第一篇:2012考研数学重要知识点解析之高等数学(一)
在考研数学复习开始之前,万学海文数学考研辅导专家们提醒2012年的考生们要对考研数学的基本命题趋势和试题难度有比较深刻的认识,根据自己对考研数学的定位,要做到有的放矢的复习,才能达到事半功倍的效果。
复习备考的主要策略:紧扣考纲,扎实基础,注重联系,加强训练。
本文万学海文辅导老师们主要阐述如何在复习当中紧扣考纲。考研数学作为标准化考试,其命题范围有明确的规定,2012年考生基础阶段复习主要就是依据考试大纲,详细了解考试的基本要求,类别和难度特点,准确定位。我们以数一中第一章为例:
一、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.考试内容中给考生列出了第一章的考试知识点,所以考生在复习过程中首先要弄懂这些知识点。考试要求中标明了对各个知识点的掌握所应该能够达到的程度,一般分为了解、理解、会、掌握,几个层次。
了解:指对该知识点的含义要很清楚,一般在数学中指的是概念、公式、性质、定理及推论等知识内容。比如:了解函数的有界性、单调性、周期性和奇偶性等。
但是并不是说了解的内容就只是了解这些性质,知道这些知识点就行了,有人错误的认为了解的知识一般不会考,这种认识是错误的,只要是在考试大纲中出现的考试内容都有可能考到,甚至对要求了解的知识点考的也比较深入。
理解:指要对知识点懂且认识的很清楚。在考研数学当中主要指对概念、定理、推理的知识点及知识点之间的关系。在这里万学海文辅导老师提醒2012年得考生要注意了解和理解的区别,了解偏重于知道,理解在了解的基础上增加了懂得和能够体会其深层次的意思;理解也就是从表到里深层递进的含义。在考研数学大纲中要求理解的知识点考查的较多,比如:理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系等几乎每年必考.会(求、计算、建立、应用、判断等):其含义为理解、懂得,并根据所学知识能够计算表达式结果、列出方程、画出图形、建立数学模型等。在考研数学大纲中对知识点要求会求、会计算、会建立方程表达式、会描绘等,主要指计算方法、知识点的灵活运用测试的要求;万学海文数学辅导老师提醒大家学习时不仅要记住、理解定理还要会推导,才达到会求解的程度。
掌握:了解、熟知并加以运用。在考研数学大纲中所有知识点的要求中掌握的层次是最高的,要求掌握的知识点往往是考试的重点、热点和难点,比如:掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法等都是每年真题中涉及的内容;万学海文建议2012年得考生在学习时对于大纲要求掌握的知识点不仅要掌握知识点本身还要学习它的推理、证明以及解题时经常用到的结论,同时还要注意与该知识点相关联的知识点及它们之间的关系。
在了解了考研数学大纲内容及要求之后我们就可以有的放矢的进行复习了。古人云:“凡事预则立,不预则废”,这为我们下面能够扎实复习打开了一个美丽的开端。
第二篇:2018考研数学复习重要知识点小汇总
凯程考研,为学员服务,为学生引路!
2018考研数学复习重要知识点小汇总
一、高等数学
高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。具体说来,大家需要重点掌握的知识点有几以下几点:
1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。
3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。
6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。差分方程的基本概念与一介常系数线形方程求解方法,由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。
二、概率论与数理统计
在数学的三门科目中,同时它还是考研数学中的难点,考生得分率普遍较低。与微积分和线性代数不同的是,概率论与数理统计并不强调解题方法,也很少涉及解题技巧,而非常强调对基本概念、定理、公式的深入理解。其主要知识点有以下几点:
1.随机事件和概率:包括样本空间与随机事件;概率的定义与性质(含古典概型、几何概型、加法公式);条件概率与概率的乘法公式;事件之间的关系与运算(含事件的独立性);全概公式与贝叶斯公式;伯努利概型。
凯程考研,为学员服务,为学生引路!
2.随机变量及其概率分布:包括随机变量的概念及分类;离散型随机变量概率分布及其性质;连续型随机变量概率密度及其性质;随机变量分布函数及其性质;常见分布;随机变量函数的分布。
3.二维随机变量及其概率分布:包括多维随机变量的概念及分类;二维离散型随机变量联合概率分布及其性质;二维连续型随机变量联合概率密度及其性质;二维随机变量联合分布函数及其性质;二维随机变量 的边缘分布和条件分布;随机变量的独立性;两个随机变量的简单函数的分布。
4.随机变量的数字特征:随机变量的数字期望的概念与性质;随机变量的方差的概念与性质;常见分布的数字期望与方差;随机变量矩、协方差和相关系数。
5.大数定律和中心极限定理,以及切比雪夫不等式。
6.数理统计与参数估计。
三、线性代数
一般而言,在数学三个科目中,很多同学会认为线性代数比较简单。事实上,线性代数的内容纵横交错,环环相扣,知识点之间相互渗透很深,因此不仅出题角度多,而且解题方法也是灵活多变,需要在夯实基础的前提下大量练习,归纳总结。线性代数的重要知识点主要有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化。
页 共 2 页
第三篇:考研数学高数重要知识点
考研数学高数重要知识点
摘要:从整个学科上来看,高数实际上是围绕着、导数和积分这三种基本的运算展开的。对于每一种运算,我们首先要掌握它们主要的计算方法;熟练掌握计算方法后,再思考利用这种运算我们还可以解决哪些问题,比如会计算以后:那么我们就能解决函数的连续性,函数间断点的分类,导数的定义这些问题。这样一梳理,整个高数的逻辑体系就会比较清晰。
函数部分:
函数的计算方法很多,总结起来有十多种,这里我们只列出主要的:四则运算,等价无穷小替换,洛必达法则,重要,泰勒公式,中值定理,夹逼定理,单调有界收敛定理。每种方法具体的形式教材上都有详细的讲述,考生可以自己回顾一下,不太清晰的地方再翻到对应的章节看一看。
接下来,我们来说说直接通过定义的基本概念:
通过,我们定义了函数的连续性:函数在处连续的定义是,根据的定义,我们知道该定义又等价于。所以讨论函数的连续性就是计算。然后是间断点的分类,讨论函数间断点的分类,需要计算左右。
再往后就是导数的定义了,函数在处可导的定义是存在,也可以写成存在。这里的式与前面相比要复杂一点,但本质上是一样的。最后还有可微的定义,函数在处可微的定义是存在只与有关而与无关的常数使得时,有,其中。直接利用其定义,我们可以证明函数在一点可导和可微是等价的,它们都强于函数在该点连续。
以上就是这个体系下主要的知识点。
导数部分:
导数可以通过其定义计算,比如对分段函数在分段点上的导数。但更多的时候,我们是直接通过各种求导法则来计算的。主要的求导法则有下面这些:四则运算,复合函数求导法则,反函数求导法则,变上限积分求导。其中变上限积分求导公式本质上应该是积分学的内容,但出题的时候一般是和导数这一块的知识点一起出的,所以我们就把它归到求导法则里面了。
能熟练运用这些基本的求导法则之后,我们还需要掌握几种特殊形式的函数导数的计算:隐函数求导,参数方程求导。我们对导数的要求是不能有不会算的导数。这一部分的题目往往不难,但计算量比较大,需要考生有较高的熟练度。
然后是导数的应用。导数主要有如下几个方面的应用:切线,单调性,极值,拐点。每一部分都有一系列相关的定理,考生自行回顾一下。
这中间导数与单调性的关系是核心的考点,考试在考查这一块时主要有三种考法:
①求单调区间或证明单调性;
②证明不等式;
③讨论方程根的个数。
同时,导数与单调性的关系还是理解极值与拐点部分相关定理的基础。另外,数学三的考生还需要注意导数的经济学应用;数学一和数学二的考生还要掌握曲率的计算公式。
积分部分:
一元函数积分学首先可以分成不定积分和定积分,其中不定积分是计算定积分的基础。对于不定积分,我们主要掌握它的计算方法:第一类换元法,第二类换元法,分部积分法。这三种方法要融会贯通,掌握各种常见形式函数的积分方法。
熟练掌握不定积分的计算技巧之后再来看一看定积分。定积分的定义考生需要稍微注意一下,考试对定积分的定义的要求其实就是两个方面:会用定积分的定义计算一些简单的;理解微元法(分割、近似、求和、取)。至于可积性的严格定义,考生没有必要掌握。
然后是定积分这一块相关的定理和性质,这中间我们就提醒考生注意两个定理:积分中值定理和微积分基本定理。这两个定理的条件要记清楚,证明过程也要掌握,考试都直接或间接地考过。
至于定积分的计算,我们主要的方法是利用牛顿—莱布尼兹公式借助不定积分进行计算,当然还可以利用一些定积分的特殊性质(如对称区间上的积分)。
一般来说,只要不定积分的计算没问题,定积分的计算也就不成问题。定积分之后还有个广义积分,它实际上就是把积分过程和求的过程结合起来了。考试对这一部分的要求不太高,只要掌握常见的广义积分收敛性的判别,再会进行一些简单的计算就可以了。
会计算积分了,再来看一看定积分的应用。定积分的应用分为几何应用和物理应用。其中几何应用包括平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算,曲线弧长的计算,旋转曲面面积的计算。物理应用主要是一些常见物理量的计算,包括功,压力,质心,引力,转动惯量等。其中数学一和数学二的考生需要全部掌握;数学三的考生只需掌握平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算。这一部分题目的综合性往往比较强,对考生综合能力要求较高。
这就是高等数学整个学科从三种基本运算的角度梳理出来的主要知识点。除此之外,考生需要掌握的知识点还有多元函数微积分,它实际上是将一元函数中的,连续,可导,可微,积分等概念推广到了多元函数的情况,考生可以按照上面一样的思路来总结。
第四篇:2018考研数学概率论重要章节知识点总结(范文模版)
凯程考研辅导班,中国最权威的考研辅导机构
2018考研数学概率论重要章节知识点总
结
第五篇:Epuvro2012考研数学重要知识点解析之高等数学(一)
生命是永恒不断的创造,因为在它内部蕴含着过剩的精力,它不断流溢,越出时间和空间的界限,它不停地追求,以形形色色的自我表现的形式表现出来。
--泰戈尔
2012考研数学重要知识点解析之高等数学(一)
万学海文
在考研数学复习开始之前,万学海文数学考研辅导专家们提醒2012年的考生们要对考研数学的基本命题趋势和试题难度有比较深刻的认识,根据自己对考研数学的定位,要做到有的放矢的复习,才能达到事半功倍的效果。
复习备考的主要策略:紧扣考纲,扎实基础,注重联系,加强训练。本文万学海文辅导老师们主要阐述如何在复习当中紧扣考纲。考研数学作为标准化考试,其命题范围有明确的规定,2012年考生基础阶段复习主要就是依据考试大纲,详细了解考试的基本要求,类别和难度特点,准确定位。我们以数一中第一章为例:
一、函数、极限、连续 考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
sinx1lim1 lim1e x0xxx
x 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
考试内容中给考生列出了第一章的考试知识点,所以考生在复习过程中首先要弄懂这些知识点。考试要求中标明了对各个知识点的掌握所应该能够达到的程度,一般分为了解、理解、会、掌握,几个层次。
了解:指对该知识点的含义要很清楚,一般在数学中指的是概念、公式、性质、定理及推论等知识内容。比如:了解函数的有界性、单调性、周期性和奇偶
性等。
但是并不是说了解的内容就只是了解这些性质,知道这些知识点就行了,有人错误的认为了解的知识一般不会考,这种认识是错误的,只要是在考试大纲中出现的考试内容都有可能考到,甚至对要求了解的知识点考的也比较深入。
理解:指要对知识点懂且认识的很清楚。在考研数学当中主要指对概念、定理、推理的知识点及知识点之间的关系。在这里万学海文辅导老师提醒2012年得考生要注意了解和理解的区别,了解偏重于知道,理解在了解的基础上增加了懂得和能够体会其深层次的意思;理解也就是从表到里深层递进的含义。在考研数学大纲中要求理解的知识点考查的较多,比如:理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系等几乎每年必考.
会(求、计算、建立、应用、判断等):其含义为理解、懂得,并根据所学知识能够计算表达式结果、列出方程、画出图形、建立数学模型等。在考研数学大纲中对知识点要求会求、会计算、会建立方程表达式、会描绘等,主要指计算方法、知识点的灵活运用测试的要求;万学海文数学辅导老师提醒大家学习时不仅要记住、理解定理还要会推导,才达到会求解的程度。
掌握:了解、熟知并加以运用。在考研数学大纲中所有知识点的要求中掌握的层次是最高的,要求掌握的知识点往往是考试的重点、热点和难点,比如:掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法等都是每年真题中涉及的内容;万学海文建议2012年得考生在学习时对于大纲要求掌握的知识点不仅要掌握知识点本身还要学习它的推理、证明以及解题时经常用到的结论,同时还要注意与该知识点相关联的知识点及它们之间的关系。
在了解了考研数学大纲内容及要求之后我们就可以有的放矢的进行复习了。古人云:“凡事预则立,不预则废”,这为我们下面能够扎实复习打开了一个美丽的开端。