第一篇:利用小o技术求分式函数的极限
n试利用小o技术证明:limx1n111x
证:对任意自然数n,容易得到:
nn1n(1xn1)(n1)(1xn),1x(1x)(1x)
n(n1)xn1[(x1)1]n1n(x1)(x1)2o((x1)2),或者
xn1[(x1)1]n1n(x1)o((x1))
于是有:
n(1xn1)(n1)(1xn)(n1)(xn1)n(xn11)
n(n1)(n1)[n(x1)(x1)2o((x1)2)](n1)nn[(n1)(x1)(x1)2o((x1)2)](n1)n(x1)2o((x1)2)(1xn)(1xn1)(xn1)(xn11)
[n(x1)o((x1))][(n1)(x1)o((x1))]n(n1)(x1)2o((x1)2)
(n1)n22(x1)o((x1))nn1因此limlimx11xx1n(n1)(x1)o((x1))
(n1)no((x1)2)(n1)n(x1)1limx1o((x1))n(n1)(x1)
第二篇:求函数极限方法的若干方法
求函数极限方法的若干方法
摘要: 关键词:
1引言:极限的重要性
极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y=f(x)在x=x0处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。
2极限的概念及性质2.1极限的概念
2.1.1limn→∞
xn=A,任意的正整数N,使得当n>N时就有 xn−A <。
2.1.2limx→∞f x =A↔∀ε>0,任意整数X,使得当 x >时就有 f x −A <。类似可以定义单侧极限limx→+∞f x =A与limx→−∞f(x)。2.2.3类似可定义当,整数,使得当
时有
。,时右极限与左极限:。在此处键入公式。
2.2极限的性质
2.2.1极限的不等式性质:设若若,则,使得当,当
时有
。时有时有,则
;
。,则
与,使得当
在的某空心邻
时,时有,则。
。
2.2.1(推论)极限的保号性:设若若,则,使得当,当2.2.2存在极限的函数局部有界性:设存在极限域有
内有界,即3求极限的方法
1、定义法
2、利用极限的四则运算性质求极限,3、利用夹逼性定理求极限
4、利用两个重要极限求极限,5、利用迫敛性求极限,6、利用洛必达法则求极限,7、利用定积分求极限,8、利用无穷小量的性质和无穷小量和无穷大量之间的关系求极限
9、利用变量替换求极限,10、利用递推公式求极限,11、利用等价无穷小量代换求极限,12、利用函数的连续性求极限,13、利用泰勒展开式求极限,14、利用两个准则求极限
15、利用级数收敛的必要条件求极限
16、利用单侧极限求极限
17、利用中值定理求极限 3.1定义法
利用数列极限的定义求出数列的极限.设的,总存在一个正整数
.,当
是一个数列,是实数,如果对任意给定,我们就称是数列
时,都有的极限.记为例1 证明
证 任给,取,则当时有
,所以。
3.2利用极限的四则运算性质求极限 设,,则
。,例1求解 这是求
型极限,用相消法,分子、分母同除以
得。,其中3.3利用夹逼性定理求极限
当极限不易直接求出时, 可考虑将求极限的变量作适当的放大和缩小, 使放大与缩小所得的新变量易于求极限, 且二者的极限值相同, 则原极限存在,且等于公共值。特别是当在连加或连乘的极限里,可通过各项或各因子的放大与缩小来获得所需的不等式。3.3.1(数列情形)若则。,使得当时有,且,3.3.2(函数情形)若,则,使得当。
时有,又
例题
解 :,其中,因此。
3.4利用两个重要极限球极限 两个重要极限是,或。
第一个重要极限可通过等价无穷小来实现。利用这两个重要极限来求函数的极限时要观察所给的函数形式,只有形式符合或经过变化符合这两个重要极限的形式时,才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。例题1解:令t=故 例题23.5利用迫敛性求极限 ,且在某个。
内有,那么
.则sinx=sin(t)=sint, 且当
时
例 求的极限
解:因为.且 由迫敛性知
所以
3.6利用洛必达法则求极限
假设当自变量和趋近于某一定值(或无穷大)时,函数
和
和
满足:的导数不为0的极限都是或都是无穷大都可导,并且存在(或无穷大),则极限也必存在,且等于,即=。利用洛必达法则求极限,可连续进行运算,可简化一些较复杂的函数求极限的过程,但是运用时需注意条件。
例题 求
解 原式=注:运用洛比达法则应注意以下几点:
1、要注意条件,也就是说,在没有化为或时不可求导。
2、应用洛必达法则,要分别求分子、分母的导数,而不是求整个分式的导数。
3、要及时化简极限符号后面的分式,在化简以后检查是否还是未定式,若遇到不是未定式,应立即停止使用洛必达法则,否则会错误。
3.7利用定积分求极限
利用定积分求和式的极限时首先选好恰当的可积函数f(x)。把所求极限的和式表示成f(x)在某区间 例
上的待定分法(一般是等分)的积分和式的极限。
解 原式=,由定积分的定义可知。
3.8利用无穷小量的性质和无穷小量和无穷大量之间的关系求极限 利用无穷小量乘有界变量仍是无穷小量,这一方法在求极限时常用到。在求函数极限过程中,如果此函数是某个无穷小量与所有其他量相乘或相除时, 这个无穷小量可用它的等价无穷小量来代替,从而使计算简单化。例
解 注意时。
3.9利用变量替换求极限
为将未知的极限化简,或转化为已知的极限,可以根据极限式特点,适当的引入新变量,来替换原有变量,使原来的极限过程转化为新的极限过程。最常用的方法就是等价无穷小的代换。
例 已知证 令
试证
则时,于是
当时),故时第二、三项趋于零,现在证明第四项极限也为零。因有界,即,使得
。所以
(当
原式得证。
3.10利用递推公式求极限
用递推公式计算或者证明序列的极限,也是一常见的方法,我们需要首先验证极限的存在性。在极限存在前提下,根据极限唯一性,解出我们所需要的结果,但是验证极限的存在形式是比较困难的,需要利用有关的不等式或实数的一些性质来解决。
例 设,对,定义
且
。证明 时,解 对推出递推公式解得,,因为,因此,序列
中可以得出
是单调递增且有界的,它的极限,设为,从,即。
3.11利用等价无穷小量代换求极限 所谓的无穷小量即,例如 求极限 解 本题属于有
型极限,利用等价无穷小因子替换
=
=,,称
与
是
时的无穷小量,记作
注:可以看出,想利用此方法求函数的极限必须熟练掌握一些常用的 等价无穷小量,如:由于,故有又由于故有。
另注:在利用等价无穷小代换求极限时,应注意:只有对所求极限中相乘或相除的因式才能利用等价无穷小量来代换,而对极限式中的相加或相减的部分则不能随意代换。
小结:在求解极限的时候要特别要注意无穷小等价代换,无穷小等价代换可以很好的简化解题。
3.12利用函数的连续性求极限
在若处连续,那么且
在点连续,则。
例 求的极限
解:由于
及函数在处连续,故
3.13利用泰勒展开式求极限 列举下 例题
3.14利用两个准则求极限
3.14.1函数极限迫敛性(夹逼准则):若一个正整数,并且例题
3.14.2单调有界准则:单调有界数列必有极限,并且极限唯一。,当时,则
则。
利用单调有界准则求极限,关键是要证明数列的存在,然后根据数列的通项递推公式求极限。例题
3.15利用级数收敛的必要条件求极限
利用级数收敛的必要条件:若级数收敛,则,首先判定级数收敛,然后求出它的通项的极限。例题
3.16利用单侧极限求极限
1)求含的函数
趋向无穷的极限,或求含的函数
趋于的极限;2)求含取整函数的函数极限;3)分段函数在分段点处的极限;4)含偶次方根的函数以及
或的函数,趋向无穷的极限.这种方法还能使用于求分段函数在分段点处的极限,首先必须考虑分段点的左,右极限,如果左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在。例题
3.17利用中值定理求极限 3.17.1微分中值定理: 3.17.2积分中值定理
第三篇:求函数极限的常用方法
求函数极限的常用方法
袁得芝
函数极限是描述当x→x0或x→∞时函数的变化趋势,求函数极限,常用函数极限的四则运算法则和两个重要结论limnnlim1xx0,0.涉及到单侧极限与nxx0xx
双侧极限的关系问题时,一般运用两个命题:limlimlimf(x)f(x)af(x)axxx和limlimlimf(x)f(x)af(x)a予以解决。现就常见题型及解xxxxx00
法举例如下:
1、分子分母均是x的多项式时,x∞的极限,分式呈现“”型
lima0alxklak例1 求极限(其中ai、bi)为与x无关的常数,k、l、xb0xlblxllbk
为整数且(a0≠b0≠0).a0b(当lk)
0
解:原式=0(当l>)
不存在(当l<)
注:本例的一般性结论是:若分子、分母中的x的最高次幂相同时,则极限等于它们的最高次项的系数比;若分子中x的最高次幂低于分母中x的最高次幂则极限为零;反之极限不存在。
2、分子分母都是x的多项式时,x→x0的极限,分式呈现“0”型 0
x21lim例2,求极限 2x12xx
1解:limx21
x12x2x1
lim(x1)(x1)x1(2x1)(x1)limx12。x12x1
3注:因lim
xx0f(x)a,这是从x趋向x0的无限变化过程来看f(x)的变化趋
势的,它对于x0是否属于函数f(x)的定义域不作要求,故求解此类题目常采用分解因式,再约去公因式,使之能运用法则求极限的方法。
3、含有根式的一类式予,由x的变化趋势,呈“∞→∞”型
例3.求极限:lim(x21x24x)。x
lim解:(x21x24x)x
lim14x xx21x24x
14lim2。x142xx
注:分子或分母有理化是常采用的方法。
4、已知函数的极限,求参数的范围
例4:已知:limax2bx
1x1x13,求a、b.解:当x=1时分母为零,故ax2+bx+1中必有x-1这样的因式,由多项式除法可知ax2+bx+1除以 x-1商式为ax+a+b,余式为a+b+1。
∴a+b+1=0①
∴limax2bx
1x1x1lim(x1)(axab)x1x1
lim(axab)2ab。x1
∴2a+b=3②
ab10解方程组
2ab3① ②
a4可得
b
5注:这是一个已知函数极限要确定函数解析式的逆向思维问题,应灵活使用运算法则。
5、涉及单侧极限与双侧极限的问题
例5.求函数f(x)=1+
限。|x1|在x=-1处的左右极限,并说明在x=-1处是否有极x1
limlimx1解:f(x)(1)2,x1x1x1
limlim(x1)f(x)(1)0 x1x1x1
limlim∵f(x)f(x),x1x1
∵f(x)在x=-1处的极限不存在。
注:本例是
limlimlimf(x)af(x)f(x)a的直接应用。xx0xx0xx0
原载于《甘肃教育》2005年第4期
第四篇:利用函数极限定义证明11
习题2-2
1.利用函数极限定义证明:
(3).limxsinx01x0;
x|1,则当 0|x| 时, 有 证明: 对于任意给定的正数 0, 取 , 因为 |sin
x1x1xxsin|x|sin|x|,所以limxsinx00.2.利用无穷大量定义证明:
(1)lim1x
4x;
1x
4证明:对于任意给定的正数 G0, 取 M4G1, 则当 |x|M 时, 有 |
所以 lim1x
4.|G,x
5.证明:若limf(x)A,则lim|f(x)||A|.xx0xx0证明:对于任意给定的正数 0, 由于limf(x)A,存在0,使得当
xx0
0|xx0|时, 都有|f(x)A|,而
|f(x)A||f||A||fA|,即||f(x)||A||,所以lim|f(x)||A|.xx0
第五篇:利用定积分的定义求极限
利用定积分的定义求极限 方法:如果f(x)dx存在,则lim
ab
ban
n
n
k1
f(a
ban
k)
ba
f(x)dx
例15求极限
n
(1)lim
n
k1n
nn4k
nn4k
解:lim
n
k1
lim
1n
n
n
k1
114()
n
k
114x
dx
actan2x
|0
actan2
n
(2)lim
n
k1n
nx2kn
解:lim
n
k1nx2kn
lim
n
k
[x2()]nk1n
n
(x2t)dtx1
(3)lim
1n
n
n(n1)(n2)(2n1)
n1
解:因为
1n
k0
ln(1n)
n
k
n(n1)(n2)(2n1)e
由于lim
1n
n
n
k1
ln(1
kn)
ln(1x)dx2ln21ln
4e
故lim
1n
n
n
n(n1)(n2)(2n1)e
ln
4e
4e