第一篇:英语 专业论文怎么写
英语专业论文怎么写
一.关于本专业毕业论文的选题
英语专业本科生毕业论文选题可以在三个大的方向中进行,即英语文学,语言学和翻译学。各个大方向中又可以选择小的方向,具体解释如下:
1.英语文学:选择英语文学的毕业论文选题可以从三个方向进行:国别文学研究、文学批评理论研究和比较文学研究。
在进行国别文学研究选题时,一般选取英国文学或美国文学中的某一经典作家(如海明威),某一经典作品(如《双城记》),某一写作手法(如象征手法的运用)或某一文学思潮(如浪漫主义运动)作深入研究。但在选择作家或作品时最好选择在文学史上作为经典的作家或作品。有个别流行作家或作品极富盛名,容易引起学生的兴趣,如《飘》或《荆棘鸟》,学生有强烈愿望选择它们作为研究对象。在不可避免上述情况时,应该尽可能地挖掘作品内在的深刻含义,不能流于肤浅的分析。
文学批评理论的选题一般不太适合英语专业本科生,因为该理论知识的学习在英语专业研究生阶段,本科生一般不具备文学批评理论的知识结构。这个方向的选题可以有关某一文学批评理论,一文学批评术语的阐释或某两种或以上的文学批评理论的比较。
比较文学研究就是将两个以上的作家或作品进行比较。这两个作品或作家可以是同一国别的(如“雪莱与拜伦的诗歌比较”),也可以是不同国别的(如《牡丹亭》与《罗密欧与朱丽叶》)
2.语言学:选择语言学的毕业论文选题可以在两个大的方向进行:普通语言学和应用语言学。
普通语言学的研究就是对于英语语言的任何一个方面的研究,如对一种词性、或一种时态、或拼写、语调等等方面的研究(如“一般现在时及其交际功能”)。
应用语言学包括教学法的研究和其它一些新兴的应用语言学分支的研究。师范专业或本身从事教师职业的学生选择教学法方向的较多。在这个方向选题,也要避免过大范围的选题,而应对一个具体问题进行研究,最重要的是要结合教学实践或实验。这个方向的好的选题有:“个性与英语教学”,“方言对英语学习的影响”等。
3.翻译学:翻译学的选题一般可以在两个方向上进行:翻译理论以及翻译活动。对翻译理论的研究就是探讨某一种翻译理论等等。相比之下,对翻译活动的研究更多一些,这些选题可以是对一种语言现象的翻译、或一种修辞格的翻译的研究(如“汉语成语的英译”)。应该注意的是,在对翻译活动作研究时,往往需要某种翻译理论支撑,总结规律,并对这一活动作出评价,要避免仅仅时例子的罗列。
二.英语专业毕业论文格式要求
学位论文包括前置、主体、附录等三个部分。
(一)前置
1.英文封面:由论文英文题目、解释、作者、指导老师姓名和职称、时间组成。
2.目录:由论文的中、英文摘要、篇、章、条、款以及参考书目、附录等序号、题名和页码组成,排在英文封面之后另页。
3.中、英文内容摘要:摘要是论文的内容不加注释和评论的简短陈述,宜以最简洁的语言介绍论文的概要、作者的突出论点、新见解或创造性成果以及实验方法、数据或结论,是一篇完整的短文,可以独立使用,中文摘要一般在200字左右
4关键词:关键词是用以表示全文主题内容信息的单词或术语。为便于文献检索,学位论文应注明三至五个具有代表意义中、外文“关键词”,这些关键词就是论文的中心词,以显著的字符另起一行,分别排在中、外文摘要的左下方。各关键词之间用“分号”隔开。外文关键词应与中文关键词相对应。
(二)主体部分
主题部分包括引言(Introduction)、正文(Body)、结论(Conclusion)、参考文献(Bibliography)。主体部分必须由另页右页开始。
1.引言:主要说明研究工作的目的、涉及范围、相关领域的前人研究成果和知识空白、研究设想、研究方法等方面的概述、理论意义和实用价值等。
2.正文:论文的正文是核心部分,占主要篇幅。一般论文选题需要从几个方面来论述或论证。要求论据充分,论点明确。行文必须实事求是,客观真切,准确完备,合乎逻辑,层次分明,简练可读。正文部分要有分级标题,章、条、款、项的序号编码方法,采用阿拉伯数分级系列编号法,论文中的章、条、款、项依次排列,依次从1开始,连续编号,中间用“.”相隔,最末级编号之后不加点。示例:
1.2.…… 2.12.2…… 2.2.1
2.2.22.2.3.… 2.2.3.1
3.结论:学位论文的结论是最终的、总体的结论,它是对正文部分的论述的概述,也可以在结论或讨论中提出建议、研究设想、尚待解决的问题等。
4.参考文献:写作学位论文过程中,阅读或运用过某些文献所列出的书目清单,置于正文之后,另页开始。参考文献的著录按原文献语种为原则。
(1)文献目录应另页书写,外文文献排前,中文文献排后。外文文献书名须用斜体。
(2)文献目录一律按作者姓氏汉语拼音或外文字母顺序排列。
(3)每条文献必须顶格写,回行时空两字或五个英语字母。
(4)将各文献的类型代号(即文献英文名的首字母)注明在文献之后:
专著[M] 学位论文[D]论文集〔C〕 报纸文章〔N〕期刊文章〔J〕报告[R]
专利 [P]专著、论文集的析出文献[A]其他未说明文件 〔Z〕
电子文献中光盘图书 [M/CD](MONOGRAPH ON CD)
网上期刊〔J/OL〕(serial online)
5.文内所引文献:要求附夹注,应在引文后加括号注明作者姓名(英文只注姓),出版年和引文页码。若为转引文献,则加quoted in 字样。
例:(王佐良,1982:38)
(Newmark,8:26-33)
6.文献中列出的文献应该与正文中标注的文献一一对应。正文中没有出现的,不应出现在参考文献中。
(三)附录部分
附录包括所有与论文有关的补充材料,如图表或照片等。
第二篇:英语专业论文
英语专业文学方向本科毕业论文写作问题探究
[摘 要]英语毕业论文由于从事英美文学教学的教师理论水平参差不齐、教师对学生文艺理论接受能力的怀疑、商品经济时代文学和文艺理论曲高和寡等因素,造成文学学习和文学方向毕业论文写作中缺乏科学的分析方法。本研究将探索将文艺理论引入本科毕业生的论文写作课程中的必要性和可行性,从而建构以文艺理论为中心的英语专业文学方向毕业论文写作的新模式。
[关键词]文学理论;读者反映理论;认知教学法
依据《高等教育法》(1998)的本科教育学业标准,学生应比较系统地掌握本专业所必需的基础理论知识、基本技能和相关知识,并“具有从事本专业实际工作和研究工作的初步能力”。这一标准强调了研究性教学(research-oriented teaching)的重要性,无疑为英美文学教学中理论研究与实践的有机融合提出了要求,而这种融合往往体现在学生文学论文写作的能力之中。然而,高校中实用主义风气、急功近利思想和“重技能,轻人文”弊端的集中体现冲击着文学课教学,助长了学生轻视与人文修养有关的课程,助长了他们对文学作品敬而远之的倾向(马爱华, 2006)。作为全面考核毕业生综合素质的有效途径,毕业论文写作是本科学生毕业前必须经受的考验关口,是师生教学相长的过程。本文将从文学课教学的现状出发,通过毕业论文写作的过程,在揭示现象、总结经验的基础上,提出重视文艺理论的教学,提高学生的文学素养,培养研究性学习能力的意义。
一、研究现状
部分专家认为英语专业(张冲, 2003)是“英语语言技能的专业训练和对英语语言文化的专门研究”,其特征为“技能加专业,复合而开放”,其培养目标为“纯熟的语言能力,深度的专题研究”。这一专业定位除了强调语言技能之外,着重强调了“文化”和“研究”。文化理解和专题研究的基础在于学生文学课程的给养过程,其中,文学理论分析则既指导了文学课程的学习,又加深了学生对文学作品的理解。文学作品的学习与文艺理论的关系好比材料和工具的关系,“工欲善其事,必先利其器”,如果学生没有相关的文艺理论的学习,就好比一个没有工具的工匠,只能望天兴叹。
二、问题成因
文艺理论是学习英美文学的分析和鉴赏工具,研究生阶段的文艺理论教学已经有了一定的历史,但在英语专业本科教学中文艺理论的教学目前尚未展开。这直接导致学生的文学毕业论文的写作难度增大,出现了许多亟待解决的问题。主要成因如下:
1.从事英美文学教学的教师理论水平参差不齐。部分教师讲授英美文学,而其自身很少涉及文艺理论的使用,或者说自己的文学批评理论知识匮乏,因此不可能在授课时有意识地将文艺理论融入到教学中去。
2.轻视或放低对学生的人文素质和评析能力的生成要求。有些教师担心学生的接受能力,甚至害怕因为学生不能正确理解文艺理论的精髓而将其误用或者滥用。《高等学校英语专业英语教学大纲》(2000)明确规定了文学课程的教学目的“在于培养学生阅读、欣赏、理解英语文学原著的能力,掌握文学批评的基本知识和方法。通过阅读和分析英美文学作品,促进学生语言基本功和人文素质的提高,增强学生对西方文学及文化的了解”,显而易见,加大文学批评理论的讲授和研讨是符合《大纲》要求的。
3.所学知识与研究性写作存在三个“不和谐”关系:文学课的教与学脱节;文学课与语言实践脱节;文学教学理论的研究与外语教学实践脱节(马爱华, 2006)。学生习得的知识孤立于其写作实践之外。人才培养目标不明确,学生急功近利,一成不变的文学课程教学脱离实际人才
培养模式。学生将文艺理论视为纸上谈兵。因而,导致“文学理论教材和教学实践逐渐偏离当今消费时代的审美精神”以及“文学理论的教学被大学生们冷落”(李迪江, 2002)。
三、文艺理论在文学论文写作中的意义
1.文学理论的专业知识学习,铺垫了文学论文的研究能力。“文学理论教学应该优先地培养大学生的理论素养,更多地培养大学生的应用能力,如从文学作品的分析讨论中,来培养大学生的理解能力、分析能力和表达能力等(李迪江, 2002)”。本科学生已经有了一定的文学常识,至少对于著名作品的情节有了一定程度的了解,文学名著选读课使用文学名著的原版书籍作为教材,使得学生有机会对文学文本进行仔细研读,为文艺理论的学习奠定了基础。
2.毕业论文写作,完成学生从读者到理论分析的升华。Guerin认为,“读者参与在文本的创作中”。作品的意义是文本和读者相互作用的结果,它强调读者在阅读过程中的不同参与方式。这一理论代表人物之一伊瑟尔指出,所有文学篇章都有“空白”或“缺口”,这些空白和缺口必须由读者在解读过程中填补或具体化(刘辰诞, 1999)。文学作品须由接受者内化和心灵化,即需要接受者的理解、体验、加工、补充和创造,融入接受者的思想和情感、倾向和评价,只有这样,作品中的时间、人物形象等才会活生生地呈现在自己的头脑中(郭宏安, 1997)。从这个角度暴露了英语专业教育中一贯的“知识单一和技能单一”问题,带来的思考是应该如何培养学生多种语言技能,满足其独立学习的需要。
3.文学史学习为文艺理论的学习奠定基础。心理学、原型批判、女权主义、马克思主义的文学评论等可将传统文学史中作家、作品按照时间排序的方式打破。从各种文艺理论的角度对作家、作品重新排序,不同的文学作品可以用相同的文艺理论进行分析,既起到梳理文学史和文学作品的目的,又使学生对文学作品甚至文学史的认识提升到一个新的高度。如:莎士比亚的《哈姆雷特》,尤金?奥尼尔《榆树下的欲望》,劳伦斯的《儿子与情人》等作品中都蕴含着恋母情结的心理学分析。以此为基础,给学生补充讲述古希腊剧作家索福克里斯的著名悲剧作品《俄狄浦斯王》,能帮助学生探究作品人物的内心世界,为论文写作奠定基础的同时,也有助于选择一个更为可行的题目。
4.结合文本与文艺理论,丰富学生的论文选题。学生文学专业毕业论文选题往往单一,如选择:《伟大的盖茨比》中美国梦破灭的主题或美国梦的悲剧一类的主题;《呼啸山庄》、《傲慢与偏见》中的爱情主题等。选择经典作家的代表作品为研究对象并不是不可以,但对于一般本科生而言,要就这些作品的某一方面进行较为深入、有创意的探讨,还是有相当难度的。因为,对于某一经典文本的某些问题,国内外评论界可能早有定论,而一般的学生“尚不能用当代文论的新视角去解读,很难提出自己的新解”(杜志卿, 2005)。
5.研读诗歌,理论先行。在历届本科英语专业毕业生的论文中,有关诗歌的论文很少有人涉及。究其成因,主要是在较短篇幅的诗歌中大量运用意象和象征等写作手法,再加上诗人用特有的音韵感和
第三篇:爱丽丝梦游仙境英语专业论文
Alice adventures in wonder land 主要内容
《爱丽丝奇境历险记》讲述了小姑娘爱丽丝追赶一只揣着怀表、会说话的白兔,掉进了一个兔子洞,由此坠入了神奇的地下世界。在这个世界里,喝一口水就能缩得如同老鼠大小,吃一块蛋糕又会变成巨人,在这个世界里,似乎所有吃的东西都有古怪。她还遇到了一大堆人和动物:渡渡鸟、蜥蜴比尔、柴郡猫、疯帽匠、三月野兔、睡鼠、素甲鱼、鹰头狮、丑陋的公爵夫人。兔子洞里还另有乾坤,她在一扇小门后的大花园里遇到了一整副的扑克牌,牌里粗暴的红桃王后、老好人红桃国王和神气活现的红桃杰克(J)等等。在这个奇幻疯狂的世界里,似乎只有爱丽丝是唯一清醒的人,她不断探险,同时又不断追问“我是谁”,在探险的同时不断认识自我,不断成长,终于成长为一个“大”姑娘的时候,猛然惊醒,才发现原来这一切都是自己的一个梦境。
《爱丽丝穿镜奇幻记》讲述的是小姑娘爱丽丝刚下完一盘国际象棋,又对镜子里反映的东西好奇不已,以致穿镜而入,进入了镜子中的象棋世界。在这里,整个世界就是一个大棋盘,爱丽丝本人不过是这个棋盘中的一个小卒。小姑娘从自己所处的棋格开始,一步一步向前走,每一步棋都有奇妙的遭遇:爱丽丝会脚不沾地地飞着走路,那里的花朵和昆虫都会说话,白王后变成了绵羊女店主,她手中的编织针变成划船的桨,等等。镜中的故事大多取材于英国传统童谣,作者通过自己的想象加以展开,并详细叙述,童谣里的人和物活灵活现地呈现在读者面前:为一丁点儿小事打架的对头兄弟,行止傲慢的憨蛋和为争夺王冠而战的狮子和独角兽。看来只有发明家兼废品收藏家白骑士无法归类,但他恰好是作者本人的化身。等到爱丽丝终于走到第八格,当了王后之后,为所有这些人准备了一次盛大的宴会,宴会上的烤羊腿会鞠躬,布丁会说话,盛宴最终变成了一片混乱,忍无可忍的爱丽丝紧紧捉住摇晃的红后最后变成了一只小黑猫,爱丽丝也在摇晃中醒来,开始追问这到底是自己的梦呢,还是红国王的梦? 作者介绍
刘易斯·卡罗尔(Lewis Carroll),原名查尔斯·路德维希·道奇逊,与安徒生、格林兄弟齐名的世界顶尖儿童文学大师。原名查尔斯·路德维希·道奇逊。1832年1月出生于英国柴郡的一个 牧师家庭,1898年卒于萨里。曾在牛津大学基督堂学院任教达30年之久,业余爱好非常广泛,尤其喜爱儿童肖像摄影。他的第一本童书《爱丽丝奇境历险记》于1865年出版,当时就引起了巨大轰动,1871年又推出了续篇《爱丽丝穿镜奇幻记》,更是好评如潮。两部童书旋即风靡了整个世界,成为一代又一代孩子们乃至成人最喜爱的读物。
如果说刘易斯·卡罗尔因为这两部童书而被称为现代童话之父,丝毫没有夸大的成分。至少他的两部《爱丽丝》一改此前传统童话(包括《安徒生童话》、《格林童话》)充斥着杀戮和说教的风格,从而奠定了怪诞、奇幻的现代童话基调。仅从这点来说,就堪称跨时代的里程碑。故事简介
Alice, sitting with her sister, is bored.A White Rabbit scurries by, muttering to himself and pulling a watch from his waistcoat pocket.Curious, Alice follows the animal down a rabbit hole, the first of many instances in which she is propelled by her curiosity.Alice falls, landing in a pile of leaves.She finds herself in a hall and discovers a tiny key to a tiny door leading to a garden.She drinks from a bottle labeled DRINK ME, and shrinks down to ten inches tall.Too short to unlock the garden door, Alice begins to cry.She eats some cake, grows unusually tall, then fans herself and becomes exceedingly small.She finds herself swimming in a pool of her own giant tears.A group of animals gathers around her on the shore.A Mouse gives a speech and then a foot race ensues.Alice is soon left alone and begins to cry again.The White Rabbit approaches.Thinking Alice is his housemaid, he sends her on an errand to fetch some things from his house.Alice drinks from a bottle she finds inside and grows until she fills the house, spilling out windows and bumping her head against the ceiling.Frightened, the Rabbit and his friends throw pebbles at Alice.The pebbles become cakes, which Alice eats to shrink.She escapes and meets a Caterpillar sitting on a mushroom, smoking.While he questions her identity and learning, Alice experiments with eating parts of the mushroom to alter her height.After a brief conversation with a Pigeon, she visits the highly
peppered house of the ill-tempered Duchess and encounters the Cheshire Cat, traveling next to the house of the March Hare.Here the Hare, the Mad Hatter, and the Dormouse have tea.Confused, she leaves the party in disgust and finds her way to the garden she could not reach earlier.In the garden, Alice encounters a very curious croquet game and a Queen of Hearts who threatens to chop off everyone's heads.Alice talks with the moralizing Duchess until the Queen threatens to execute the woman.At the Queen's orders, a Gryphon leads Alice to the Mock Turtle.She listens to his life story and his instructions for dancing the Lobster
Quadrille.The two creatures ask Alice to recount her own adventures, which she does, until a Trial is announced in the distance.The Trial concerns some tarts stolen from the Queen.When she is called to the witness stand, Alice begins to grow again and knocks over the jury box.The King orders her to leave the court because of her height.She refuses and continues to grow as the White Rabbit introduces more evidence.The Queen threatens to chop off Alice's head.Having grown to her full size, Alice calls the Queen and her soldiers a mere deck of cards, at which point the entire pack of them rises up and flies down upon her.Alice awakes.Her sister is brushing off some leaves from Alice's face.She recounts her Adventures and runs off.Her sister watches Alice and begins to dream herself, imagining that the White Rabbit rushes by through the grass.梗概:Alice's Adventures in Wonderland(commonly shortened to Alice in Wonderland)is an 1865 novel written by English author Charles Lutwidge Dodgson under the pseudonym LewisCarroll。[1]It tells of a girl named Alice who falls down a rabbit hole into a fantasy world(Wonderland)populated by peculiar, anthropomorphic creatures.The tale plays with logic, giving the story lasting popularity with adults as well as children.[2] It is considered to be one of the best examples of the literary nonsense genre,[2][3] and its narrative course and structure have been enormously influential,[3] especially in the fantasy genre.
第四篇:英语专业论文翻译
A smart copper(II)-responsive binucleargadolinium(III)complex-based magnetic resonanceimaging contrast agent†
Yan-meng Xiao,ab Gui-yan Zhao,ab Xin-xiu Fang,ab Yong-xia Zhao,ab Guan-hua Wang,c Wei Yang*a and Jing-wei Xu*a A novel Gd-DO3A-type bismacrocyclic complex, [Gd2(DO3A)2BMPNA], with a Cu2+-selective binding unitwas synthesized as a potential “smart” copper(II)-responsive magnetic resonance imaging(MRI)contrast agent.The relaxivity of the complex was modulated by the presence or absence of Cu2+;in the absence of Cu2+, the complex exhibited a relatively low relaxivity value(6.40 mM1 s1), while the addition of Cu2+ triggered an approximately 76% enhancement in relaxivity(11.28 mM1 s1).Moreover, this Cu2+-responsive contrast agent was highly selective in its response to Cu2+ over other biologically-relevant metal ions.The influence of some common biological anions on the Cu2+-responsive contrast agent and the luminescence lifetime of the complex were also studied.The results of the luminescence lifetime measurements indicated that the enhancement in relaxivity was mainly ascribed to the increased number of inner-sphere water molecules binding to the paramagnetic Gd3+ core upon the addition of Cu2+.In addition, the visual change associated with the significantly enhanced relaxivity due to the addition of Cu2+ was observed from T1-weighted phantom images.Introduction Copper(II)ion is a vital metal nutrient for the metabolism of life and plays a critical role in various biological processes.1,2 Its homeostasis is critical for the metabolism and development of living organisms.3,4 On the other hand, the disruption of its homeostasis may lead to a variety of physical diseases and neurological problems such as Alzheimer's disease,5 Menkes and Wilson's disease,6 amyotrophic lateral sclerosis,7,8 and prion disease.9,10 Therefore, the assessment and understanding of the distribution of biological copper in living systems by noninvasive imaging is crucial to provide more insight into copper homeostasis and better understand the relationship between copper regulation and its physiological function.A wide variety of organic uorescent dyes have been exploited for the optical detection of ions in the last few decades.11–13However, optical imaging using organic uorescent dyes hasseveral limitations such as photobleaching, light scattering,limited penetration, low spatial resolution and the disturbance of auto uorescence.14 By comparison, magnetic resonance imaging(MRI)is an increasingly accessible technique used as a noninvasive clinical diagnostic modality for medical diagnosis and biomedical research.15 It can provide high spatial resolution three-dimensional anatomical images with information about physiological signals and biochemical events.16 As a powerful diagnostic imaging tool in medicine, MRI can distinguish normal tissue from diseased tissue and lesions in a noninvasive manner,17–19 which avoids diagnostic thoracotomy or laparotomy surgery for medical diagnoses and greatly improves the diagnostic efficiency.Multiple MRI imaging parameters can provide a wealth of diagnostic information.In addition, the desired cross-section for acquiring multi-angle and multi-planar images of various parts of the entire body can be freely chosen by adjusting the MRI magnetic eld;this ability makes medical diagnostics and studies of the body's metabolism and function more and more effective and convenient.Contrast agents are often used in MRI examinations to improve the resolution and sensitivity;the image quality can be signicantly improved by applying contrast agents which enhance the MRI signal intensity by increasing the relaxation rates of the surrounding water protons.20 Due to the high magnetic moment(seven unpaired electrons)and slow electronic relaxation of the
paramagnetic gadolinium(III)ion, gadolinium(III)-based MRI contrast agents are commonly employed to increase the relaxation rate of the surrounding water protons.16,21 However, most of these contrast agents are nonspecific and provide only anatomical information.On the basis of Solomon–Bloembergen–Morgan theory,22–24 several parameters can be manipulated to alter the relaxivity of gadolinium(III)-based MRI contrast agents.These parameters include the number of coordinated water molecules(q), the rotational correlation time(sR)and the residence lifetime of coordinated water molecules bound to the paramagnetic Gd3+ center(sM).Adjusting any of these three factors provides the opportunity to design “smart” MRI contrast agents for specific biochemical events.25–27 In recent years, there have been many studies on the development of responsive gadolinium(III)-based MRI contrast agents;most of them have focused on the development of targeted, high relaxivity and bioactivated contrast agents.These responsive gadolinium(III)-based MRI contrast agents can be modulated by particular in vivo stimuli including pH,28–35 metal ion concentration36–43 and enzyme activity.44–50 Notably, a number of copper-responsive MRI contrast agents have been reported to detect uctuations of copper ions in vivo.51–58 These activated contrast agents exploit the modulation of the number of coordinated water molecules to generate distinct enhancements in longitudinal relaxivity in response to copper ions(Cu+ or Cu2+).In this study, we designed and synthesized a binuclear gadolinium-based MRI contrast agent, [Gd2(DO3A)2BMPNA], that is specically responsive to Cu2+ over other biologicallyrelevant metal ions.The new copper-responsive MRI contrast agent comprises two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold59,60(BMPNA), which functions as a receptor for copper-induced relaxivity switching.The synthetic strategy for [Gd2(DO3A)2BMPNA] is depicted in Scheme 1.Subsequently, the T1 relaxivity of [Gd2(DO3A)2BMPNA] was studied at 25 C and 60 MHz in the absence or presence of Cu2+.Experiments to determine the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+ over other biologically-relevant ions were carried out as well.Luminescence lifetime was measured to determine the number of coordinated water molecules(q)of [Gd2(DO3A)2BMPNA] in the absence or presence of Cu2+.In addition, T1-weighted phantom images were collected to visualize the relaxivity enhancement caused by Cu2+, suggesting potential in vivo applications.Experimental section
Materials and instruments
All materials for synthesis were purchased from commercial suppliers and used without further purication.1H and 13C NMR spectra were taken on an AMX600 Bruker FT-NMR spectrometer with tetramethylsilane(TMS)as an internal standard.Luminescence measurements were performed on a Hitachi Fluorescence spectrophotometer-F-4600.The time-resolved luminescence emission spectra were recorded on a Perkin-Elmer LS-55 uorimeter with the following conditions: excitation wavelength, 295 nm;emission wavelength, 545 nm;dela time, 0.02 ms;gate time, 2.00 ms;cycle time, 20 ms;excitation slit, 5 nm;emission slit, 10 nm.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ¼ 4 ns, gate ¼ 50 ns)as the excitation(Continuum Sunlite OPO).Mass spectra(MS)were obtained on an auto ex III TOF/TOF MALDI-MS and anIonSpec ESI-FTICR mass spectrometer.Elemental analyses were performed on a Vario EL Element Analyzer.Synthesis Synthesis of compound 3.Methyl 2,6-bis(3-(bromomethyl)-1H-pyrazol-1-yl)isonicotinate(Compound1)59,60 and 4,7,10-tris(2-(tert-butoxy)-2-oxoethyl)-4,7,10-triaza-azoniacyclododecan-1-ium bromide(Compound 2)61 were prepared following thereported methods.Compound 2(0.25 g, 0.296 mmol)was suspended in 2 ml anhydrous acetonitrile with 6 equivalents of NaHCO3(0.1492 g)and the mixture was stirred at room temperature for 0.5 h.Compound 1(0.0675 g, 0.148 mmol)was added, and the mixture was slowly heated to reflux(80 C)and stirred overnight.After the reaction was terminated, the mixture was cooled to room temperature, and the solution was ltered.The precipitate was washed several times with anhydrous acetonitrile, and the collected ltrate solution was evaporated under reduced pressure.The residue was puried using silicagel column chromatography eluted with CH2Cl2–n-hexane–CH3OH(10 : 3 : 1, v/v/v)to afford Compound 3(0.1038 g, 53%)as a pale yellow solid.1H NMR(600 MHz, DMSO): 8.22(s, 2H), 8.15(s, 2H), 6.62(s, 2H), 4.53(s, 4H), 3.82(s, 3H), 3.42(m, 4H), 2.98(m, 8H), 2.85(s, 8H), 2.71(m, 24H), 1.33(s, 54H)(Fig.S1†).13C NMR(151 MHz, CDCl3): d 173.21, 172.44, 163.99, 152.38, 150.11, 143.13, 128.07, 109.83, 108.36, 82.59, 57.84, 56.52, 56.06, 55.56, 52.98, 50.55, 48.91, 47.30, 27.96(Fig.S2†).HRMS(ESI): m/z calc.for C67H111N13O14 [M + 2H]2+ 661.92650, [M + H + Na]2+ 672.91747, [M + 2Na]2+ 683.90844, found [M + 2H]2+ 661.92584, [M+ H + Na]2+ 672.91690, [M + 2Na]2+ 683.90682(Fig.S3†).Synthesis of compound 4.Compound 3(0.1 g, 0.0756 mmol)was stirred with triuoroacetic acid in methylene chloride solution(2 ml)at room temperature for 24 h.The solvent was then evaporated under reduced pressure, and the residue was washed three times in CH3OH and CH2Cl2 to eliminate excess acid.The obtained residue was dissolved with a minimum volume of CH3OH and precipitated with cold Et2O.The precipitate was ltered to afford a brown yellow solid(0.1022 g).1H NMR(600 MHz, DMSO): 9.06(s, 2H), 8.17(s, 2H), 6.84(s, 2H), 4.33(s, 4H), 3.98(s, 3H), 3.56(b, 20H), 3.09(m, 24H)(Fig.S4†).13C NMR(151 MHz, D2O): d 174.11, 169.13, 164.64, 150.75, 148.85, 142.10, 129.88, 109.75, 107.99, 55.69, 54.01, 53.10, 52.43, 51.15, 49.59, 48.22, 47.69(Fig.S5†).MALDI-TOFMS spectrum(CH3OH): m/z calc.for C43H63N13O14 [M H] 984.46, found 984.7(Fig.S6†).Anal calc.for C43H63N13O14-$3CF3COOH$2H2O: C, 43.14;H, 5.17;N, 13.35;found C, 42.34;H, 4.999;N, 13.29%.Preparation of [Gd2(DO3A)2BMPNA] and [Tb2(DO3A)2-BMPNA].Compound 4(0.05 mmol)was dissolved in 2 ml of highly-puried water.GdCl3 or TbCl3(0.1 mmol)was added dropwise.The pH was maintained at 6.5–7.0 with NaOH during the whole process.The solution was then stirred at 75 C for 24 h.MALDI-MS(H2O): m/z calc.for C42H55N13O14Gd2 [M + H]+ 1281.46, found 1281.4(Fig.S7†).MALDI-MS(H2O): m/z calc.for C42H55N13O14Tb2 [M + H]+ 1284.3, found 1284.4(Fig.S8†).T1 measurements.The longitudinal relaxation times(T1)of aqueous solutions of [Gd2(DO3A)2BMPNA] were measured on an HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd)at 1.5 T.All of the tested samples were prepared in HEPES-buffered aqueous solutions at pH 7.4.All of the metal ions(Na+, K+, Ca2+, Mg2+, Cu2+, Zn2+, Fe3+, Fe2+)were used as chloride salts.Concentrations of Gd3+ were determined by ICP-OES.Relaxivities were determined from the slope of the plot of 1/T1 vs.[Gd].The data were tted to the following eqn(1),20
(1/T1)obs ¼(1/T1)d + r1[M](1)
where(1/T1)obs and(1/T1)d are the observed values in the presence and absence of the paramagnetic species, respectively, and [M] is the concentration of paramagnetic [Gd].Luminescence measurements.Luminescence emission spectra were collected on a Hitachi uorescence spectrophotometer-F-4600.The luminescence lifetime was measured on a Lecroy Wave Runner 6100 Digital Oscilloscope(1 GHz)using a tunable laser(pulse width ¼ 4 ns, gate ¼ 50 ns)as the excitation(Continuum Sunlite OPO).Samples were excited at 290 nm, and the emission maximum(545 nm)was used to determine luminescence lifetimes.The Tb(III)-based emission spectra were measured using 0.1 mM solutions of Tb complex analog in 100 mM HEPES buffer at pH 7.4 in H2O and D2O in the absence and presence of Cu2+.The number of coordinated water molecules(q)was calculated according to eqn(2):62,63 q= ¼ 5(sH2O1 sD2O1 0.06)(2)T1-weighted MRI phantom images.Phantom images were collected on a 1.5 T HT-MRSI60-25 spectrometer(Shanghai Shinning Globe Science and Education Equipment Co., Ltd).Instrument parameter settings were as follows: 1.5 T magnet;matrix =256 256;slice thickness =1 mm;TE= 13 ms;TR= 100 ms;and number of acquisitions =1.Results and discussion Longitudinal relaxivity of [Gd2(DO3A)2BMPNA] in response to copper(II)ion To investigate the inuence of Cu2+ on the relaxivity of [Gd2(DO3A)2BMPNA], the longitudinal relaxivity r1 for the [Gd2(DO3A)2BMPNA] contrast agent was determined using T1 measurements in the absence or presence of Cu2+ at 60 MHz and 25 C using a 0.2mMGd3+ solution of [Gd2(DO3A)2BMPNA] in 100 mM HEPES buffer(pH 7.4)under simulated physiological conditions.The concentrations of Gd3+ were determined by ICP-OES.The relaxivity r1 was calculated from eqn(1).In the absence of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] was 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).64 Upon addition of up to 1 equiv.of Cu2+, the relaxivity of [Gd2(DO3A)2BMPNA] increased to 11.28 mM1 s1(76% relaxivity enhancement).As shown in Fig.1, the relaxivity gradually increased with the copper ion concentration, reaching a maximum value of approximately 1.2 equivalents of Cu2+.Due to the use of triuoroacetic acid in the synthesis of Compound 4, triuoroacetic acid residues produced CF3COO in the [Gd2(DO3A)2BMPNA] solution, allowing CF3COO to partially coordinate with Cu2+ to form “Chinese lantern” type structure complexes.65 When the amount of added copper ions was further increased to above 1.2 equiv., the relaxivity was maintained at the same level.The observed difference in Cu2+-triggered relaxivity enhancement demonstrated the ability of this contrast agent to sense Cu2+ in vivo by means of MRI.Our designed contrast agent not only exhibited a higher relaxivity, but also displayed a Cu2+-responsive relaxivity enhancement.Selectivity studies The relaxivity response of [Gd2(DO3A)2BMPNA] exhibited excellent selectivity for Cu2+ over a variety of other competing, biologically-relevant metal ions at physiological levels.As depicted in Fig.2(white bars), the addition of alkali metal cations(10 mM Na+, 2 mM K+)and alkaline earth metal cations(2 mM Mg2+, 2 mM Ca2+)did not generate an increase in relaxivity compared to the copper ion turn-on response;even the introduction of d-block metal cations(0.2 mM Fe2+, 0.2 mM Fe3+, 0.2 mM or 2 mM Zn2+)did not trigger relaxivity enhancements.We noted that Zn2+ is also known to replace Gd3+ in transmetalation experiments;however, studies with analogous Gd3+-DO3A complexes demonstrated that this ligand is more kinetically inert to metal-ion exchange.66 To ensure the kinetic stability of the complex, we used MS to monitor [Gd2(DO3A)2BMPNA] in the presence of 1 equiv.of Zn2+.No metal-ion exchange was observed at room temperature after 7 days(Fig.S13†).Relaxivity interference experiments for [Gd2(DO3A)2BMPNA] in the presence of both Cu2+(0.2 mM)and other biologically-relevant metal ions were also conducted;the results are shown as black bars in Fig.2, indicating that these biologically-relevant metal ions(Na+, K+, Mg2+, Ca2+, Fe2+, Fe3+, Zn2+)had no interference on the Cu2+-triggered relaxivity enhancement.In addition, we also tested the Cu2+ response for [Gd2(DO3A)2BMPNA] in the presence of physiologically-relevant concentrations of common biological anions to determine whether the Cu2+-triggered relaxivity enhancement was affected by biological anions at physiological levels.As previously mentioned, Cu2+ binding induced an enhancement in relaxivity from 6.40 mM1 s1 to 11.28 mM1 s1(a 76% increase).As shown in Fig.3, in the presence of citrate(0.13 mM), lactate(0.9 mM), H2PO4(0.9 mM), or HCO3(10 mM), the Cu2+-triggered relaxivity enhancement was approximately 61%(from 6.01 mM1 s1 to 9.66mM1 s1), 66%(from 6.13mM1 s1 to 10.16 mM1 s1), 20%(from 5.88 mM1 s1 to 7.02 mM1 s1), or 55%(from 6.15 mM1 s1 to 9.55 mM1 s1), respectively.Additionally, 100 mM NaCl had almost no effect(an approximately 75% increase), and a simulated extracellular anion solution(EAS, contain 30 mM NaHCO3, 100 mM NaCl, 0.9 mM KH2PO4, 2.3 mM sodium lactate, and 0.13 mM sodium citrate, pH =7),67 resulted in a Cu2+-triggered relaxivity enhancement of approximately 26%(from 6.02 mM1 s1 to 7.56 mM1 s1).Generally, the results revealed that lactate, citrate, and HCO3 had slight impacts on the Cu2+-triggered relaxivity enhancement, while H2PO4 and EAS influenced the enhancement to a greater degree.As shown in Scheme 2, [Gd2(DO3A)2BMPNA] possessed two water molecules after the addition of 1 equiv.Of Cu2+.According to the work of Dickins and coworkers, in lanthanide complexes with two water molecules, the waters can be partially displaced by phosphate, carbonate, acetate, carboxylate, lactate and citrate at different levels.68–70 The influence of these anions on the Cu2+-triggered relaxivity enhancement may be attributed to the partial replacement of coordinated water molecules by these anions.The relatively high concentration of phosphate could likely replace coordinated water molecules to reduce the increased number of water molecules surrounding the paramagnetic Gd3+ centre induced by Cu2+.As shown in Table 1, we measured the number of water molecules in the rst coordination sphere of Tb3+ in the presence of phosphate;the number of coordinated water molecules(q)decreased from 1.5 to 0.8.Coordination features Luminescence lifetime experiments were performed to explore the mechanism of the Cu2+-triggered relaxivity enhancement.Luminescence lifetime measurements of lanthanide complexes have been widely used to quantify the number of inner-sphere water molecules.71 In particular, Tb3+ and Eu3+ have commonly been applied for lifetime measurements because their emission spectra are in the visible region when their 4f electrons are relaxed from higher energy levels to the lowest energy multiplets.72,73 Therefore, the Tb3+ analogue of [Gd2(DO3A)2BMPNA], [Tb2(DO3A)2BMPNA], was prepared according to a similar method, and the luminescence lifetimes of the Tb3+ analogue in HEPES-buffered H2O and D2O in the absence and presence of Cu2+ were measured.As shown in Fig.S9,† the luminescence decay curve of [Tb2(DO3A)2BMPNA] was tted to obtain the luminescence lifetimes74(Table 1), and the number of coordinated water molecules(q)was calculated by eqn(2).The analysis results(Table 1)for [Tb2(DO3A)2BMPNA] in HEPES-bufferedH2OandD2O in the absence and presence of Cu2+ indicated that q increased from 0.6 to 1.5 upon the addition of 1 equiv.of Cu2+;this result indicated that the Cu2+-triggered relaxivity enhancement for [Gd2(DO3A)2BMPNA] was most likely due to the increased number of coordinated water molecules around the Gd3+ ion upon Cu2+ binding to the pyrazole centre(Scheme 2).Aer the addition of Cu2+, Cu2+ removed the pyrazole centre N atom from the paramagnetic Gd3+ ion to generate an open coordination site available for a water molecule.Luminescence emission titrations of [Tb2(DO3A)2BMPNA] towards Cu2+ were also performed to investigate the binding properties of the contrast agent towards Cu2+.Upon addition of 1 equiv.Cu2+, the luminescence of [Tb2(DO3A)2BMPNA] at 545 nm decreased gradually and reached a minimum due to the quenching nature of the paramagnetic Cu2+(Fig.S10†).The titration data indicated a 1 : 1 binding stoichiometry(Scheme 2)Copper-responsive T1-weighted phantom MRI in vitro To demonstrate the potential feasibility of this Cu2+-responsive [Gd2(DO3A)2BMPNA] for copper-imaging applications, T1-weighted phantom images of [Gd2(DO3A)2BMPNA] were acquired in the absence and presence of copper ions.The phantom images depicted in Fig.4 displayed distinct increases in image intensity in the presence of 1 equiv.Cu2+ compared with those without Cu2+(Fig.4D).Moreover, some of the other competing metal ions were also tested to further verify the selectivity of [Gd2(DO3A)2BMPNA] towards Cu2+.Discernible differences were not observed upon the addition of Mg2+(Fig.4C), Zn2+(Fig.4E), or Ca2+(Fig.4F).In addition, we also tested the clinical contrast agent Magnevist(Fig.4G);the image intensity was a bit darker than that of our contrast agent.Conclusions
In conclusion, we designed and synthesized a novel bismacrocyclic DO3A-type Cu2+-responsive MRI contrast agent, [Gd2(DO3A)2BMPNA].The new Cu2+-responsive MRI contrast agent comprised two Gd-DO3A cores connected by a 2,6-bis(3-methyl-1H-pyrazol-1-yl)isonicotinic acid scaffold(BMPNA)that functioned as a Cu2+ receptor switch to induce a distinct relaxivity enhancement in response to Cu2+;the relaxivity was increased up to 76%.Importantly, the complex exhibited high selectivity for Cu2+ over a range of other biologically-relevant metal ions at physiological levels.Luminescence lifetime experiment results showed that the number of inner-sphere water molecules(q)increased from 0.6 to 1.5 upon the addition of 1 equiv.Cu2+.When Cu2+ was coordinated in the central part of the complex, the donor N atom of the pyrazole centre was removed from the paramagnetic Gd3+ ion and replaced by a water molecule(Scheme 2).Consequently, the Cu2+-triggered relaxivity enhancement could be ascribed to the increase in the number of inner-sphere water molecules.The designed contrast agent had a longitudinal relaxivity of 6.40 mM1 s1, which was higher than that of [Gd(DOTA)(H2O)](4.2 mM1 s1, 20 MHz, 25 C)and Gd(DO3A)(H2O)2(4.8 mM1 s1, 20 MHz, 40 C).In addition, the visual change associated with the signicantly enhanced relaxivity from the addition of Cu2+ was observed in T1-weighted phantom images.Acknowledgements We are grateful to the State Key Laboratory of Electroanalytical Chemistry for nancial support.Notes and references 1 S.Puig and D.J.Thiele, Curr.Opin.Chem.Biol., 2002, 6, 171.2 S.C.Leary, D.R.Winge and P.A.Cobine, Biochim.Biophys.Acta, Gen.Subj., 2009, 146, 1793.3 D.D.Agranoff and S.Krishna, Mol.Microbiol., 1998, 28, 403.4 H.Kozlowski, A.Janicka-Klos, J.Brasun, E.Gaggelli, D.Valensin and G.Valensin, Coord.Chem.Rev., 2009, 253, 2665.5 K.J.Barnham, C.L.Masters and A.I.Bush, Nat.Rev.Drug Discovery, 2004, 3, 205.6 D.J.Waggoner, T.B.Bartnikas and J.D.Gitlin, Neurobiol.Dis., 1999, 6, 221.7 J.S.Valentine and P.J.Hart, Proc.Natl.Acad.Sci.U.S.A., 2003, 100, 3617.8 L.I.Bruijn, T.M.Miller and D.W.Cleveland, Annu.Rev.Neurosci., 2004, 27, 723.9 G.L.Millhauser, Acc.Chem.Res., 2004, 37, 79.10 D.R.Brown and H.Kozlowski, Dalton Trans., 2004, 1907.11 A.W.Czarnik, Acc.Chem.Res., 1994, 27, 302.12 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.13 H.N.Kim, M.H.Lee, H.J.Kim, J.S.Kim and J.Yoon, Chem.Soc.Rev., 2008, 37, 1465.14 M.Mahmoudi, V.Serpooshan and S.Laurent, Nanoscale, 2011, 3, 3007.15 P.A.Rinck, Magnetic Resonance Imaging, Blackwell Science, Berlin, 4th edn, 2001, p.149.16 A.E.Merbach and ´E.T´oth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, John Wiley & Sons, Ltd., New York, 2001.17 S.Aime, E.Terreno, D.D.Castelli and A.Viale, Chem.Rev., 2010, 110, 3019.18 S.Aime, M.Fasano and E.Terreno, Chem.Soc.Rev., 1998, 27, 19.19 M.Woods, D.E.Woessner and A.D.Sherry, Chem.Soc.Rev., 2006, 35, 500.20 R.B.Lauffer, Chem.Rev., 1987, 87, 901.21 J.Kowalewski, D.Kruk and J.Parigi, Adv.Inorg.Chem., 2005, 57, 42.22 I.Solomon, Phys.Rev., 1955, 99, 559.23 N.Bloembergen, J.Chem.Phys., 1957, 27, 572.24 N.Bloembergen and L.O.Morgan, J.Chem.Phys., 1961, 34, 842.25 E.L.Que and C.J.Chang, Chem.Soc.Rev., 2010, 39, 51.26 C.S.Bonnet and ´E.T´oth, Future Med.Chem., 2010, 2, 367.27 L.Prodi, F.Bolletta, M.Montalti and N.Zaccheroni, Coord.Chem.Rev., 2000, 205, 59.28 S.Aime, S.G.Crich, M.Botta, G.Giovenzana, G.Palmisano and M.Sisti, Chem.Commun., 1999, 1577.29 J.Hall, R.Haner, S.Aime, M.Botta, S.Faulkner, D.Parker and A.S.de Sousa, New J.Chem., 1998, 22, 627.30 M.P.Lowe and D.Parker, Chem.Commun., 2000, 707.31 S.Aime, A.Barge, M.Botta, D.Parker and A.S.De Sousa, J.Am.Chem.Soc., 1997, 119, 4767.32 S.Aime, F.Fedeli, A.Sanino and E.Terreno, J.Am.Chem.Soc., 2006, 128, 11326.33 M.P.Lowe, D.Parker, O.Reany, S.Aime, M.Botta, G.Castellano, E.Gianolio and R.Pagliarin, J.Am.Chem.Soc., 2001, 123, 7601.34 R.Hovland, C.Glogard, A.J.Aasen and J.Klaveness, J.Chem.Soc., Perkin Trans.2, 2001, 929.35 ´E.T´oth, R.D.Bolskar, A.Borel, G.Gonz´alez, L.Helm, A.E.Merbach, B.Sitharaman and L.J.Wilson, J.Am.Chem.Soc., 2004, 127, 799.36 W.H.Li, S.E.Fraser and T.J.Meade, J.Am.Chem.Soc., 1999, 121, 1413.37 K.Dhingra, M.E.Maier, M.Beyerlein, G.Angelovski and N.K.Logothetis, Chem.Commun., 2008, 3444.38 H.Hifumi, A.Tanimoto, D.Citterio, H.Komatsu and K.Suzuki, Analyst, 2007, 132, 1153.39 L.M.De Le´on-Rodr´ıguez, A.J.M.Lubag, J.A.L´opez, G.Andreu-de-Riquer, J.C.Alvarado-Monz´on and A.D.Sherry, MedChemComm, 2012, 3, 480.40 R.Trokowski, J.Ren, F.K.Kalman and A.D.Sherry, Angew.Chem., Int.Ed., 2005, 44, 6920.41 W.S.Li, J.Luo, F.Jiang and Z.N.Chen, Dalton Trans., 2012, 41, 9405.42 K.Hanaoka, K.Kikuchi, Y.Urano and T.Nagano, J.Chem.Soc., Perkin Trans.2, 2001, 1840.43 R.Ruloff, G.v.Koten and A.E.Merbach, Chem.Commun., 2004, 842.44 M.Giardiello, M.P.Lowe and M.Botta, Chem.Commun., 2007, 4044.45 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.46 W.Xu and Y.Lu, Chem.Commun., 2011, 47, 4998.47 R.A.Moats, S.E.Fraser and T.J.Meade, Angew.Chem., Int.Ed., 1997, 36, 726.48 A.Y.Louie, M.M.Huber, E.T.Ahrens, U.Rothbacher, R.Moats, R.E.Jacobs, S.E.Fraser and T.J.Meade, Nat.Biotechnol., 2000, 18, 321.49 B.Yoo and M.D.Pagel, J.Am.Chem.Soc., 2006, 128, 14032.50 Q.Wei, G.K.Seward, P.A.Hill, B.Patton, I.E.Dimitrov, N.N.Kuzma and I.J.Dmochowski, J.Am.Chem.Soc., 2006, 128, 13274.51 E.L.Que and C.J.Chang, J.Am.Chem.Soc., 2006, 128, 15942.52 E.L.Que, E.Gianolio, S.L.Baker, A.P.Wong, S.Aime and C.J.Chang, J.Am.Chem.Soc., 2009, 131, 8527.53 E.L.Que, E.Gianolio, S.L.Baker, S.Aime and C.J.Chang, Dalton Trans., 2010, 39, 469.54 W.S.Li, J.Luo and Z.N.Chen, Dalton Trans., 2011, 484.55 E.L.Que, E.J.New and C.J.Chang, Chem.Sci., 2012, 3, 1829.56 M.Andrews, A.J.Amoroso, L.P.Harding and S.J.A.Pope, Dalton Trans., 2010, 3407.57 D.Kasala, T.S.Lin, C.Y.Chen, G.C.Liu, C.L.Kao, T.L.Cheng and Y.M.Wang, Dalton Trans., 2011, 5018.58 D.Patel, A.Kell, B.Simard, B.Xiang, H.Y.Lin and G.Tian, Biomaterials, 2011, 32, 1167.59 E.Brunet, O.Juanes, R.Sedano and J.C.Rodr´ıguez-Ubis, Photochem.Photobiol.Sci., 2002, 1, 613.60 Z.Q.Ye, G.L.Wang, J.X.Chen, X.Y.Fu, W.Z.Zhang and J.L.Yuan, Biosens.Bioelectron., 2010, 26, 1043.61 S.Mizukami, K.Tonai, M.Kaneko and K.Kikuchi, J.Am.Chem.Soc., 2008, 130, 14376.62 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.63 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.64 P.Caravan, J.J.Ellison, T.J.McMurry and R.B.Laufer, Chem.Rev., 1999, 99, 2293.65 O.G.Polyakov, B.G.Nolan, B.P.Fauber, S.M.Miller, O.P.Anderson and S.H.Strauss, Inorg.Chem., 2000, 39, 1735.66 M.F.Tweedle, J.J.Hagan, K.Kumar, S.Mantha and C.A.Chang, Magn.Reson.Imaging, 1991, 9, 409.67 D.Parker, Coord.Chem.Rev., 2000, 205, 109.68 R.S.Dickins, T.Gunnlaugsson, D.Parker and R.D.Peacock, Chem.Commun., 1998, 1643.69 J.I.Bruce, R.S.Dickins, L.J.Govenlock, T.Gunnlaugsson, S.Lopinski, M.P.Lowe, D.Parker, R.D.Peacock, J.J.B.Perry, S.Aime and M.Botta, J.Am.Chem.Soc., 2000, 122, 9674.70 R.S.Dickins, S.Aime, A.S.Batsanov, A.Beeby, M.Botta, J.I.Bruce, J.A.K.Howard, C.S.Love, D.Parker, R.D.Peacock and H.Puschmann, J.Am.Chem.Soc., 2002, 124, 12697–12705.71 W.D.Horrocks and D.R.Sudnick, Acc.Chem.Res., 1981, 14, 384.72 C.C.Bryden and C.N.Reilley, Anal.Chem., 1982, 54, 610.73 K.Binnemans, Chem.Rev., 2009, 109, 4283.74 S.Quici, M.Cavazzini, G.Marzanni, G.Accorsi, N.Armaroli, B.Vcntura and F.Barigelletti, Inorg.Chem., 2005, 44, 529.This journal is © The Royal Society of Chemistry 2014 RSC Adv., 2014, 4, 34421–34427 | 34427
第五篇:英语专业论文选题
从中英礼貌原则的角度谈论跨文化交际的失误 如何处理广告英译中的跨文化英译失误 试论中西文化习惯在商务谈判中的作用 浅析中美家庭教育的差异 翻译研究参考选题
翻译中语法关系之变换
论翻译的层次
翻译过程中原作者一译者一译文读者的三元关系
论译者在翻译活动中的身份
翻译中的不确定性问题
英汉思维差异对翻译的影响
对翻译等值问题的思考
导游翻译中的文化背景和心理因素
法律英语的文体特点及英译技巧
论中国酒类名称的翻译
翻译:对外来文化的阐释
文化语境与翻译——寻求文化的共生与融合 文学翻译与节奏美学
谚语、外来语和俗语的翻译技巧 探讨科技翻译中词义的确定 论奈达的翻译观
谈英语电影名汉译
评《简•爱》的五种汉译本 中国古典诗歌标题英译
论机器翻译的准确度与可读性
外国文学研究参考选题
论劳伦斯•斯特恩叙述模式
论《青年艺术家的肖像》的文体风格
评福克纳《献给爱米丽的玫瑰》中的时间关系
论伊夫林•沃的反讽
《喧哗与骚动》中变异时空的美学价值
论《印度之行》中的文化取向
《尤利西斯》中的神话与历史
福克纳作品中的黑人形象
威廉•华兹华斯诗歌中的生态意识
雪莱与柏拉图哲学思想
论美国华裔文学的多样性
民族主义和本土主义的错置——华裔美国文学中的男性沙文主义解释
析劳伦斯的《虹》的象征意义
《黑暗的心脏》,对西方殖民主义的反思
T.S.艾略特的象征主义理论
多丽斯•莱辛笔下的两性世界
世界华文文学中的“中国形象”论析
谈《女勇士》中的两种文化冲突与交融
透析谭恩美《灵感女孩》中的迷信现象
从“斑点”到“灯塔”:弗•沃尔芙小说结构管窥
边缘对中心的解构:伍尔夫《到灯塔去》的另一种阐释视角
郑声衡(574383061)22:43:51 外语教学研究参考选题
课堂口头练习中学生的错误及其纠正 教师反馈形式对学生书面表达的影响 研究中国学生英文书信请求策略的语用研究 母语对英语句子结构习得影响的研究 学生听力理解中推理能力的调查研究
背景知识对听力理解的影响
研究词汇学习策略和词汇习得结果关系的研究 英语阅读与词汇偶得研究
认知语义学理论在英语词汇教学中的应用 以学生为中心的英语词汇教学研究 背景知识对阅读理解的影响研究
大学生阅读中语用推理能力的调查研究
篇章分析在中学英语阅读教学中的应用研究
Krashen的“输入假设”理论在英语阅读教学的应用 回译法在英汉翻译教学中运用的效果研究 测试对英语教学的反拨研究 提问在课堂教学中的作用
文化研究参考选题
德里达的解构主义
威廉姆斯的大众文化研究
大众文化的商业特性
英语语法结构的文化成因
英汉互译中的文化传递
文化传递中的误读
莎士比亚悲剧的文化基础
英美文化的实用主义倾向
启蒙时期英国文学中的中国文化
中国文化对意象派的影响
福克纳作品中的南方文化
好莱坞电影批判
麦当劳的文化批判
全球化与本土化的关系
后现代主义的多元化倾向
网络文化批判
网络文化对传统伦理的挑战
网络文学的特性
校园文化的最新动向 马可•波罗的中国文化观
语言学研究参考选题
英语的书面语或口头语特征研究
汉语方言对英语发音的影响
谈英语语调的特点及其用途
从语音学角度对英语VI语中常见错误的尝试性分析
英语的语义,语法或语音语调特征研究
英语的言语表达与语境关系研究
英或美标准语与方言,黑人英语或其他移民英语语法,语音对比研究
浅谈英国英语与美国英语的语法差异
英语典故和英语学习
英汉词汇对比
英语词语的接应关系
英语语篇中的词汇衔接手段
中英谚语比较研究
英语修辞手法研究
美国俗语与现代语言的区别
论英语专有名词普通化
英语拟声词浅谈 论英语中的歧义 论英语否定句 谈英语无动词句
英汉定语和状语的位置比较
英语的含蓄条件句
中英省略比较研究
英语新词构词分析
英语因果复合句与汉语因果复句的对比研究
英语中来源于希腊罗马神话词汇的研究。
语篇连贯的无形网络
从功能语言学角度对摘要的体裁分析
英汉语篇词汇衔接模式
英汉指示代词的功能对比研究
隐喻中的语义迁移问题研究
英汉情态对比研究及其在语篇中的反映
言语行为中的礼貌策略
中国英语课堂言语行为的习得
中国学生对英语被动结构的习得
隐喻的认知功能
从认知的角度分析比较英汉空间隐喻
跨文化交际中的语用失误
新闻英语的文体学分析
礼貌原则的普遍性和特殊性
专门用途英语参考选题
商务翻译的语用分析
法律语言与法律文体翻译
广播新闻英语的词汇特点
英语广播新闻与报刊新闻文体对比
英语新闻标题的特色与文体风格
广播新闻英语的词汇特点
网络广告英语与报纸杂志广告英语的词汇量化比较
科技英语中wh—words的分析
科技英语中时间状语从句的量化分析
语言在谈判中的作用——威胁
英汉法规中的词汇复现
论广告英语的语言特点
广告人的目标在英文广告中的体现
广告英语中的双关语
广告语中对读者的心理顺应
报纸杂志广告中用面子技巧进行社会距离操纵的分析
间接表达策略在国际商务淡判中的运用
专门用途英语透视——专门用途英语课程设计中以学习者为中心的套路 出口商标说明中汉英研究 外贸函电英语特点 科技英语中的代用式
系动词在科技英语中的量化分析
经济类英文期刊中隐喻理解的有效途径
商务英语的语言特征
国际贸易书信文体的量化分析
论网络聊天室缩略语及其原词语的特点
公务语境下的电话语篇分析
学术论文提要研究
试论法律英语文献的修辞
矛盾修辞中的对立与统一及其在商务英语中的应用
以上选题供大家参考