培优专题(第2讲 有理数的加减法)

时间:2019-05-14 07:44:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《培优专题(第2讲 有理数的加减法)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《培优专题(第2讲 有理数的加减法)》。

第一篇:培优专题(第2讲 有理数的加减法)

第2讲 有理数的加减法

考点·方法·破译

1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析

【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()

A.0.3元

B.16.2元

C.16.8元

D.18元

【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.

【变式题组】

01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()

A.8℃

B.-8℃

C.6℃

D.2℃

02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________ 03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________ 【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)

【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85 【变式题组】 01.(-2.5)+(-3131)+(-1)+(-1)244

02.(-13.6)+0.26+(-2.7)+(-1.06)

03.0.125+112+(-3)+11+(-0.25)483【例3】计算1111 12233420082009【解法指导】依111进行裂项,然后邻项相消进行化简求和.n(n1)nn112111111)

***1111

=1

***008

=1=

20092009解:原式=(1)()()(【变式题组】

01.计算1+(-2)+3+(-4)+ … +99+(-100)

11的长方形,接着把面积为的长方形等分成两个 22111面积为的正方形,再把面积为的正方形等分成两个面积为的长方形,如此进行下去,试利用图形揭

44811111111示的规律计算=__________.***02.如图,把一个面积为1的正方形等分成两个面积为

12***14

【例4】如果a<0,b>0,a+b<0,那么下列关系中正确的是()A.a>b>-b>-a B.a>-a>b>-b

C.b>a>-b>-a D.-a>b>-b>a

【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a<0,b>0,∴a+b是异号两数之和

又a+b<0,∴a、b中负数的绝对值较大,∴| a |>| b | 将a、b、-a、-b表示在同一数轴上,如图,则它们的大小关系是-a>b>-b>a ab0-b-a

【变式题组】

01.若m>0,n<0,且| m |>| n |,则m+n ________ 0.(填>、<号)02.若m<0,n>0,且| m |>| n |,则m+n ________ 0.(填>、<号)

03.已知a<0,b>0,c<0,且| c |>| b |>| a |,试比较a、b、c、a+b、a+c的大小 【例5】4238-(-33)-(-1.6)-(-21)51111【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.238238-(-33)-(-1.6)-(-21)=4+33+1.6+21 511115111138

=4.4+1.6+(33+21)=6+55=61 1111解:4【变式题组】

01.()()()()(1)

02.

403.178-87.21-(-43231256131231-(+3.85)-(-3)+(-3.15)44219)+153-12.79 2121

【例6】试看下面一列数:25、23、21、19…

⑴观察这列数,猜想第10个数是多少?第n个数是多少? ⑵这列数中有多少个数是正数?从第几个数开始是负数? ⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1 故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169 【变式题组】

01.(杭州)观察下列等式

1-1128327464=,2-=,3-=,4-=…依你发现的规律,解答下列问题.225510101717⑴写出第5个等式;

⑵第10个等式右边的分数的分子与分母的和是多少?

02.观察下列等式的规律

9-1=8,16-4=12,25-9=16,36-16=20 ⑴用关于n(n≥1的自然数)的等式表示这个规律; ⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求+(1121231234+(+)+(++)+(+++)+ … ***9++…++)50505050【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.112123124849+(+)+(++)+ … +(++…++)***21321494821则有S=+(+)+(++)+ … +(++…++)

23344450505050解:设S=将原式和倒序再相加得

***8++(+++)+(+++++)+ … +(++…+***05049494821++++…++)505050505049(491)即2S=1+2+3+4+…+49==1225

21225∴S=

22S=【变式题组】

01.计算2-22-23-24-25-26-27-28-29+210

02.(第8届希望杯试题)计算(1-

11111111--…-)(+++…++)-(1-***041111111--…-)(+++…+)2320042342003

演练巩固·反馈提高

01.m是有理数,则m+|m|()A.可能是负数

B.不可能是负数 C.比是正数

D.可能是正数,也可能是负数 02.如果|a|=3,|b|=2,那么|a+b|为()

A. 5

B.1

C.1或5

D.±1或±5 03.在1,-1,-2这三个数中,任意两数之和的最大值是()

A. 1

B.0

C.-1

D.-3 04.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数

B.两数都不为0

C.至少有一个为负数

D.至少有一个为正数 05.下列等式一定成立的是()

A.|x|- x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()

A.-4℃

B.4℃

C.-3℃

D.-5℃ 07.若a<0,则|a-(-a)|等于()

A.-a

B.0

C.2a

D.-2a 08.设x是不等于0的有理数,则

|x|x||值为()2xA.0或1 B.0或2 C.0或-1

D.0或-2 09.(济南)2+(-2)的值为__________ 10.用含绝对值的式子表示下列各式:

⑴若a<0,b>0,则b-a=__________,a-b=__________

⑵若a>b>0,则|a-b|=__________

⑶若a<b<0,则a-b=__________ 11.计算下列各题:

⑴23+(-27)+9+5

⑵-5.4+0.2-0.6+0.35-0.25

⑶-0.5-311+2.75-7

⑷33.1-10.7-(-22.9)-|-

23| 10

12.计算1-3+5-7+9-11+…+97-99

13.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:

+10,-3,+4,-2,-8,+13,-7,+12,+7,+5 ⑴问收工时距离A地多远?

⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?

14.将1997减去它的减去余下的1111,再减去余下的,再减去余下的,再减去余下的……以此类推,直到最后23451,最后的得数是多少? 1997

15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如

1121113+来表示,用++表示等等.现有90个埃及分数:31554728712,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗? 培优升级·奥赛检测

01.(第16届希望杯邀请赛试题)

1234141524682830等于()

A.1B.1114

C.D.2

02.自然数a、b、c、d满足11111111a2+b2+c2+d2=1,则a3+b4+c5+d6等于()

A.18

B.316

C.71

532 D.64

03.(第17届希望杯邀请赛试题)a、b、c、d是互不相等的正整数,且abcd=441,则a+b+c+d值是(A.30

B.32

C.34

D.36 04.(第7届希望杯试题)若a=

***6,b=***7,c=***8,则a、b、c大小关系是(A.a<b<c

B.b<c<a

C.c<b<a

D.a<c<b

05.(1113)(1124)(1135)(1119982000)(1119992001)的值得整数部分为()A.1

B.2

C.3

D.4 06.(-2)2004+3×(-2)2003的值为()

A.-22003

B.22003

C.-22004

D.22004

07.(希望杯邀请赛试题)若|m|=m+1,则(4m+1)2004=__________ 08.1121232+(3+3)+(4+4+4)+ … +(160+260+…+5960)=__________ 09.19191976767676761919=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a+b)2+|b+5|=b+5,且|2a-b-1|=0,求aB.

13.计算(11998-1)(11997-1)(11996-1)…(111001-1)(1000-1)

14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.1312345

23246810

333691215

***152025))

第二篇:《有理数的加减法》习题2

《有理数加减法》同步练习

1.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。2.直接写出答案(1)(-2.8)+(+1.9)=,1(2)0.75(34)=,(3)0(12.19)

,(4)3(2)

523.已知两个数56和83,这两个数的相反数的和是。

4.将6372中的减法改成加法并写成省略加号的代数和的形式应是。

/ 7

5.已知m是6的相反数,n比m的相反数小2,则mn等于。

6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是

.二.选择:

7.下列交换加数的位置的变形中,正确的是()

A、14541445

13111311B、34644436

C、1234214

3D、4.51.72.51.84.52.51.81.7 8.下列计算结果中等于3的是()A.74 B.74

C.74 D.74

/ 7

9.下列说法正确的是()A.两个数之差一定小于被减数

B.减去一个负数,差一定大于被减数 C.减去一个正数,差一定大于被减数 D.0减去任何数,差都是负数

10.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在

A.在家 B.在学校 C.在书店 D.不在上述地方

11、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车

/ 7

的车次号可能是()(A)20(B)119(C)120(D)319 12.计算:

71①-5+(+10)

②90-(-3)

1③-0.5-(-31)+2.75-(+7)2471214326 ④969641387.5213 ⑤ 7272323211.75 ⑥ 34313.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+

10、-

3、+

4、+

2、-

8、+

13、-

2、+

12、+

8、+5

/ 7

(1)问收工时距O地多远?

(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?

14、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。试用正、负数表示各月的利润,并算出该商场上半年的总利润额。

/ 7

参考答案

1:-1 2:-0.9, 4, 12.19, 5 3:17/6 4:6-3+7-2 5:-10 6:15 7:D 8:B 9:B 10:B 11:C 12:-1.3;93;-2;-10;-34;-1 13:解:10-3+4+2-8+13-2+12+8+5=41 把各数的绝对值相加=10+3+4+2+8+13+2+12+8+5=67 67×0.2=13.4(升)14: +13,+12,-0.7,-0.8,+12.5,+10

/ 7

+13+12-0.7-0.8+12.5+10=46(万元)

/ 7

第三篇:有理数加减法练习题

有理数加减法练习题

一、选择

1.下列说法正确的个数是()①两数的和一定比其中任何一个加数都大;②两数的差一定比被减数小

③较小的有理数减去较大的有理数一定是负数;④两个互为相反数的数的商是-1 ⑤任何有理数的偶次幂都是正数 A.1个 B.2个 C.3个 D.4个

2.下列关于“一个正数与一个负数的和”的说法正确的是()A.可能是正数 B.可能是0 C.可能是负数 D.以上都有可能 3.下列说法正确的是()A.两个有理数相加等于它们的绝对值相加;B.两个负数相加等于它们的绝对值相减 C.正数加负数,和为正数;负数加正数,和为负数;D.两个正数相加,和为正数;两外负数相加,和为负数 4.下列说法不正确的个数是()①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数

③两个有理数的和为正数时,这两个数都是正数 ④两个有理数的和为负数时,这两个数都是正数 A.1个 B.2个 C.3个 D.4个 5.两个数相加,如果和小于每一个加数,那么().A.这两个加数同为正数 B.这两个加数同为负数 C.这两个加数的符号不同 D.这两个加数中有一个为零 6.下列计算正确的是()A.(+30)+(-40)=10 B.(-51)+(-30)=-21 C.(-10)+(+10)=0 D.(+3.9)+(3.1)=0.8 7.两个数相加,如果它们的和小于其中一个加数,而大于另一个加数,那么()A.这两个加数的符号都是负数 B.这两个加数的符号不能相同 C.这两个加数的符号都是正的 D.这两个加数的符号不能确定 8.下列说法不正确的是()A.一个数与零相加,仍得这个数;B.互为相反数的两个数相加,其和为零 C.两个数相加,交换加数的位置,和不变;D.异号两数相加,结果一定大于零 9.不能使式子│-32.6+()│=│-32.6│+│()│成立的数是()A.任意一个数 B.任意一个正数;C.任意一个负数 D.任意一个非负数

10.两个数的差是负数,那么被减数一定是()

A.正数或负数 B.负数 C.非负数 D.以上答案都不对 11.下列说法正确的个数是()

①较大的数减去较小的数的差一定是正数;②较小的数减去较大的数的差一定是负数

③两个数的差一定小于被减数;④互为相反数的两个数的差不会是负数 A.1个 B.2个 C.3个 D.4个

12.若x和y表示两个任意有理数,则下列式子正确的是()

A.│x-y│=│y-x│;B.│x-y│=0;C.│x-y│=-(x-y);D.│x-y│=x-y 13.225的相反数与绝对值为235的数的差为()A.-15;B.5;C.15或5;D.15或-5

14.下列说法不正确的个数是().①两数相减,差不一定比被减数小;②减去一个数,等于加上这个数

③零减去一个数,仍然等于这个数;④互为相反数的两个数相减得零 A.0个 B.1个 C.2个 D.3个

15.若a<0,那么a和它的相反数的差的绝对值等于()A.0 B.a C.2a D.-2a 16.若x<0,那么x-│x│的值为()A.零 B.正数 C.非正数 D.负数 17.下列说法正确的是()

A.一个数减0,等于这个数的相反数 B.一个数减0,其结果一定大于零 C.一个数减0,等于这个数本身 D.一个数减0,其结果一定小于零 18.下列说法正确的是()

A.若x+y=0,则x与y互为相反数 B.若x-y>0,则xy

19.如图所示,a,b,c表示数轴上的三个有理数,则下列各式不成立的是()A.a-b<0 B.b-c<0;C.c-a<0 D.a-(-c)<0

(1)下列计算正确的是

A.7-(-7)=0;B.0-3=-3;C.

141212;D.(-5)-(-6)=-1(2)如图2—11所示,a、b在数轴上的位置分别在原点的两旁,则|a-b|化简的结果是

A.a-b B.b-a C.-(a-b)D.-(b-a)

图2—11(3)如果a+b=c,且a>c则

A.b一定是负数;B.a一定小于b;C.a一定是负数;D.b一定小于a(4)如果|a|-|b|=0,那么

A.a=b B.a、b互为相反数;C.a和b都是0;D.a=b或a=-b(5)如果a的绝对值大于-5的绝对值,那么有

A.a>-5 B.a<-5 C.|a-(-5)|=a-(-5)D.以上均不对(6)若3

A.4 B.-4 C.10-2x D.2x-10(7)若a>0,b<0,|a|=4,|b|=a-2,则a-b的值是

A.2 B.-2 C.6 D.-6(8)若有理数a满足a|a|=1时,那么a是 A.正有理数 B.负有理数 C.非负有理数 D.非正有理数

1、如果□+2=0,那么“□”内应填的实数是()(A)-(B)12

(C)12

(D)2

2.若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为()

(A)4-22=-18(B)22-4=18(C)22-(-4)=26(D)-4-22=-26 3.下列说法正确的是()

A.两个数之差一定小于被减数 B.减去一个负数,差一定大于被减数 C.减去一个正数,差一定大于被减数 D.0减去任何数,差都是负数 4.下列交换加数的位置的变形中,正确的是()

A、1454144

5B、1311131134644436

12342143 D、4.51.72.51.84.52.51.81.75、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是()(A)20

(B)119

(C)120

(D)319

6、若x>0,y<0,且|x|<|y|,则x+y一定是()

(A)负数

(B)正数

(C)0

(D)无法确定符号

7、.若a<0,b>0,且|a|>|b|,则a与b的和用|a|、|b|表示为()(A)|a|-|b|

(B)-(|a|-|b|)

(C)|a|+|b|

(D)-(|a|+|b|)

8、下列计算结果中等于3的是()

A.74 B.74 C.74 D.74

9、将6372中的减法改成加法并写成省略加号的代数和的形式应是()

A、6+3+7-2

B、6-3-7-2

C、6-3+7-2

D、6-3-7+2

10、已知m是6的相反数,n比m的相反数小2,则mn等于()

A、-1

B、3

C、2

D、-10

1.下列说法中正确的是

()(A)两个数的和必定大于每一个加数;

(B)如果两个数的和是正数,那么这两人数中至少有一个正数;(C)两个数的差一定小于被减数;

(D)0减去任何数,仍得这个数.2.下列说法中正确的是

()(A)两个有理数相加,等于它们的绝对值相加;(B)两个负数相加取负号并把绝对值相减;(C)两个相反数相减,差为0;(D)两个负数相加,和一定为负数.3.两个有理数的和为负数,那么这两个数一定

()

(A)都是负数;

(B)至少有一个负数;

(C)有一个是0;

(D)绝对值不相等.4.7和6的差为

()

(A)13;(B)1;

(C)1;

(D)13.1.下列说法正确的是()

A.两个有理数相加,和一定大于每一个有理数 B.两个非零有理数相加,和可能等于零

C.两个有理数的和为负数,这两个有理数都是负数 D.两个负数相加,把绝对值相加

2.两数相加,如果和小于任一加数,那么这两数()

A.同为正数 B.同为负数

C.一正数一负数 D.一个为0,一个为负数 3.已知有理数a,b,c在数轴上的位置如图2-1所示,则下列结论错误的是()A.a+b<0 B.b+c<0 C.a+b+c<0 D.|a+b|=a+b 4.一个数加-3.6,和为-0.36,那么这个数是()

A.-2.24 B.-3.96 C.3.24 D.3.96 5.下列结论正确的是()

A.有理数减法中,被减数不一字比减数大 B.减去一个数,等于加上这个数 C.零减一个数,仍得这个数 D.两个相反数相减得0 6.-2的倒数与绝对值等于 的数的差是()

A. B.

C.-1或0 D.0或1 7.下列计算正确的是()

A.7-(-7)=0 B.

C.0-4=-4 D.-6-5=-1 8.下列各式中,其和等于4的是()

A. B. C. D. 9.如果|x|=4,|y|=3,则x-y的值是()

A.±7 B.±1 C.±7或±1 D.7或1 10.已知:a<0,b>0,用|a|与|b|表示a与b的差是()

A.|a|-|b| B.-(|a|-|b|)C.|a|+|b| D.-(|a|+|b|)11.如果a<0,那么a和它的相反数的差的绝对值等于()

A.-2a B.-a C.0 D12.1997个不全相等的有理数之和为零,则这1997个有理数中()A.至少有一个为零 B.至少有998个正数

C.至少有一个是负数 D.至少有1995个负数

.a

第四篇:有理数加减法教案

教学目标

1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.

3.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想. 教学建议

(一)重点、难点分析

本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值.理解有理数的减法法则是难点,突破的关键是转化,变减为加.学习中要注意体会:小学遇到的小数减大数不会减的问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施.

(二)知识结构

(三)教法建议

1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.

3.因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆.

4.注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。教学设计示例

有理数的减法

一、素质教育目标

(一)知识教学点

1.理解掌握有理数的减法法则.

2.会进行有理数的减法运算.

(二)能力训练点

1.通过把减法运算转化为加法运算,向学生渗透转化思想.

2.通过有理数减法法则的推导,发展学生的逻辑思维能力.

3.通过有理数的减法运算,培养学生的运算能力.

(三)德育渗透点

通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、学法引导

1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.

2.学生学法:探索新知→归纳结论→练习巩固.

三、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片.

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.

七、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);

(2)-3+(-7);

(3)-10+(+3);

(4)+10+(-3).

2.由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃.

师:能不能列出算式计算呢?

生:10-(-5).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【教法说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=+10)+(-3).

(1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【教法说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.

教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3).

(2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【教法说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?

学生活动:同学们思考,并要求同桌同学相到叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)

教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:.

【教法说明】结合引入新课中温度计的实例,进一步验证了有理数的减法法则的合理性,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

4.例题讲解:

[出示投影1(例题1、2)]

例1 计算(1)(-3)-(-5);

(2)0-7;

例2 计算(1)7.2-(-4.8);

(2)()-.

例1是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.

例2两题由两个学生板演,其他学生做在练习本上,然后师生讲评.

【教法说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例1(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.例2两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.

师:组织学生自己编题,学生回答.

【教法说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固怕学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时回授.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;

(2)(+4)-(-7);

(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);

(6)0-5.

2.计算

(1)(-2.5)-5.9;

(2)1.9-(-0.6);

(3)()-;

(4)-().

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【教法说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第45页的画面.

3.世界最高峰是珠穆朗玛峰,海拔高度是8848米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392米,两处高度相差多少?

生答:8848-(-392)=8848+392=9240.

所以两地高度相差9240米.

【教法说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)课堂小结

提问:通过本节课学习你学到了什么?生答:略.

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

八、随堂练习

1.填空题

(1)3-(-3)=____________;

(2)(-11)-2=______________;

(3)0-(-6)=____________;

(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;

(8)-4-()=10;

(9)如果,则的符号是___________;

(10)用算式表示:珠穆朗玛峰的海拔高度是8848米,吐鲁番盆地的海拔高度是-155米,两处高度相差多少米__________.

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

(4)方程在有理数范围内无解.()

(5)若,,.()

九、布置作业

(一)必做题:课本第83页中2.偶数题,3.偶数题,4.偶数题.

(二)选做题:课本第84页中5、8.

第五篇:有理数加减法教案

一、学情分析

七年级学生性格开朗活波,对新鲜事物比较感兴趣,因此,教学过程中创设的问题情境生动活泼,直观形象,贴近学生生活.由于刚升入初中,学生的智力,基础,学习习惯都存在很大的差异,很多同学会出现符号处理有误,法则选择不灵活等问题.因此,老师要充分发挥情感目标的调控作用,随时收集来自学生方面的信息,及时反馈矫正合作交流.二、教材分析

本章内容是有理数及其运算,在一定意义上讲它是全新的,但必须充分认识到它是小学数学四则运算的继承和发展,就本章内容来看,有理数的减法是建立在刚刚学过的有理数的加法运算的基础上的,这一节课是前面所学知识的继续,又是后面有理数的混合运算的基础,起着承前启后的作用有理数的减法对学生来说是比较难学的初学时,学生的正确率不高,所以,对法则的正确理解尤为重要.三、教学设计

有理数的减法

一、教学目标

(一)知识与技能

1.理解掌握有理数的减法法则.

2.会进行有理数的减法运算.

(二)过程与方法

1.通过有理数减法法则的推导过程,发展学生的发现问题、提出问题、分析问题和解决问题的能力.

2.通过把减法运算转化为加法运算,向学生渗透转化思想.

3.通过有理数的减法运算,培养学生的运算能力.

(三)情感态度与价值观

1.通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.

2.在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.

二、重点、难点、疑点及解决办法

1.重点:有理数减法法则和运算.

2.难点:有理数减法法则的推导.

三、课时安排

1课时

四、教具学具准备

电脑、投影仪.

五、教学步骤

(一)创设情境,引入新课

1.计算(口答)(1);(2)(-3)+(-7);

(3)(-10)+(+3);(4)(+10)+(-3).

2.由实物投影显示课本本章引言中的画面,这是北京冬季里的一天,白天的最高气温是3℃,夜晚的最低气温是-3℃.这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:3℃比-3℃高6℃.

师:能不能列出算式计算呢?

生:3-(-3).

师:如何计算呢?

教师总结:这就是我们今天要学的内容.(引入新课,板书课题)

【设计说明】1题既复习巩固有理数加法法则,同时为进行有理数减法运算打基础.2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法.

(二)探索新知,讲授新课

1.师:大家知道10-3=7.谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7.

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7.

师:让学生观察两式结果,由此得到

(+10)-(+3)=(+10)+(-3).(1)

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以.

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3).

【设计说明】教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试发现问题,自己认识减法可以转化为加法计算.

2.再看一题,计算(-10)-(-3).

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7.教师给另外一个问题:计算(-10)+(+3).

生:(-10)+(+3)=-7.

教师引导、学生观察上述两题结果,由此得到:

(-10)-(-3)=(-10)+(+3).(2)

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3).教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算.

【设计说明】由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过第二个题给予学生进一步观察比较的机会,学生自己思考、观察、归纳、总结,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生发现问题、分析问题的能力.

师:通过以上两个题目,请同学们想一想两个有理数相减的法则是什么?学生活动:同学们思考,并要求同桌同学相互叙述,互相纠正补充,然后举手回答,其他同学思考准备更正或补充.

师:出示有理数减法法则:减去一个数,等于加上这个数的相反数.(板书)教师强调法则:(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a-b=a+(-b).

【设计说明】结合引入新课中温度计的实例,充分地经历了推导有理数的减法法则的全过程,同时向学生指出了有理数减法的实际意义.从而使学生体会到数学来源于实际,又服务于实际.

3.例题讲解:

[出示投影1(例题

4、)]

例4 计算:(1)(-3)-(-5);(2)0-7;

11(3)7.2-(-4.8);(4)(-3)-5 . 24

例4是由学生口述解题过程,教师板书,强调解题的规范性,然后师生共同总结解题步骤:(1)转化,(2)进行加法运算.【设计说明】学生口述解题过程,教师板书做示范,从中培养学生严谨的学风和良好的学习习惯.例4(2)题是0减去一个数,学生在开始学时很容易出错,这里作为例题是为引起学生的重视.(3)、(4)两题是简单的变式题目,意在说明有理数减法法则不但适用于整数,也适用于分数、小数,即有理数.师生活动:组织学生四人一组编题,学生相互解答.

【设计说明】教师与学生以平等身份参与教学,放手让学生自己编拟有理数减法的题目,其目的是让学生巩固所学知识.这样做,一方面可以活跃学生的思维,培养学生的表达能力.另一方面通过出题,相互解答,互相纠正,能增强学生学习的主动性和合作参与意识.同时,教师可以获取学生掌握知识的反馈信息,对于存在的问题及时反馈.

(三)尝试反馈,巩固练习

师:下面大家一起看一组题.

[出示投影2(计算题1、2)]

1.计算(口答)

(1)6-9;(2)(+4)-(-7);(3)(-5)-(-8);

(4)(-4)-9(5)0-(-5);(6)0-5.

2.计算

(1)(-2.5)-5.9;(2)1.9-(-0.6);

7211(3)(-)- ;(4)3 -(-1). 23412

学生活动:1题找学生口答,2题找四个学生板演,其他同学做在练习本上.

【设计说明】学生对有理数减法法则已经熟悉,学生在做练习时,要引导学生注意归纳有理数减法规律,而不要只是简单机械地将减法化成加法,为以后逐步省略化成加法的中间步骤做准备.

用实物投影显示课本第25页的画面.

3.世界最高峰是珠穆朗玛峰,海拔高度是8844米,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-415米,两处高度相差多少?

生答:8844-(-415)=8844+415=9259.

所以两地高度相差9259米.

【设计说明】此题是实际问题,与新课引入中的实际问题前后呼应,贯彻《教学大纲》中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际问题转化为有理数减法,说明数学来源于实际,又用于实际.

(四)总结反思,情意发展

1.通过本节课的学习你学到了什么?

2.通过本节课的学习,下一步你还想探究什么问题?

师:有理数减法法则是一个转化法则,要求同学们掌握并能应用其计算.对于小学不能解决的2-5这类不够减的问题就不成问题了.也就是说,在有理数范围内,减法总可能实施.

六、随堂练习

1.填空题

(1)3-(-3)=____________;(2)(-11)-2=______________;

(3)0-(-6)=____________;(4)(-7)-(+8)=____________;

(5)-12-(-5)=____________;(6)3比5大____________;

(7)-8比-2小___________;(8)-4-()=10;

2.判断题

(1)两数相减,差一定小于被减数.()

(2)(-2)-(+3)=2+(-3).()

(3)零减去一个数等于这个数的相反数.()

七、课后作业

课本第24页复习巩固中1.偶数题,3.偶数题,4.偶数题.【设计说明】通过随堂练习和课后作业,检测知识的掌握情况,为下一节课做准备.八、课后反思

以生活实际中的问题解决入手,能充分调动学生探索、学习的积极性.设计一系列的低台阶、多密度的问题串,适合学生的认知水平,利于学生自主探索,发现问题并提出问题,并逐步引导总结规律、法则,远远高于直接说教告诉的法则记忆深.在探索与尝试应用的过程中,让学生口述或板演,目的是充分暴露学生练习中的问题,更加有针对性的补偿教学.课堂小结让学生来说,更能发现学生的认知程度,教师适时的点拨,使知识的归纳总结又能得到提炼升华.在以后的教学中,应充分考虑学生的认知程度,设计合理的探索性问题,把学习的主动权放给学生,发展学生学会学习的能力比教给他们知识更重要.

下载培优专题(第2讲 有理数的加减法)word格式文档
下载培优专题(第2讲 有理数的加减法).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数加减法教案

    有理数的加法 1、 我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫作净胜球......

    有理数加减法教案

    教学目标1.理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;2.通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力.3.通过揭......

    初一奥数 第二讲 有理数的加减法

    第二节 有理数的加减法【知识要点】 1.有理数的加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较 大的绝......

    人教版七年级 有理数加减法

    七年级数学(人教版上)同步练习第一章 第三节有理数加减法 一、教学内容: 有理数的加减 1. 理解有理数的加减法法则以及减法与加法的转换关系; 2. 会用有理数的加减法解决生活中......

    有理数加减法教学设计

    《有理数的加法与减法 》教学设计 【教学目标】 1.会进行有理数加法运算. 2.认识有理数加法交换律与结合律的合理性,会用加法运算律简化运算.3.会将有理数的减法运算转换成加法......

    有理数加减法计算题3

    有理数的加减混合运算练习(一) 有理数的加减法 1.有理数的加法法则 ⑴同号两数相加,取相同的符号,并把绝对值相加; ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较......

    《有理数的加减法》选择题

    《有理数的加减法》选择题1.在1,-1,-2这三个数中,任意两数之和的最大值是() A.1B.0C.-1D.-32.绝对值大于5且小于9的所有整数的和是() A.-14B.14C.0D.153.如果两个有理数的和是正数,那么这......

    有理数加减法公开课教案

    有理数加减法公开课教案 上课人:武兰云 时间:2009.9.14 一.教学目标 1.知识与技能 (1)通过足球赛中的净胜球数,使学生掌握有理数加法法则,并能运用法则进行计算; (2)在......