积分数 Cc,而分母项保持不变,即奥氏体的体积分数可表示为

至于钢中碳化物的体积分数 Cc,可借助定量金相的方法进行测量,或者利用钢中的含碳量加以估算。2.2、内标法

有时一些物理常数难以获得,无法计算强度因子Cj,也就不能采用直接对比法进行定量物相分析。内标法就是将一定数量的标准物质(内标样品)掺入待测试样中,以这些标准物质的衍射线作为参考,来计算未知试样中各相的含量,这种方法避免了强度因子计算的问题。2.2.1、普通内标法

在包含 n 种相的多相物质中,第j相质量分数为 wj,如果掺入质量分数 ws 的标样,则 j 相的质量分数变为(1-ws)wj,可得到

式中 Ij 为 j 相衍射强度,Is 为内标样品衍射强度。该式表明,ws 一定时,第 j 相含量 wj 只与强度比 Ij /Is 有关,而不受其它物相的影响。利用上式测算第 j 相的含量,必须首先确定常数R 值。

为此,制备不同 j 相含量 wj’ 的已知试样,它们中都掺入相同含量 ws 的标样。

分别测量不同 wj’ 的已知试样衍射强度比

Ij’/Is 利用测得的数据绘制出 Ij’/Is 与 wj’ 直线,这就是所谓的定标曲线,如图所示。采用最小二乘法求得直线斜率,该斜率即为系数 R 值。

然后,方可测量未知试样中 j 相的含量。在待测试样中也掺入与上述相同含量 ws 的标样,并测得 Ij /Is 值及系数 R 来计算待测试样中 j 相的含量 wj 值。需要说明,未知试样与上述已知试样所含标样质量分数 ws 必须相同,在其它方面二者之间并无关系,而且也不必要求两类试样所含物相的种类完全一样。常用的内标样品包括-Al2O3、ZnO、SiO2及Cr2O3等,它们易于作成细粉末,能与其它物质混合均匀,且具有稳定的化学性质。上述内标法的缺点是:首先在绘制定标曲线时需配制多个混合样品,工作较量大。其次由于需要加入恒定含量的标样粉末,所绘制定的定标曲线只能针对同一标样含量的情况,使用时非常不方便。为了克服这些缺点,可采用下面将要介绍的K值内标法。2.2.2、K 值内标法

选择公认的参考物质 c 和纯 j 相物质,将它们按质量 1:1 的比例进行混合,混合物中它们的质量分数为 wj’ = wc’ = 0.5。

令上式中 wj=wc=0.5,此混合物衍射强度比为

式中 Ij’ 为 j 相的衍射强度,Ic’ 为参考物质的衍射强度,Kj 称为 j 相的参比强度或 K 值。K值只与物质的参数有关,而不受各相含量的影响。目前,许多物质的参比强度已经被测出,并以 I/Ic 的标题列入PDF卡片索引中,供人们查找使用。这类数据通常以α-Al2O3为参考物质,并取各自的最强线计算其参比强度。当试样中各相均为晶体材料时,并且各相质量分数 wj 之和为1,此时不难证明

在这种情况下,一旦获得各物相的参比强度K 值,测量出各物相的衍射强度 I,利用上式即可计算出每一相的质量分数。其中各个物相的参比强度为相同参考物质,测量谱线与参比谱线晶面指数也相对应,否则必须对它们进行换算。

由于 K 值法简单可靠,因而应用比较普遍,我国对此也制订了国家标准,从试样制备和测试条件等方面均提出了具体要求。2.2.3、增量内标法

假设多相物质中第 j 相为待测未知相,第1相为参考未知相。如果添加质量分数为Δwj 的纯 j 相物质,则此时第 j 相的含量由 wj 变为(wj+Δwj)/(1+Δwj),第1相的含量由 w1 变为 w1/(1+Δwj)。可以得到

式中 Ij 为 j 相的衍射强度,I1 为第1相的衍射强度,B 为常数。

分别测量不同 Δwj 试样的衍射强度比 Ij /I1,采用最小二乘法,将测量数据回归为 Ij /I1 与Δwj 的直线,往左下方延长,直至它与横轴相交,此交点横坐标的绝对值即为待测 wj 值,如图。

增量内标法不必掺入其它内标样品,避免了试样与其它样品衍射线重叠的可能,通过增量还可提高被测物相的检测灵敏度。当被测相含量较低或被分析的试样很少时,用此方法效果明显,为了提高准确度,可取多根衍射线来求解。

对于多相物质,仅留一相作为参考相,其余均给予一定的增量,按此方法就能得到全面的定量分析结果。

上述三种内标法,特别适合于粉末试样,而且效果也比较理想。尤其是 K 值内标法,在已知各物相参比强度 K 值的情况下,不需要往待测试样中添加任何物质,根据衍射强度及 K 值计算各物相的含量,因此该方法同样对块体试样适用。2.3、外标法

如果不能实现K值内标法,则块体试样只能采用外标法进行定量分析。下面将根据各相吸收效应差别,分两种情况进行讨论。

2.3.1、各相吸收效应差别不大

当试样中各相的吸收效应接近时,则只需测量试样中待测 j 相的衍射强度并与纯 j 相的同一衍射线的强度对比,即可定出 j 相在试样中的相对含量。若混合物中包含 n 个相,它们的吸收系数及质量密度均接近(例如同素异构物质),可以证明,试样中 j 相的衍射强度 Ij 与纯 j 相的衍射强度 Ij0 之比为

式中表明,在此情况下第 j 相的体积分数 fj 和质量分数 wj 都等强度比 Ij /Ij0 值。可见,这种方法具有简便易行的优点。

但是,在对试样和纯 j 相进行衍射强度测量时,要求两次的辐照情况及实验参数必须严格一致,否则将直接影响到测量的精度,这是此方法的缺点。2.3.2、各相吸收效应差别较大

各相吸收效应差别较大时,可采用以下的外标方法进行定量分析。选择 n 种与被测试样中相同的纯相,按相同的质量分数将它们混合,作为外标样品。即 w1’: w2’ ….wn’ = 1 其中第1相作为参考相。可以证明,它们的衍射强度比为

对于被测试样,相应的衍射强度比为

各相均为晶体材料,并且各相质量分数 wj 之和为1,可以得到

式中表明,只要测得外标样品的强度比 I1’/Ij’ 和实际试样的强度比 Ij /I1,即可计算出各相的质量分数。此法不需要计算强度因子,不需要制作工作曲线,也不必已知吸收系数。但是,前提是可以得到各个纯相的物质,这是此方法的缺点。

3、结束语

通过本课程的学习,我初步掌握了X射线衍射分析的原理和方法,姜老师上课轻松而不失严谨,使我获益匪浅,在此感谢姜老师的传授和指导!

第二篇:南京大学近代物理实验-X射线衍射物的定量物相分析

X射线衍射的定量物相分析

摘要:X射线在晶体中的衍射,实质上是大量原子散射波互相干涉的结果。每种晶体所产生的衍射花样都是其内部原子分布规律的反映。本实验利用自动化X射线衍射仪和专用的数据

分析软件,进行定量物相分析。

关键词:X射线衍射,特征谱,粉末法

一、引言

作为结构研究基础的X射线晶体学已趋成熟,相关繁重计算因计算机的使用而成为可行。它的应用日趋富有成效, 已成为必不可少的工具。材料科学的基础研究和应用基础研究中,功能意识的加强以及对结构与性能联系规律认识的不断提高,人们期望着实现以性能为导向寻找和设计最适宜结构的最佳化合物,并付诸实施。宏观表象转移至微观认识。结构参数信息带来新观念和生产工艺改进,为研制新材料、建立新理论提供依据有着重要的意义和不可限量的前景。多晶X射线衍射样品易得, 样品与实际体系相接近,作为研究物质结构,质量检查的X射线衍射分析技术应用极为广泛。

二、实验原理

三、实验仪器

德国布鲁克公司D8 X射线衍射仪: X射线光源: 3kW封闭靶(陶瓷X光管);

测角仪: 扫描方式θ/θ联动测角仪,测角仪的样品台水平放置并保持不动,角度重现性达到 0.0001°;

驱动方式:步进马达驱动;最高定位速度:1500°/min狭缝系统:包括索勒狭缝、发散狭缝、防散射狭缝、接受狭缝等;

LynxEye探测器:(1)强度增益比常规的闪烁计数器高150倍,同时具有优秀的分辨率及信噪比;(2)超快的测量速度;(3)良好的低角度测量性能;(4)良好的分辨率;

循环水冷系统:要求连续工作;控温精度≤±2℃;供水流量,满足发生器要求, 进水度可调;过 热保护。

四、实验步骤:

1.按照D8 X射线衍射仪操作规程开机。(1)开总电源。(2)开电脑。

(3)开循环水。

(4)开仪器电源(按绿色按钮,由4灯全亮变成ON和ALARM灯亮)。

(5)开X-ray高压(右侧扳手顺时针向上扳45度保持3~5秒,直到Ready灯亮)。(6)开BIAS(在前盖盘内)。(7)开软件XRD Commander。

2.测量。打开XRD Commander,先初始化(点击两个轴上面的选项Requested,选定两个轴,使Tube为20,Detector为20,点击菜单里的初始化图标进行初始化)。做物相分析在Scantype中选Locked Coupled,并且在Detail中将探测器改为1D。在XRD Commander中选择各参数(起始角、终止角、步长等)开始测量。即可获得一张衍射图谱,将其保存为*.raw文件。对于未知的样品:首先,扫描范围0.10~900,步长大些,快速扫描。然后,参照第前面的谱线,把扫描起始角放在第一个峰前一点,把终止角放在最后一个峰后一点。对于一般定性分析用连续扫描。对于定量分析(例如无标样定量相分析等)对强度要求高,就用步进扫描。3.按照D8 X射线衍射仪操作规程关机。4.数据处理。(1)打开Eva软件。

(2)将待处理的数据文件导入。点击File/Import/Scan调入原始数据文件*.raw进行处理(或点击File/Open调入*.EVA文件进行处理)。3)在ToolBox框内进行数据处理。

i)扣背景:点击Backgnd/点击Default/点击Replace,显示扣背景处理后的数据(也可以点击Backgnd,把门槛threshold改为“0”,上下移动滑块,调整至合适背景,点击“Replace”,显示扣背景处理后的数据)。

ii)删除k:点击Strip k/点击Default/点击Replace,显示处理后的数据(也可以上下移动滑块调整至合适,单击Replace,显示处理后的数据)。

iii)平滑处理:单击Smooth/点击Default/点击Replace,显示处理后的数据(也可以设定需要平滑的参数,左右或上下移动滑块进行调整,合适后单击Replace,显示处理后的数据)。

iv)寻峰:点击Peak Search,设定寻峰参数(门槛threshold与峰宽Width标定,可以上下移动滑块进行调整)。点击“Append to list”标定全谱衍射d值(标定漏峰只需按左键将“↓”拖移至峰顶点击即可,删除峰可点击删除峰与“×”即可),此时数据在peak状态列于框内。(4)选定所有的峰,单击Made DIF生成DIF文件。

(5)物相的定性分析:点击Search/Match。在Search/Match框内选择前三个Quality Marks,选择可能的元素,并选择Pattern,点击Search进行检索/匹配。(先选Toggle All/点击左上角的元素“H”可以将所有的元素变为红色,即肯定没有。/选择肯定有的点成绿色。/选择可能有的点成灰

色。红色肯定没有。)。最后根据列表给出的可能物质通过比较卡片内的谱线和实际测量出谱线的吻合程度来确定组成成分,也就完成了X射线衍射的初步分析工作。

五、数据处理结果

计算机输出的衍射图谱分析结果如下图所示,可以看出该样品含有Mg、Si及O三种元素。

六、思考题

1.为什么衍射仪记录的始终是平行于试样表面的衍射?

答:晶面若不平行于试样表面,尽管也产生衍射,但衍射线进不了探测器,不能被接收。

2.平行表面的晶面有无衍射产生? 答:有衍射产生。

3.用衍射仪如何区分单晶、多晶和非晶?

答:

1、单晶结构:结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。2.多晶结构:多晶结构薄膜是由若干尺寸大小不等的晶粒所组成。

3、非晶结构(无定形结构或玻璃态结构):它是一种近程有序结构。就是2~3个原子距离内原子排列是有序的,大于这个距离排列是杂乱无规则的。

因此单晶至多出现一组相关衍射峰,多晶则可能出现不相关的多组衍射峰,由于晶粒取向随机,因此各个峰的指数没什么规律可言。非晶的衍射图谱则是杂乱无章的,没有明显的衍射峰。

参考文献

[1]黄润生,沙振舜,唐涛等,近代物理实验(第二版),南京大学出版社,2008.

第三篇:材料分析基础实验报告之X射线衍射(XRD)物相分析

实验一 X射线衍射仪的结构与测试方法

一、实验目的

1、掌握X射线衍射的基本原理;

2、了解X射线衍射仪的基本结构和操作步骤;

3、掌握X射线衍射分析的样品制备方法;

4、了解X射线的辐射及其防护方法

二、实验原理

根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。当X射线波长与晶体面间距值大致相当时就可以产生衍射。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。

三、实验设备

丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;玛瑙研体一个;化学药品或实际样品若干(Li4Ti5O12)。

四、实验内容

1、采用玛瑙研体研磨样品,在玻璃样品架上制备一个合格试验样品;

2、选择合适的试验参数,获得XRD图谱一张;

3、理解样品、测试参数与XRD图谱特征的关系。

五、实验步骤

1、开机 1)打开总电源 2)启动计算机

3)将冷却水循环装置的机箱上的开关拨至运行位置,确认冷却水系统运行,水温正常(19-22℃);

4)按下衍射仪ON绿色按键打开衍射仪主机开关 5)启动高压部分

(a)必须逐渐提升高压,稳定后再提高电流。电压不超过40kV,管电流上限是40mA,一般为30mA。

(b)当超过4天未使用X光管时,必须进行光管的预热。在25kV高压,预热10分钟;30kV,预热5分钟;35kV,预热5分钟。(c)预热结束关机后,至少间隔30分钟以上方可再次开机实验。6)将制备好的样品放入衍射仪样品台上; 7)关好衍射仪门。

2、样品测试

1)在电脑上启动操作程序

2)进入程序界面后,鼠标左键点击“测量”菜单,再点击“样品测量”命令,进入样品测量命令

3)等待仪器自检完成后,设定好右边的控制参数; 4)鼠标左键点击“开始测量”,保存输出文件; 5)此时仪器立即开始采集数据,并在控制界面显示;(a)工作电压与电流:一般设为40kV,40mA;(b)扫描范围:起始角度>5°,终止角度<80°;(c)步进角度:推荐0.02°,一般在0.02—0.06°之间;(d)采样时间:推荐1s,一般0.2—1.0s;(e)测量方式:步进测量;

6)采集数据结束后,开始测量键弹起,数据自动保存在制定的文件里;

7)如需测量下一个样品,则开启衍射仪门,换好样品后,再关闭衍射仪门。从样品测试步骤1开始重复。

3、关机

1)当所有样品测试完成后,点击控制界面退出键; 2)退出高压;

3)待仪器顶部的高压指示灯熄灭后,按下off红色按钮关闭衍射仪 4)5分钟后关闭水循环制冷装置,关闭总电源; 5)关闭电脑

六、实验结果

1、控制参数:步进测量,管电压40kV,管电流30mA,起始角度10°,终止角度80°,步进角度0.03°,采样时间0.2s;符合规范要求。

2、得到的Li4Ti5O12样品的衍射图谱为:

3、上述测量数据可供后续分析得到样品的成分。

七、注意事项

1、样品的粗细对衍射峰的强度有很大的影响,对粉末进行长时间的研磨,使样品的平均粒径在10微米左右,以保证有足够的晶粒参与衍射。

2、在制作样品过程中避免择优取向,制样时尽量轻压。

3、根据研究工作的需要选用不同的测量方式与测量参数,记录的衍射图谱不同,因衍射图谱上必须注明主要的实验参数条件。

4、一定要等待X射线关闸关闭后再打开X射线衍射仪的门,防止受到辐射损伤。实验二 多晶粉末材料的X射线衍射物相定性分析

一、实验目的

1、掌握X射线衍射进行物相定性分析的原理

2、熟悉JCPDS卡片及其检索方法;

3、掌握多相物质进行相分析的方法和步骤。

二、实验原理

1、X射线衍射物相定性分析的原理

每一种结晶物质都有其特定的结构参数,包括点阵类型、晶胞大小、晶胞中原子的种类、数目及其位置等等,而这些参数在X射线的衍射图谱上均有所反映;

尽管物质的种类有千千万万,但却没有两种衍射花样完全相同的物质,图谱中衍射线的位置所反映的晶面间距及它们的强度(d-I系列)犹如人的指纹一样,是鉴别物相的依据。多相物质的衍射图谱, 是单相物质衍射图的简单叠加,任何物相都不会因其它物相的存在而改变其衍射特征。

2、JCPDS卡片

将已发现物质的衍射数据制成标准卡片,物相定性分析就成为简单的卡片检索与对照工作,一旦试样的衍射数据与标准衍射卡片相符,则其晶体结构和物理性能等便由卡片得知。1969年改由The Joint Committee on Powder Diffraction Standards(JCPDS)出版;称为PDF卡片。

三、实验设备 丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;衍射图谱;JCPDS卡片及索引;计算机,装有XRD定性分析软件。

四、实验内容

1、衍射花样测试,已在实验一测试完毕;

2、单物相鉴定实验

首先求出di和Ii/I1;根据待测相的衍射参数,得出三条强线的晶面间距值d1,d2,d3(包括误差);根据d1值(或d2,d3),在数值索引中检索适当d组,找出与d1,d2,d3值符合较好的一些卡片;把待测相的三条强线的d值和I/I1值与这些卡片上各物质的三强线d值和I/I1 值相比较,淘汰一些不相符的卡片,最后获得与实验数据一一吻合的卡片,卡片上所示物质即为待测物,鉴定工作完成。

五、结果分析

1、根据实验一的到的实验数据—衍射图谱:

2、通过MDI Jade5软件的PDF检索功能,PDF卡片索引建立后,处理上述数据,进行物相检索,得到以下结果:

可知:物相检索的结果是PDF#49-0207,物相为Li4Ti5O12,晶格常数a=b=c=8.3588A,符合实验,且得到以下详细数据:

六、实验结论

通过MDI Jade5物相检索,与标准PDF卡片对比,确认XRD所测物质为Li4Ti5O12,且晶格常数为8.3588埃,符合实验。

第四篇:X射线衍射技术及物相分析

X射线衍射技术及物相分析

(一)实验目的要求

1.学习了解X射线衍射仪的结构和工作原理; 2.掌握X射线衍射物相定性分析的方法和步骤;

二、实验仪器

本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。3.给定实验样品,设计实验方案,做出正确分析鉴定结果。

1.X射线管

X射线管主要分密闭式和可拆卸式两种。广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。X射线管线焦点为1×10平方毫米,取出角为3~6度。此X射线管为密闭式,功率为2千瓦。X射线靶材为Cu。

选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。2.测角仪

测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。

(1)衍射仪一般利用线焦点作为X射线源S。如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。

(2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。

(3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为

接收狭缝(RS).生产厂供给0.15毫米、0.3毫米、0.6毫米宽的接收狭缝。(4)第三个狭缝是防止空气散射等非试样散射X射线进入计数管,称为防散射狭缝(SS)。SS和DS配对,生产厂供给与发散狭缝的发射角相同的防散射狭缝。(5)S1、S2称为索拉狭缝,是由一组等间距相互平行的薄金属片组成,它限制入射X射线和衍射线的垂直方向发散。索拉狭缝装在叫做索拉狭缝盒的框架里。这个框架兼作其他狭缝插座用,即插入DS,RS和SS.

3.X射线探测记录装置

衍射仪中常用的探测器是闪烁计数器(SC),它是利用X射线能在某些固体物质(磷光体)中产生的波长在可见光范围内的荧光,这种荧光再转换为能够测量的电流。由于输出的电流和计数器吸收的X光子能量成正比,因此可以用来测量衍射线的强度。

闪烁计数管的发光体一般是用微量铊活化的碘化钠(NaI)单晶体。这种晶体经X射线激发后发出蓝紫色的光。将这种微弱的光用光电倍增管来放大,发光体的蓝紫色光激发光电倍增管的光电面(光阴极)而发出光电子(一次电子),光电倍增管电极由10个左右的联极构成,由于一次电子在联极表面上激发二次电子,经联极放大后电子数目按几何级数剧增(约106倍),最后输出几个毫伏的脉冲。

三、实验原理

根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。因此,当X 2

射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映。

在材料科学工作中经常需要进行物相分析,即分析某种材料中含有哪几种结晶物质,或是某种物质以何种结晶状态存在。根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质方法,就是X射线物相分析。利用X射线衍射分析可确定某结晶物质属于立方、四方、六方、单斜还是斜方晶系。

由布拉格(Bragg)方程得晶体的每一个衍射峰都和一组晶面间距为d的晶面组的关系:

式中,为入射线与晶面的夹角,λ为入射线的波长。

另一方面,晶体的每一条衍射线的强度I又与结构因子F模量的平方成正比:

式中,I0为单位截面上入射X射线的功率;K为比例因子,与实验衍射几何条件、试样的形状、吸收性质、温度及一些物理常数有关;V为参加衍射的晶体的体积;|F|2称为结构因子,取决于晶体的结构,它是晶胞内原子坐标的函数,由它决定了衍射的强度。可见d和|F|2都是由晶体的结构所决定的,因此每种物质都必有其特有的衍射图谱。因而可以根据它们来鉴别结晶物质的物相。通常利用PDF衍射卡片进行物相分析。

四、参数选择 1.阳极靶的选择

选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。不同靶材的使用范围。

必须根据试样所含元素的种类来选择最适宜的特征X射线波长(靶)。当X射线的波长稍短于试样成分元素的吸收限时,试样强烈地吸收X射线,并激发产生成分元素的荧光X射线,背底增高。其结果是峰背比(信噪比)P/B低(P为峰强度,B为背底强度),衍射图谱难以分清。

X射线衍射所能测定的d值范围,取决于所使用的特征X射线的波长。X射线衍射所需测定的d值范围大都在1nm至0.1nm之间。为了使这一范围内的衍射峰易于分离而被检测,需要选择合适波长的特征X射线。一般测试使用铜靶,但因X射线的波长与试样的吸收有关,可根据试样物质的种类分别选用Co、Fe,或Cr靶。此外还可选用钼靶,这是由于钼靶的特征X射线波长较短,穿透

能力强,如果希望在低角处得到高指数晶面衍射峰,或为了减少吸收的影响等,均可选用钼靶。2.扫描范围的确定

不同的测定目的,其扫描范围也不同。当选用Cu靶进行无机化合物的相分析时,扫描范围一般为90°~2°(2θ);对于高分子,有机化合物的相分析,其扫描范围一般为60~2°;在定量分析、点阵参数测定时,一般只对欲测衍射峰扫描几度。

3.管电压和管电流的选择

工作电压设定为3~5倍的靶材临界激发电压。选择管电流时功率不能超过X射线管额定功率,较低的管电流可以延长X射线管的寿命。

X射线管经常使用的负荷(管压和管流的乘积)选为最大允许负荷的80%左右。但是,当管压超过激发电压5倍以上时,强度的增加率将下降。所以,在相同负荷下产生X射线时,在管压约为激发电压5倍以内时要优先考虑管压,在更高的管压下其负荷可用管流来调节。靶元素的原子序数越大,激发电压就越高。由于连续X射线的强度与管压的平方呈正比,特征X射线与连续X射线的强度之比,随着管压的增加接近一个常数,当管压超过激发电压的4~5倍时反而变小,所以,管压过高,信噪比P/B将降低,这是不可取得的。具体数据见表三:衍射仪测试条件参数选择。4.发散狭缝的选择(DS)

发散狭缝(DS)决定了X射线水平方向的发散角,限制试样被X射线照射的面积。如果使用较宽的发射狭缝,X射线强度增加,但在低角处入射X射线超出试样范围,照射到边上的试样架,出现试样架物质的衍射峰或漫散峰,对定量相分析带来不利的影响。因此有必要按测定目的选择合适的发散狭缝宽度。

生产厂家提供1/6°、1/2°、1°、2°、4°的发散狭缝,通常定性物相分析选用1°发散狭缝,当低角度衍射特别重要时,可以选用1/2°(或1/6°)发散狭缝。5.接收狭缝的选择(RS):

生产厂家提供0.15mm、0.3mm、0.6mm的接收狭缝,接收狭缝的大小影响衍射线的分辨率。接收狭缝越小,分辨率越高,衍射强度越低。通常物相定性分析时使用0.3mm的接收狭缝,精确测定可使用0.15mm的接收狭缝。6.滤波片的选择: Z滤40,Z滤=Z靶-2 7. 扫描速度的确定

常规物相定性分析常采用每分钟2°或4°的扫描速度,在进行点阵参数测定,4

微量分析或物相定量分析时,常采用每分钟1/2°或1/4°的扫描速度。

五、样品制备

X射线衍射分析的样品主要有粉末样品、块状样品、薄膜样品、纤维样品等。样品不同,分析目的不同(定性分析或定量分析),则样品制备方法也不同。1.粉末样品

X射线衍射分析的粉末试样必需满足这样两个条件:晶粒要细小,试样无择优取向(取向排列混乱)。所以,通常将试样研细后使用,可用玛瑙研钵研细。定性分析时粒度应小于44微米(350目),定量分析时应将试样研细至10微米左右。较方便地确定10微米粒度的方法是,用拇指和中指捏住少量粉末,并碾动,两手指间没有颗粒感觉的粒度大致为10微米。

常用的粉末样品架为玻璃试样架,在玻璃板上蚀刻出试样填充区为20×18平方毫米。玻璃样品架主要用于粉末试样较少时(约少于500立方毫米)使用。充填时,将试样粉末-点一点地放进试样填充区,重复这种操作,使粉末试样在试样架里均匀分布并用玻璃板压平实,要求试样面与玻璃表面齐平。如果试样的量少到不能充分填满试样填充区,可在玻璃试样架凹槽里先滴一薄层用醋酸戊酯稀释的火棉胶溶液,然后将粉末试样撒在上面,待干燥后测试。2.块状样品

先将块状样品表面研磨抛光,大小不超过20×18平方毫米,然后用橡皮泥将样品粘在铝样品支架上,要求样品表面与铝样品支架表面平齐。3.微量样品

取微量样品放入玛瑙研钵中将其研细,然后将研细的样品放在单晶硅样品支架上(切割单晶硅样品支架时使其表面不满足衍射条件),滴数滴无水乙醇使微量样品在单晶硅片上分散均匀,待乙醇完全挥发后即可测试。4.薄膜样品制备

将薄膜样品剪成合适大小,用胶带纸粘在玻璃样品支架上即可。

六、样品测试

1.首先打开冷却循环水系统电源;

2.15min后开启衍射仪总电源,将制备好的试样插入衍射仪样品台;

3.打开计算机,当计算机与X射线衍射仪联机完成后,点击XG operation,启动X射线衍射仪。将管电压、管电流逐步由默认值20kV、2mA升至40kV、20mA。关闭XG operation。

4.点击Standard Measurement,设置参数;(1)设置存盘路径、文件名;(2)扫描范围的确定;

当选用Cu靶进行无机化合物的相分析时,扫描范围一般为90°~2°(2θ);对于高分子、有机化合物的相分析,其扫描范围一般为60°~2°。本实验为 5

10~80;

(3)扫描速度的确定;

常规物相定性分析常采用每分钟2°或4°的扫描速度,在进行点阵参数测定、微量分析或物相定量分析时,常采用每分钟1/2°或1/4°的扫描速度。本实验为4°/min;

(4)管电压和管电流的选择;

工作电压设定为3~5倍的靶材临界激发电压。选择管电流时功率不能超过X射线管额定功率,较低的管电流可以延长X射线管的寿命。X射线管经常使用的负荷(管压和管流的乘积)选为最大允许负荷的80%左右。本实验为40kV、20mA。

(5)狭缝的选择;

DS和SS均为1°,RS为0.3mm。

(6)各项设置完成后点击Attachment键开始测量。

5.测量完毕,关闭X射线衍射仪应用软件。点击XG operation,先将管电压、管电流逐步由40kV、20mA降至默认值20kV、2mA,然后关闭X射线衍射仪,关闭X射线衍射仪电源;取出试样;15分钟后关闭冷却循环水系统及线路总电源。

七、数据处理

采用Jade5.0分析软件分析测试数据,步骤如下:

1.打开Jade5.0分析软件,点击File patterns,双击所选测试数据01.raw; 2.鼠标左键点击S/M键进行自动检索;

3.若自动检索结果不好,可进行人工手动检索,鼠标右键点击S/M键; 4.物相检索后,选择最为匹配的PDF卡;

5.文件的添加。若分析的一系列测试数据为不同条件制备的同一物质,不必逐一分析,可进行文件的添加。点击File patterns,单击所选数据02.raw,然后点击add键,文件添加完成。XRD图谱自动按添加顺序由下向上排列,点击窗口右侧的功能键来调节谱图间距;

6.生成物相分析报告。点击File→Print set up。通过Copy可将物相分析报告粘贴到画图板或Word文档里。

八、实验报告及要求

1.实验课前必须预习实验讲义和教材,掌握实验原理等必需知识。

2.根据教师给定实验样品,设计实验方案,选择样品制备方法、仪器条件参数等。

3.要求实验报告用纸写出:实验原理,实验方案步骤(包括样品制备、实验参数选择、测试、数据处理等),选择定性分析方法,物相鉴定结果分析等。

4.鉴定结果要求写出样品名称(中英文)、卡片号,实验数据和标准数据三强线的d值、相对强度及(HKL)。

第五篇:X射线衍射分析

X射线衍射分析 实验目的

1、了解X衍射的基本原理以及粉末X衍射测试的基本目的;

2、掌握晶体和非晶体、单晶和多晶的区别;

3、了解使用相关软件处理XRD测试结果的基本方法。实验原理

1、晶体化学基本概念

晶体的基本特点与概念:①质点(结构单元)沿三维空间周期性排列(晶体定义),并有对称性。②空间点阵:实际晶体中的几何点,其所处几何环境和物质环境均同,这些“点集”称空间点阵。③晶体结构=空间点阵+结构单元。非晶部分主要为无定形态区域,其内部原子不形成排列整齐有规律的晶格。

对于大多数晶体化合物来说,其晶体在冷却结晶过程中受环境应力或晶核数目、成核方式等条件的影响,晶格易发生畸变。分子链段的排列与缠绕受结晶条件的影响易发生改变。晶体的形成过程可分为以下几步:初级成核、分子链段的 图1 14种Bravais点阵

表面延伸、链松弛、链的重吸收结晶、表面成核、分子间成核、晶体生长、晶体生长完善。Bravais提出了点阵空间这一概念,将其解释为点阵中选取能反映空间点阵周期性与对称性的单胞,并要求单胞相等棱与角数最多。满足上述条件棱间直角最多,同时体积最小。1848年Bravais证明只有14种点阵。晶体内分子的排列方式使晶体具有不同的晶型。通常在结晶完成后的晶体中,不止含有一种晶型的晶体,因此为多晶化合物。反之,若严格控制结晶条件可得单一晶型的晶体,则为单晶。

2、X衍射的测试基本目的与原理

X射线是电磁波,入射晶体时基于晶体结构的周期性,晶体中各个电子的散射波可相互干涉。散射波周相一致相互加强的方向称衍射方向。衍射方向取决于晶体的周期或晶胞的大小,衍射强度是由晶胞中各个原子及其位置决定的。由倒易点阵概念导入X射线衍射理论, 倒易点落在Ewald 球上是产生衍射必要条件。1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。衍射线空间方位与晶体结构的关系可用布拉格方程表示:

2dsinn 式中d为晶面间距;n为反射级数;θ为掠射角;λ为X射线的波长。布拉格方程是X射线衍射分析的根本依据。

X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分析对象包括:物相分析(物相鉴定与定量相分析)。晶体学(晶粒大小、指标化、点参测定、解结构等)。薄膜分析(薄膜的厚度、密度、表面与界面粗糙度与层序分析,高分辨衍射测定单晶外延膜结构特征)。织构分析、残余应力分析。不同温度与气氛条件与压力下的结构变化的原位动态分析研究。微量样品和微区试样分析。实验室及过程自动化、组合化学。纳米材料等领域。仪器与试剂

仪器型号及生产厂家:丹东浩元仪器有限公司DX-2700型衍射仪。测试条件:管电压40KV;管电流40mA;X光管为铜靶,波长1.5417Å;步长0.05°,扫描速度0.4s;扫描范围为20°~80°。试剂:未知样品A。4 实验步骤

1、打开电脑主机电源。

2、开外围电源:先上拨墙上的两个开关,再开稳压电源(上拨右边的开关,标有稳压)。

3、打开XRD衍射仪电源开关(按下绿色按钮)。

4、开冷却水:先上拨左边电源开关,再按下RUN按钮,确认流量在20左右方可。

5、开高压(顺时针旋转45°,停留5s,高压灯亮)。

6、打开XRD控制软件XRD Commander。

7、防光管老化操作:按照20KV、5mA;25KV、5mA;30KV、5mA;35KV、5mA;40KV、5mA;40KV、40mA程式分次设置电压、电流,每次间隔3分钟。设置方法:电压、电流跳到所需值后点set。

8、设置测试条件:设置扫描角度为3°~80°,步长0.05°,扫描速度0.4s。

9、点击Start开始测试。

10、降高压:将电压、电流分别降至20KV,5mA后,点击Set确认。

11、关高压:逆时针旋转45°,高压灯灭。

12、等待5min,再关闭冷却水,先关RUN,再关左边电源。

13、关闭控制软件(XRD Commander)。

14、关XRD衍射仪电源开关(按下红色按钮)。

15、关电脑。

16、关外围电源。实验数据及结果

本实验测定了一种粉末样品的XRD图谱并对测定结果进行物相检索,判断待测样品主要成分、晶型及晶胞参数。粉末样品的XRD图谱:

图2 未编号粉末样品X-Ray衍射图谱 实验结果分析与讨论

数据处理:对图谱进行物相检索

结论:经过对样品谱图进行物相检索,发现该粉末样品中含有两种晶相,主相为Sr2CaMoO6,另外一种杂相为SrMoO4.7 思考题

1、简述X射线衍射分析的特点和应用。

答:X射线衍射仪具有易升级,操作简便和高度智能化的特点,灵活地适应地矿、生化、理化等多方面、各行业的测试分析与研究任务。X 射线衍射(XRD)是所有物质,包括从流体、粉末到完整晶体,重要的无损分析工具。对材料学、物理学、化学、地质、环境、纳米材料、生物等领域来说,X射线衍射仪都是物质结构表征,以性能为导向研制与开发新材料,宏观表象转移至微观认识,建立新理论和质量控制不可缺少的方法。其主要分析对象包括:物相分析(物相鉴定与定量相分析)。晶体学(晶粒大小、指标化、点参测定、解结构等)。薄膜分析(薄膜的厚度、密度、表面与界面粗糙度与层序分析,高分辨衍射测定单晶外延膜结构特征)。织构分析、残余应力分析。不同温度与气氛条件与压力下的结构变化的原位动态分析研究。微量样品和微区试样分析。实验室及过程自动化、组合化学。纳米材料等领域。

2、简述X射线衍射仪的工作原理。

答:用高能电子束轰击金属“靶”材产生X射线,X射线的波长和晶体内部原子面间的距离相近,当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时,在符合布拉格方程的条件下,将在反射方向上得到因叠加而加强的衍射线。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型。

下载X射线衍射的定量物相分析word格式文档
下载X射线衍射的定量物相分析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    实验2_X射线衍射粉末法多物相定性分析

    实验二X射线衍射定性相分析 一、实验目的与任务 根据衍射图谱或数据,学会物相定性鉴定方法。 二、物相定性分析原理 晶体对X射线的衍射效应是取决于它的晶体结构,不同种类的......

    2017X射线衍射及物相分析实验报告写法[5篇模版]

    请将以下内容手写或打印在中原工学院实验报告纸上。 实验报告内容:文中红体字部分请删除后补上自己写的内容 班级 学号 姓名综合实验 X射线衍射仪的使用及物相分析 实验时间......

    X射线衍射分析思考题

    X射线衍射分析思考题 1. X射线学有几个分支?每个分支的研究对象是什么? 2. 什么叫"相干散射"、"非相干散射"? 3. 产生X射线需要什么条件? 4. 连续X射线谱是怎样产生的?其短......

    实验 : X射线衍射分析

    X射线衍射分析 一:实验目的 (1)概括了解X射线衍射仪的结构及使用。 (2)练习用PDF(ASTN)卡片以及索引,对多相物质进行相分析。 二:X射线衍射仪简介 近年来,自动化衍射仪的使用......

    第一章X射线衍射分析

    第一章 1.讨论同一物质的吸收谱和发射谱概念中二者之间的关系: 2.名词解释:相干散射、不相干散射、荧光辐射、吸收限、俄歇效应。 3.X射线的本质是什么? 4.连续X射线的特点? 5.相干散......

    X射线衍射(范文)

    X射线衍射 (大庆师范学院 物理与电气信息工程系 10级物理学一班 周瑞勇 201001071465)摘 要:X射线受到原子核外电子的散射而发生的衍射现象。由于晶体中规则的原子排列就会产生......

    X射线衍射分析原理及其应用

    X射线衍射分析 摘要: X射线衍射分析是一种重要的晶体结构和物相分析技术,广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。本文简要介绍X射线衍射原理,X......

    X射线衍射实验报告(合集)

    X射线衍射实验报告 摘要: 本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软......