第一篇:相控阵雷达信号处理的基础
相控阵雷达信号处理的基础
摘要
本文节给出了一个关于相控阵雷达原理和术语的简短的调查研究。波束形成、雷达探测与参数估计已经描述过了。子阵的概念,单脉冲与任意子阵的估计开发。作为一个自适应波束形成,这是在其他几个部分处理的准备,关于模型塑造的确定性加权的主题将会进行详细的介绍。
1.0 引言
当今阵列在许多应用程序、视图和术语中的运用是完全不同的。我们在这里介绍几个相控阵雷达天线和相关信号处理的具体特点。首先,雷达原理和术语的解释。大量阵列单元的波束形成是典型雷达天线的特点和问题,在其他应用程序众所周知。因此,我们讨论了阵列填满、大光圈和带宽的特殊问题。为了降低成本和空间,天线的输出通常归结于子阵。数字化处理只能靠子阵输出解决。等部分模拟和数字波束形成的问题,特别是光栅的问题进行了讨论。本主题将重新考虑自适应波束形成,空时自适应处理(STAP),和SAR。
雷达探测范围和方向估计由统计假设检验和参数估计理论进行计算。这一理论的主要应用将在下一章的自适应波束形成中进行讨论。在这个章中,我们提出了单脉冲估计的应用,并且在下一章中扩展到自适应阵列或STAP的单脉冲估计。
由于波束形成在相控阵中起着核心作用,也为各种自适应波束形成做了准备,并且为确定性天线波束形成和和相关通道精度要求做了详细介绍。
2.0雷达和阵列的基础
2.1基本概念
雷达原理在图1中进行了描述。一个长度为τ的脉冲被传输,被反射在目标上和在t0时刻雷达再次收到该脉冲。这个信号的传输时间经计算为
R0ct0/2。这个过程中脉冲重复间隔为(PRI)T。因此,最大的明确范围为
RmaxcT/2。
比之/T称为占空比。
1PSignalPnoisePmGt.0.Gr2.244RkT0FB.L1接收到的信号与噪声功率比(SNR)由雷达方程描述。
SNR4R22. 波长(cm)kT0 =4*10-21 Ws(W/Hz)F 噪声系数(dim-less)B 带宽(Hz)L 损耗(dim-less)
这是的1/R规则要求雷达设计师必须尽可能增加传送或接收的能量。快速实时处理:过滤接收到的脉冲使得信号能量能够最大限度地提取(匹配滤波,脉冲压缩)。这是实现卷积接收到的数据样本yk4zk发射波的形式sk,k1..L,szr1Lkr。脉冲压缩后距离分辨率为Rc/2,其中τ是脉冲压缩后的有效脉冲长度。通过压缩后较短的长度对长发射脉冲进行适当的编码,因此可以实现很高的分辨率。这需要一个更大的带宽。脉冲之前的么长度和压缩后的长度之比称为压缩比K,与时间带宽积类似,K=before/afterBbefore。模拟波形,如用于脉冲压缩的线性频率调制(调频),或通过某种子脉冲切换的离散码,例如:二进制代码或多相码。脉冲压缩后的雷达旁瓣对于避免假目标非常重要。此外,压缩脉冲必须适应多普勒频移,多普勒频移是一个典型的目标重复移动的频率。
慢时处理:接收信号能量可以增加整合电源脉冲。由于多普勒效应,具有一定径向速度R的目标回波经历了一个fD2R/的频移。从脉冲间隔时间T,我们可以观察到一次相移
D2fDT。如果这次变换得到补偿就能收集到最大
yej2fDkTykk1K能量。正确的相位补偿的总和被称为连贯整合,向速度和因此导致的多普勒频为相干处理间隔,CPI。
fD。当然,径
是未知的,必须进行估计。积分时间KT被称此外,也可以只对幅度进行相加,叫做非相干积分,yy2k1K2k。在一
个雷达的固定观察方向(例如若干CPI)上的所有处理时间称为延时。
2.2相控阵原理
相控阵的原理是从大量的基本球面波形如图2所示,生成一个波前平面。一些阵列天线的技术实现也显示在图中。球面波通过基本天线单元的全方位特征来近似实现。在基本天线上应用适合的激励和接收的所有信号的总和被称为波束形成。
为什么人们对相控阵天线如此感兴趣?它的主要优点是几乎是无限快速地转换阵列的观察方向。这使得我们可以根据一些最优准则,而不是根据一个连续的41R机械运动来阐明搜索空间。回顾准则,这迫使我们集中传输能量。优化目标接收的能量的各个方面都可以用关键词——能量管理来表示,这是相控阵的本质上的优势。特定的能源管理组成部分是
相干积分几乎可以达到任意长。这可以做到更好的杂波抑制(多普勒分辨力),通过提取光谱的特征来进行目标分类,并最终进行SAR和ISAR处理。
时分复用的不同雷达的任务,如搜索和跟踪多个目标的性能。这允许使用单相位阵列雷达作为多功能雷达。
个别的雷达任务的优化:优化搜索,采集和跟踪波形,需要时的高精度测量,变量的光束形状,跟踪优化算法(雷达通过跟踪算法和一个先验信息来进行控制)。
较低的主要能量消耗(仅适用于主动阵列,节省约2倍)
高故障间的平均时间间隔(MTBF)由于优美的退化(只对于主动阵列) 如果在天线孔径的空间样本可供选择:自适应波束形成(ABF)的时空自适应处理(STAP),超高分辨率
2.3 波束形成
相控阵的关键技术问题之一是波束形成的操作。为了连贯地总结所有信号,在位置rx,y,zT的天线单元的接收信号的时间延迟必须进行补偿。我们通过如图3所示的天线坐标系统U中的单位方向向量(有时也被称为“方向余弦”),来表示入射波平面的入射角。绿色的平面可能代表一个平面天线的口径。公式对于三维阵列也有效。位置r的元素和原点之间的路径长度是
对于如图3左边子图所示的线性天线,它等于xsin。在元素r处的信号可写为
其中,f是发射频率,c是光速。相应地,我们在方向U0上用N个天线单元形成一个波束,通过补偿这些延迟
上标H表示共轭转置。我们称有等距单元的线性天线在众所周知的函数。
au0为控制向量。对于一个特殊的情况下的xd/2xkkd/2(此单元被k分开),此结果导致了
第二篇:学科前沿讲座模式识别与雷达信号处理学习心得报告
学 科 前 沿 讲 座 报 告
授课老师:赵亦工教授
学院:电子工程学院
姓名:龙毛
学号:02081458 关于模式识别与雷达信号处理学习心得
在学科前沿讲座上赵亦工老师给我们讲解了关于模式识别与雷达信号处理等相关的知识,观看了很多图像处理的视频,让我们不得不感慨于学习模式识别与图像处理的重要性。
模式识别是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。计算机模式识别在20世纪60年代初迅速发展并成为一门新学科。
模式识别是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类和无监督的分类两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。
模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。
模式识别研究主要集中在两方面,一是研究生物体包括人是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作者近几十年来的努力,已经取得了系统的研究成果。
模式识别所分类的类别数目由特定的识别问题决定。有时,开始时无法得知实际的类别数,需要识别系统反复观测被识别对象以后确定。
模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与 人工智能、图像处理 的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术
从20世纪20年代发展至今,人们的一种普遍看法是不存在对所有模式识别问题都适用的单一模型和解决识别问题的单一技术,我们现在拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把统计模式识别或句法模式识别与支持向量机的机器学习结合起来,把人工神经元网络与各种已有技术以及人工智能中的专家系统、不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。
雷达信号处理则是为完成雷达数字信号检测和信息提取功能所采取的实施手段。物体的反射回波是微弱的高频信号,经过变频、放大和滤波等处理变成具有一定强度的模拟信号(时间上连续,幅度上可为任意实数值)。数字处理须采用模拟-数字转换器,把模拟信号转换成为数字信号(时间上离散,幅度上分层),然后进行各种运算和处理。早期的雷达信号处理,几乎全部是模拟的。50年代出现利用计算机进行信号处理的雷达系统。这是雷达数字信号处理的开端,功能还仅限于自动检测。
同模拟信号处理相比,采用数字信号处理的优点是:①把许多功能综合设计在一部处理机中,可以根据外来指令或预先编好的程序灵活地选择和组合使用。②精度仅与字长有关,不像模拟处理那样,性能与使用人员的调整有关,因此性能稳定可靠。③有利于高速大规模集成电路的应用,从而可使信号处理机的重量减轻和体积缩小。同其他领域的数字信号处理相比,雷达数字信号处理的特点是信号带宽大,因而采样率高,并且实时输出。因此,单位时间内的处理量(或称吞吐率、解题率)极大。
数字转换器把模拟视频信号转换成数字信号(见图),从原理上可分为三个步骤,即采样、保持和分层。在脉冲雷达中,数字信号处理可划分为周期内处理和隔周期处理两大部分。周期内处理是指对一个周期之内的回波脉冲进行匹配或最佳滤波处理,使单个脉冲的信-噪比达到最大;隔周期处理是指对多个周期中回波脉冲串的复包络进行匹配或最佳滤波处理,使整个脉冲串中某时刻的信-噪比达到最大。对于周期内处理,采样周期应小于或等于测时延(距离)的分辨单元。对于隔周期处理,采样周期可以长达一个重复周期。
数字信号处理可分为四类,即线性非时变、线性时变、非线性非时变和非线性时变。在理论上最容易解决的是线性非时变型的处理。这一类型的模拟处理用线性常系数微分方程描述,从而可以用傅里叶级数或傅里叶变换求解。同样,这一类型的数字处理可以采用线性常系数差分方程描述,从而可以用Z变换或离散傅里叶变换求解。
采用状态变量法解决线性时变型数字处理的分析问题效果较好。这种方法尤其适用于利用电子计算机进行仿真分析。关于含有非线性性质的数字处理,只能对特定问题进行计算机仿真计算,而不能应用叠加原理。
信号处理方法有两种,一种是信号依次进入而形成信号流,另一种是执行完一条指令再执行下一条指令,形成指令流。雷达中的数字信号处理机可采用这两种方法中的任一种,也可以兼用两种方法。一般来说,采样速度高而功能较简单者宜用前者;采样速度较低而功能复杂者则宜采用后者。
在处理中对数据结构有一定要求,位数会影响全机精度。为保持很高精度势必增加字长。为了不使字长过分增加,则须采取截尾或舍入的措施。这些措施等效于在系统中加入噪声。因此,为确保一定精度,系统运算字长应适当地大于输入数据的字长。过长的运算字长会导致机器结构庞大。
对处理机的硬件结构有一定要求特别重要的是数据和指令的存储方式。早期多采用移位寄存器控制方式,后来随机存取存储器方式得到更多的应用,现代雷达信号处理更多采用只读存储器程序固化的方式。
对指令语言也有一定要求。使用语言的级别越高(即面向任务),操作时越方便,即只需一个动作就可适应事先规定的一种场合;语言级别越低(即面向机器),操作时越灵活,即可临时编制程序执行多种不同的任务。
诚然,在雷达成像的研究中还有数不清的难题需要攻克,雷达成像这一研究领域也面临着许多的问题需要解决。在学习图像处理时我们不仅要掌握一维信号处理的基本知识,也要掌握二维或者高维信号处理的知识。其次,图像处理是计算机视觉和视频处理的基础,所以必须掌握图像处理的基本知识。目前的模式识别,大部分也都是图像模式识别。
在实际应用场合,采集的信息很多都是图像信息,比如指纹、条码、人脸、虹膜、车辆等等。通过这个课程,让我们了解到模式识别和图像处理对于我们学电子类的学生的重要性,也让我们见识到了什么才是高科技,而以后我们就要为这个方向而不断积蓄知识,掌握更多的才能。
第三篇:论文 相控阵雷达天线的工作原理及应用
相控阵雷达天线的工作原理及其应用
Xx(鲁东大学 物理学院 09级物理一班 2xxxxxxxxxxxx)
摘要:本文应用惠更斯菲涅耳原理以及平面衍射光栅原理简要的分析了相控阵雷达天线的工作原理,并简要说明了实际相控阵雷达的工作原理及其优点。最后举例说明了相控阵雷达天线的应用。
关键词:相控阵;相位差;天线;
PHased array radar antenna working principle and its applicatio
LuHan
(Lu dong university Physics institute 09 level physics class20092312579)Abstract: this paper applied the huygensI型SAR天线为集中馈电的相控阵(下图)。它工作于C频段,峰值功率为5000W的波导窄片缝隙相控阵天线孔径面积为15m×1.5m, 质量300kg。方位方向上32个数字式铁氧体移相器可灵活地改变天线的波束指向和形状,使RadarsatП的天线阵面采用了T/R组件是一部接受和发射双通道,幅度和相位皆能数字控制的多极化、超分辨成像的固态游园【2】 相控阵微带天线。
Radarsat-I 的天线阵面
五、结束语
相控阵雷达是当今最先进的军事技术之一,在某种程度上来说它影响了当今新军事技术革命的发展方向。虽然存在一些不足之处,但我们有理由坚信:随着科学技术的进步,建立在物理基石上的相控阵雷达将会得到不断的完善。在未来,不论是军事斗争上还是民用事业上,相控阵雷达必定会发挥它不可替代的巨大作用。参考文献:
【1】相控阵雷达技术 张光义、赵玉洁 编著
【2】相控阵雷达天线 束咸荣、何炳发、高铁 著
【3】光学教程 第四版 姚启钧 原著 华东师大光学教材编写组改编
第四篇:正确认识相控阵雷达—一种永不消逝的雷达体制
正确认识相控阵雷达—一种永远不会消逝的雷达(1)
相控阵雷达是指采用相控阵天线的一种雷达体制。由于相控阵天线的波束是用电子方法在空域变动或扫描,非常灵活,变动速度可达微秒级;这种雷达天线体制再与其他先进的,能精密定位的雷达体制(如脉冲多普勒等)结合,就使整个雷达具有多目标,多功能,大空域,大功率,抗干扰强等一系列突出优点;在当今被认为是一种最有发展前景的雷达体制。它是当今世界很多先进武器,如防空导弹系统,对空情报系统、预警机、歼击机、反导系统等的主体设备。国外新第三代甚至第四代防空反导武器系统都是以相控阵雷达为主体构建的,典型的有:美国的爱国者PAC-
3、宙斯盾弹道导弹防御系统;俄罗斯的S-300、S-400、“里夫”、“道尔”等。现代预警机、歼击机是否达到新一代水平,重要标志之一就是是否采用相控阵雷达体制的预警雷达和火控雷达。
美国雷达专家,相控阵雷达技术的老前辈D.J.Picard生前有句名言:“有一种老式雷达永远都不会消逝,那就是相控阵”。这句话已成为国内外专家学者们的共识。这门技术不仅吸引了大批工程技术人员终身投身于这项事业,在我国,还收到大批军事爱好者和发烧友的青睐。
不过作者也发现,在一些资料、教材和专著中,尤其是网上很多博文,对相控阵雷达的阐述,理解和讨论中有很多误区。例如:相控阵雷达和三坐标雷达是不是一回事?有源相控阵是不是就比无源相控阵先进?相控阵雷达号称多功能,是不是功能越多越好?武器装备(如预警机)是不是采用了别人没有采用的相控阵体制就算世界第一?宙斯盾号称神盾,为什么后来的俄国、西欧没有走宙斯盾道路?为什么新一代的DDG-1000舰雷达要对宙斯盾更新换代?本博文就是想和有兴趣的网友和读者共同探讨这些问题。
在讨论前,先向网友和读者介绍一本专著:《相控阵雷达的测试维修技术》。这是航天科工集团二院几位退休老同志根据自己实践经验合编的,由我担任主编。由2013年国家科学技术学术著作出版基金资助,国防工业出版社2013年12月出版。书中虽主要探讨相控阵雷达的测试维修技术,但有较大篇幅讨论基本概念和解读上述的疑点。此书已有几家部队内部杂志刊登新书出版信息,向有关读者推荐阅读和作为培训参考。下图是空军装备院主办杂志《地面防空武器》上的所登的介绍信息。
最后我想声明一下。有几位好心网友问:在网上和媒体上发表科技文章的郭衍莹,与媒体上发表文史文章的郭衍莹是否同一人?是男士还是女士?答曰是同一人,是男士。我几乎一辈子在航天领域搞科技工作。雷达、测控是我的主要专业。但我从小酷爱文学,从小又经历不平凡的年代(如民国时期的128事变、813事变、解放前的民主运动,我都是亲身经历或耳闻目睹者)。退休后写些纪实性回忆录(有些是应媒体约稿),既能打发光阴,又可为后人留些东西,告诉他们当年事情真相,也是我的社会责任。当然文笔粗糙,涂鸦之作,只好请大家原谅了。
插图
第五篇:信号基础心得
铁路信号基础学习心得
系部
机电工程系
班级
通号3101班
学号
06304100105 姓名
韩育锋
《铁路信号基础》学习心得体会
在交通运输业迅猛发展的今日,铁路运输作为第一大运输方式,在我们的日常生活中起到至关重要的作用,作为一名铁路院校的学生,我深知自己对国家铁路建设的责任重大。在我们进入专业课程学习之前,我们学习了《铁路信号基础》这一门课,在学习中我了解和懂得了许多有关铁路信号的知识。
铁路信号设备的作用是组织指挥列车运行,保证行车安全,提高运输效率,传递信息,改善行车人员劳动条件的关键设施
铁路信号设备主要分为室内设备和室外设备。室外设备有色灯信号机,转折机,继电器,轨道电路等。室内设备有防雷接地装置,连锁设备,闭塞设备,调度指挥系统等。
在学习信号机中,我们了解到铁路信号机的颜色,红黄绿白蓝五种
铁路信号分为视觉信号和听觉信号。视觉信号分为昼间.夜间及昼夜通用信号。隧道内只采用夜间或昼夜通用信号。视觉信号有信号机~信号表示器~信号标志~手信号~机车信号。
信号机分为臂板信号机和色灯信号机,有进站信号机~出站信号机~通过信号机~遮断信号机~预告信号机~调车信号机~驼峰信号机~进路信号机~复示信号机。进站信号机:绿灯:正线通过。一个黄灯:进正线停车。两个黄灯:进侧线停车。红灯:不许越过。一个红灯和一个月白灯:引导进站。出站信号机:一个绿灯:准许发车。黄灯:准许列车由车站出发,表示运行前方至少有一个闭塞分区空闲。红灯:不许越过。两个绿灯:自动闭塞区段表示去往非自动闭塞区段,半自动闭塞去间表示开往次要线路。在兼作调车信号机时,一个月白色灯光:准许越过该信号机调车。通过信号机:一个绿灯:准许列车按规定速度运行,表示运行前方至少有两个闭塞分区空闲。一个黄灯:要求列车注意运行,表示运行前方有一个闭塞分区空闲。一个红灯:列车应在该信号机前停车。装有容许信号的通过信号机,容许信号显示一个蓝色灯光:准许列车在通过信号机显示红灯的情况下不停车,以不超过20公里/小时的速度通过,运行到次一通过信号机,并随时准备停车。遮断信号机:一个红色灯光:不准列车越过该信号机。不着灯时,不起信号作用。预告信号机:一个绿灯:表示主体信号机在开放状态。一个黄灯:表示主体信号机在关闭状态。调车信号机:一个月白色灯:准许越过该信号机调车。一个蓝色灯光:不准越过该信号机调车。驼峰信号机:一个绿灯:准许机车车辆按规定速度向驼峰推进。一个绿色闪光灯光:指示机车车辆加速向驼峰推进。一个黄色闪光灯光:指示机车车辆减速向驼峰推进。一个红灯:不准机车车辆越过该信号机或指示机车车辆停止作业。一个红色闪光灯光:指示机车车辆自驼峰退回。一个月白色灯光:指示机车到峰下。一个月白色闪光灯光:指示机车车辆去禁溜线。
像学习信号机这样,我们还学习了信号继电器,轨道电路,转折机等设备。信号继电器是自动控制系统中常用的电器,它用于接通和断开电路,用以发布命令和反映设备状态,以构成自动控制和远程控制电路。继电器具有继电特性,能以极小的电信号来控制执行电路中相当大功率的对象,能控制数个对象和数个回路,能控制远距离的对象。在这我们还了解了继电器的基本工作原理,以及铁路信号对继电器的要求和继电器的分类。
在继电器中,主要学习了安全继电器,它是直流24V系列的重弹力式直流电磁继电器,其他的继电器都是在他的基础上发展改进出来的。在学习轨道电路中,我们了解了,轨道电路时利用钢轨线路和钢轨绝缘构成的电路,他用来监督线路的占有情况,以及将列车运行于信号显示联系起来,通过轨道电路向列车传递信息。其工作原理为当闭塞区间内无列车行驶时,电流会从电源经由轨道流经继电器,并使其激磁带动 接点,接通绿灯之电路(号志机立即显示平安通行)。
轨道电路
当有列车驶入闭塞区间时,电流改行经列车车轴,并不会流经继电器,继电器因失去电流而失磁,接点接通红灯之电路(号志机立即显示险阻禁行)。假若轨道断裂,轨道电路因此阻断,造成继电器失磁,同样的号志机亦会显示险阻禁行的讯息,仍可保障列车行驶安全。当列车驶离整个区间,继电器便会重新激磁,绿灯便会再次亮起,其他列车便可进。
当设有轨道电路的某段线路上空闲时,轨道电路上的继电器有足够的电流通过,吸起被磁化的衔铁,闭合前接点,从而接通色灯信号机的绿灯电路,显示绿色灯光,表示前方线路空闲,允许机车车辆占用。当机车车辆进入该线路区段时,由于轮对电阻很小,使轨道电路短路,继电器吸力减弱,释放衔铁,使之搭在后接点上,接通信号机的红灯电路,显示禁行信号。轨道电路的这一工作性能,能够防止列车追尾和冲突事故,确保行车安全。
轨道电路的另一个重要作用是能发现钢轨发生断裂。在充当导线的钢轨安全无事时,轨道电流畅道无阻,继电器工作也正常。一旦前方钢轨折断或出现阻碍,切断了轨道电流,就会使继电器因供电不足而释放衔铁接通红色信号电路。此时,线路虽然空闲,信号机仍然显示红灯,从而防止列车颠覆事故。
其分类可归为以下几类轨道电路有多种分类方法,按结构可分为闭路式轨道电路、开路式轨道电路;按信号电流的种类分为直流轨道电路、交流轨道电路和脉冲轨道电路;按分支轨道电路接受电端的多少,分为一送一受轨道电路和一送多受轨道电路。其次我们还学习了轨道电路的技术要求,和他的应用以及划分和命名。
我们还了解了转辙机的相关知识,他的作用为转换道岔的位置,根据需要转换至定位或反位,道岔转至所需位置而且密贴后,视线锁闭,防止外力转换道岔,再者还了解了,转辙机的基本要求,转辙机的技术要求,住着几的分类,转辙机的设置。主要以ZD6转辙机为例惊醒了学习。
在了解了许多有关信号设备的知识之后,我们对铁路信号设备有了更进一步的了解,这对我们后续学习的开展起到很大的作用,为我们学习专业课打下了良好的基础,铁路信号基础是铁路信号的基础课程,对我们专业知识的增长期到了很大的作用。