三角形重心

时间:2019-05-15 07:58:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《三角形重心》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《三角形重心》。

第一篇:三角形重心

重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。

已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。

证明:根据燕尾定理,S△AOB=S△AOC,又S△AOB=S△BOC,∴S△AOC=S△BOC,再应用燕尾定理即得AF=BF,命题得证。

重心的几条性质:

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为

((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/35、三角形内到三边距离之积最大的点。

指三角形三条边的垂直平分线的相交点。用这个点做圆心可以画三角形的外接圆。指三角形外接圆的圆心,一般叫三角形的外心。

三角形的外心是三边中垂线的交点,且这点到三角形三顶点的距离相等。

外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。

外心定理:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。

注意到外心到三角形的三个顶点距离相等,结合垂直平分线定义,外心定理其实极好证。计算外心的重心坐标是一件麻烦的事。先计算下列临时变量:

d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:((c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c)。

第二篇:向量与三角形的重心

向量与三角形的重心

例1 已知A,B,C是不共线的三点,G是△ABC内一点,若GAGBGC0.求

证:G是△ABC的重心.

证明:如图1所示,因为GAGBGC0,所以GA(GBGC).

以GB,GC为邻边作平行四边形BGCD,则有GDGBGC,所以GDGA.

又因为在平行四边形BGCD中,BC交GD于点E,所以BEEC,GEED.所以AE是△ABC的边BC的中线,且GA2GE.

故G是△ABC的重心.

点评:①解此题要联系重心的性质和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法.

变式引申:已知D,E,F分别为△ABC的边BC,AC,AB的中点.求证: ADBECF0.

证明:如图2的所示,ADACCD2ADACABCDBD,即2ADACAB. ADABBD

同理2BEBABC,2CFCACB.

2A(DBEC)FAC

0CFADBE. .ABBAB0C CACB

点评:该例考查了三角形法则和向量的加法.

例2 如图3所示,△ABC的重心为G,O为坐标原点,OAa,OBb,OCc,试用a,b,c表示OG.

解:设AG交BC于点M,则M是BC的中点,baABACBCcb.则,ca,111AMABbCa(cb)(cb2a). 22

221AGA(cb2a.)3

311故OGOAAGa(cb2a)(abc). 33

点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键.

变式引申:如图4,平行四边形ABCD的中心为O,1P为该平面上任意一点,则PO(PAPBPCPD). 4

POPAAO,POPBBO,POPCCO,证法1:

POPDDO,PBPC PD4POPA, 1即PO(PAPBPCPD). 4

11证法2:PO(PAPC),PO(PBPD),22

1PO(PAPBPCPD). 4

点评:(1)证法1运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.

(2)若P与O重合,则上式变为OAOBOCOD0.

第三篇:三角形的重心定理及其证明

三角形的重心定理及其证明

积石中学王有华

同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好.已知:(如图)设ABC中,L、M、N分

别是BC、CA、AB的中点.求证:AL、BM、CN相交于一点G,且

AG﹕GL= BG﹕GM= CG﹕GN=2﹕1.BC证明1(平面几何法):(如图1)假设中

线AL与BM交于G,而且假设C与G的连线与AB边交于N,首先来证明N是AB的中点.现在,延长GL,并在延长线上取点D,使GL=LD。因为四边形BDCG的对角线互相平分,所以BDCG是平行四边形.从而,BG∥DC,即GM∥DC.但M是AC的中点,因此,G是AD的中点.另一方面,GC∥BD,即NG∥BD.但G是AD的中点,因此N是AB的中点.另外,G是AD的中点,因此AG﹕GL=2﹕1.同理可证:BG﹕GM=2﹕1,CG﹕GN=2﹕1.这个点G被叫做ABC的重心.证明2(向量法):(如图2)在ABC中,设AB边上的中

1线为CN,AC边上的中线为BM,其交点为G,边BC的中点为L,连接AG和GL,因为B、G、M三点共线,且M是AC的中点,

所以向量BG∥BM,所以,存在实数

1C

BG1BM,即 AGAB1(AMAB)



所以,AG1AM(11)AB,使得



=1AC(11)AB

同理,因为C、G、N三点共线,且N是AB的中点.所



以存在实数2,使得 AG2AN(12)AC

1= 2AB(12)AC

21所以1AC(11)AB = 2AB(12)AC 22



又因为AB、AC 不共线,所以 

121

2112

21

1

因为L是BC的中点,所以GLGAACCL

211111

=(ABAC)ACCB =ABAC(ABAC)

332332

11

所以 12,所以 AGABAC.33

311

=ABAC,即AG2GL66,所以A、G、L三点共线.故AL、BM、CN相交于一点G,且AG﹕GL= BG﹕GM= CG﹕GN=2﹕

1证明3(向量法)(如图3)在ABC中,BC的中点L

1

对应于OL(OBOC),中线AL上的任意一点G,有



OGOA(1)OL

11OA2OB

2OC.同理,AB的中线

CN上的任意点

G′,OGOC112A

O2

OB,求中线AL和CN的交点,就是要找一个和一个,使

OGOG.因此,我们令

1

1112,,

.解之

得1

3.所以OGOG111

3OA3OB

3OC.由对称性可知,第三条中线也经过点G.故AL、CN、BM相交于一点G,且易证AG﹕GL= BG﹕GM= CG﹕GN=2﹕1.

第四篇:三角形外心、重心、垂心的向量形式

三角形外心、重心、垂心的向量形式

已知△ABC,P为平面上的点,则

(1)P为外心

(2)P为重心

(3)P为垂心

证明(1)如P为△ABC的外心(图1),则 PA=PB=PC,(2)如P为△ABC的重心,如图2,延长AP至D,使PD=PA,设AD与BC相交于E点.

由重心性质

∴ 四边形PBDC为平行四边形.

BC和PD之中点.

心.

(3)如图3,P为△ABC的垂心

同理PA⊥AC,故P为△ABC之垂心.

由上不难得出这三个结论之间的相互关系:

∴ △ABC为正三角形.

∴ △ABC为正三角形,且O为其中心.

第五篇:三角形外心内心重心垂心与向量性质

三 角 形 的“四 心”

所谓三角形的“四心”是指三角形的重心、垂心、外心及内心。当三角形是正三角形时,四心重合为一点,统称为三角形的中心。一、三角形的外心

义:三角形三条中垂线的交点叫外心,即外接圆圆心。ABC的重心一般用字母O表示。性

质:

1.外心到三顶点等距,即OAOBOC。

2.外心与三角形边的中点的连线垂直于三角形的这一边,即ODBC,OEAC,OFAB.3.向量性质:若点O为ABC所在的平面内一点,满足(OAOB)BA(OBOC)CB(OCOA)AC,则点O为ABC的外心。二、三角形的内心

义:三角形三条角平分线的交点叫做三角形的内心,即内切圆圆心。ABC的内心一般用字母I表示,它具有如下性质: 性

质:

1.内心到三角形三边等距,且顶点与内心的连线平分顶角。2.三角形的面积=1三角形的周长内切圆的半径. 23.向量性质:设0,,则向量AP(点P的轨迹过ABC的内心。

AB|AB||AC|AC),则动 三、三角形的垂心

义:三角形三条高的交点叫重心。ABC的重心一般用字母H表示。性

质:

1.顶点与垂心连线必垂直对边,即AHBC,BHAC,CHAB。2.向量性质:

结论1:若点O为ABC所在的平面内一点,满足OAOBOBOCOCOA,则点O为ABC的垂心。

结论2:若点O为△ABC所在的平面内一点,满足OABCOBCAOCAB,则点O为ABC的垂心。

22222

2四、三角形的“重心”:

义:三角形三条中线的交点叫重心。ABC的重心一般用字母G表示。

质:

1.顶点与重心G的连线必平分对边。

2.重心定理:三角形重心与顶点的距离等于它与对边中点的距离的2倍。

即GA2GD,GB2GE,GC2GF 3.重心的坐标是三顶点坐标的平均值. 即xGxAxBxCyyByC,yGA.334.向量性质:(1)GAGBGC0;(2)PG

1(PAPBPC)。3 2

下载三角形重心word格式文档
下载三角形重心.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形五心:重心 垂心 内心 外心 旁心

    三角形只有五种心 一、重心: 三中线的交点,三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍;重心分中线比为1:2; 1、重心到顶点的距离与重心到对边中点的距......

    向量与三角形内心、外心、重心、垂心知识(★)

    向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(......

    三角形重心向量性质的引申及应用(优秀范文五篇)

    三角形重心向量性质的引申及应用新化县第三中学肖雪晖平面向量是高中数学实验教材中新增的一章内容.加入向量,一些传统的中学数学内容和问题就有了新的内涵.在数学教学中引导学......

    向量与三角形内心、外心、重心、垂心知识的交汇(最终定稿)

    向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交......

    重心范文合集

    1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 三角形ABC,E、F是AC,AB的中点。EB、FC交于O。 证明:过F作FH平行BE。 ∵AF=BF且FH//BE ∴AH=HE=1/2AE(中位线定理) 又∵ AE......

    向量证明重心

    向量证明重心三角形ABC中,重心为O,AD是BC边上的中线,用向量法证明AO=2OD (1).AB=12b,AC=12c。AD是中线则AB+AC=2AD即12b+12c=2AD,AD=6b+6c;BD=6c-6b。OD=xAD=6xb+6xx。(2).E是AC......

    芭蕾舞重心教学

    人体的重心是人体质量(重量)的中心。它的位置取决于身体各环节质量(重量)分布情况。当人双脚直立时,人体的重心点在头正中向下垂直,指向地球中心,身体的重量均分于双脚支撑面上;当人......

    感想 重心下移

    做为小学数学教师,每天我们都辛勤地耕种在自己的一亩三分地上,你曾经为自己的视野狭小苦恼过吗?听完精彩报告后激起的思维火花却被日常的琐碎悄然泯灭,你遗憾过吗?遇上了教学问......