第一篇:八年级数学-勾股定理的证明及拓展
八年级数学
勾股定理的证明及其延伸
1.说明
勾股定理是数学中一个重要知识。虽然在教材章节内容中所占篇幅不多,在考试中也往往不会作为一个独立知识点进行命题,但其实其内容及方法常常包含在其他各类题目中,是问题解答过程中一个很重要的手段。所以学生对勾股定理要能够十分熟练地进行使用。本文对勾股定理进行证明及拓展,以使学生对其进行深刻理解。
2.勾股定理的证明
命题:在直角三角形中,a、b为直角边长,c为斜边边长,则有abc。勾股定理一个最简单的证明方法是使用图形证明法。如下图,我们使用4个同样大小的红色直角三角形(a、b为直角边长,c为斜边边长)拼出2个图形: 22
2图1和图2这两个蓝色正方形的面积是相等的(它们的边长都是a+b),而4个红色直角三角形的面积也是相等的,所以2个图形中白色部分的面积也应该相等(都等于蓝色正方
形面积减去4个红色三角形的面积)。而左边图形中白色部分的面积是ab,右边图形中白色部分的面积是c,所以abc。
222222
3.圆与三角形
在讨论勾股定理的延伸之前,我们先来看圆与三角形的关系。
如图3,以BC为直径做圆,圆心为BC的中点O。在圆上任取一点A,则三角形ABC为直角三角形,其中∠A=90°。
如图4,同样做圆。如果A点在圆外,则∠A为锐角。可以这样来证明:连接AO,和圆交与点D。容易得到∠BAC<∠BDC,而∠BDC=90°,故∠A<90°。
如图5,同样做圆。如果A点在圆内,则∠A为钝角。可以这样来证明:连接OA,并延长和圆交与点D。容易得到∠BAC>∠BDC,而∠BDC=90°,故∠A>90°。
综合起来,我们可以得到如下命题:
命题:在三角形ABC中,以BC为直径、BC的中心点为圆心做圆,如果A在圆上,则∠A=90°;如果A在圆外,则∠A<90°;如果A在圆内,则∠A>90°。
注意,这个命题的逆命题也是成立的,即:
命题:在三角形ABC中,以BC为直径、BC的中心点为圆心做圆,如果∠A=90°,则A在圆上;如果∠A<90°,则A在圆外;如果∠A>90°,则A在圆内。
这个逆命题可以利用上面几副图用反证法很容易证得。
4.勾股定理的延伸
现在,我们对勾股定理进行延伸,如下:
命题:在三角形中,a、b、c为其3条边长,其中c为最长边(c≥a、c≥b),如果三角形为直角三角形,则abc;如果三角形为锐角三角形,则abc;如果三角形为钝角三角形,则abc。
请注意上面“c为最长边(c≥a、c≥b)”的条件限定。如果c不是最长边,那么必然是abc,这就不存在任何讨论的必要了。
下面我们来证明这一命题。对于直角三角形的情况,那就是勾股定理,前面我们已经证明了。现在只要证明锐角和钝角三角形的情况。
见下图,仍然如上一节那样,去最长边c为直径做圆(设这条边为BC),那么直径所对应的∠A也会是三角形ABC中最大的角(大角对大边)。
222222222222从上节的讨论中,如果是锐角三角形,A必然在圆外,如图6所示。从A点做直径BC的垂线,交圆于D点。显然AB>BD、AC>DC,而BDDCBC,所以222AB2AC2BC2。
如果是钝角三角形,A必然在圆内,如图7所示。从A点做直径BC的垂线,反向延长交圆于D点。显然AB 命题:在三角形中,a、b、c为其3条边长,其中c为最长边(c≥a、c≥b),如果222222a2b2c2,则三角形为直角三角形;如果a2b2c2,则三角形为锐角三角形;如果 a2b2c2,则三角形为钝角三角形。 5.勾股定理的增强描述 综合以上的讨论,我们可以对勾股定理进行增强型的表述,如下: 在三角形中,a、b、c为其3条边长,其中c为最长边(c≥a、c≥b),则三角形为直角三角形的充分必要条件是abc;三角形为锐角三角形的充分必要条件是222 a2b2c2;三角形为钝角三角形的充分必要条件是a2b2c2。 第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理(1) 了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算. 重点 勾股定理的内容和证明及简单应用. 难点 勾股定理的证明. 一、创设情境,引入新课 让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长. 再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长. 你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗? 由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么? 拼图实验,探求新知 1.多媒体课件演示教材第22~23页图17.1-2和图17.1-3,引导学生观察思考. 2.组织学生小组合作学习. 问题:每组的三个正方形之间有什么关系?试说一说你的想法. 引导学生用拼图法初步体验结论. 生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和. 师:这只是猜想,一个数学命题的成立,还要经过我们的证明. 归纳验证,得出定理 (1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的. ①用多媒体课件演示. ②小组合作探究: a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗? b.它们的面积分别怎样表示?它们有什么关系? c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法? 师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理. 即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦. 二、例题讲解 【例1】填空题. (1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________; (2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________; (3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________; (4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________; (5)已知等边三角形的边长为2 cm,则它的高为________cm,面积为________cm2.【答案】(1)17(2)(3)6 8(4)6,8,10(5) 【例2】已知直角三角形的两边长分别为5和12,求第三边. 分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想. 【答案】或13 三、巩固练习 填空题. 在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________; (2)如果∠A=30°,a=4,则b=________; (3)如果∠A=45°,a=3,则c=________; (4)如果c=10,a-b=2,则b=________; (5)如果a,b,c是连续整数,则a+b+c=________; (6)如果b=8,a∶c=3∶5,则c=________. 【答案】(1)24(2)4(3)3(4)6(5)12 (6)10 四、课堂小结 1.本节课学到了什么数学知识? 2.你了解了勾股定理的发现和验证方法了吗? 3.你还有什么困惑? 本节课的设计关注学生是否积极参与探索勾股定理的活动,关注学生能否在活动中积极思考、能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理地表达活动过程和所获得的结论等.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 第2课时 勾股定理(2) 能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题. 重点 将实际问题转化为直角三角形模型. 难点 如何用解直角三角形的知识和勾股定理来解决实际问题. 一、复习导入 问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子? 师生行为: 学生分小组讨论,建立直角三角形的数学模型. 教师深入到小组活动中,倾听学生的想法. 生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子. 师:很好! 由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长. 问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么? 学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径. 生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过. 生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过. 师生共析: 解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=≈2.236.因为AC>木板的宽,所以木板可以从门框内通过. 二、例题讲解 【例1】如图,山坡上两棵树之间的坡面距离是4米,则这两棵树之间的垂直距离是________米,水平距离是________米. 分析:由∠CAB=30°易知垂直距离为2米,水平距离是6米. 【答案】2 6 【例2】教材第25页例2 三、巩固练习 1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________. 【答案】50米 2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度. 【答案】约480 m 四、课堂小结 1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形. 2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答. 这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力. 第3课时 勾股定理(3) 1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等. 2.利用勾股定理,能在数轴上找到表示无理数的点. 3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题. 重点 在数轴上寻找表示,,…这样的表示无理数的点. 难点 利用勾股定理寻找直角三角形中长度为无理数的线段. 一、复习导入 复习勾股定理的内容. 本节课探究勾股定理的综合应用. 师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗? 学生思考并独立完成,教师巡视指导,并总结. 先画出图形,再写出已知、求证如下: 已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC=,B′C′=.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC≌△A′B′C′(SSS). 师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出所对应的点吗? 教师可指导学生寻找像长度为,,…这样的包含在直角三角形中的线段. 师:由于要在数轴上表示点到原点的距离为,,…,所以只需画出长为,,…的线段即可,我们不妨先来画出长为,,…的线段. 生:长为的线段是直角边都为1的直角三角形的斜边,而长为的线段是直角边为1和2的直角三角形的斜边. 师:长为的线段能否是直角边为正整数的直角三角形的斜边呢? 生:设c=,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为的线段是直角边长分别为2,3的直角三角形的斜边. 师:下面就请同学们在数轴上画出表示的点. 生:步骤如下: 1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点. 二、例题讲解 【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米? 分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题. 解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米. 飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时. 【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少? 解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC=4.5,所以这里的水深为4.5分米. 【例3】在数轴上作出表示的点. 解:以为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示的点,如下图: 师生行为: 由学生独立思考完成,教师巡视指导. 此活动中,教师应重点关注以下两个方面: ①学生能否积极主动地思考问题; ②能否找到斜边为,另外两条直角边为整数的直角三角形. 三、课堂小结 1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题. 2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应. 本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力. 17.2 勾股定理的逆定理 第1课时 勾股定理的逆定理(1) 1.掌握直角三角形的判别条件. 2.熟记一些勾股数. 3.掌握勾股定理的逆定理的探究方法. 重点 探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系. 难点 归纳猜想出命题2的结论. 一、复习导入 活动探究 (1)总结直角三角形有哪些性质; (2)一个三角形满足什么条件时才能是直角三角形? 生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半. 师:那么一个三角形满足什么条件时,才能是直角三角形呢? 生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形. 生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形. 师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的? 问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角. 这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形. 画画看,如果三角形的三边长分别为2.5 cm,6 cm,6.5 cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm,7.5 cm,8.5 cm,再试一试. 生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形. 生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4 cm,7.5 cm,8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论. 命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形. 再看下面的命题: 命题1 如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系? 师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题. 二、例题讲解 【例1】说出下列命题的逆命题,这些命题的逆命题成立吗? (1)同旁内角互补,两条直线平行; (2)如果两个实数的平方相等,那么这两个实数相等; (3)线段垂直平分线上的点到线段两端点的距离相等; (4)直角三角形中30°角所对的直角边等于斜边的一半. 分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用; (2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假. 解略. 三、巩固练习 教材第33页练习第2题. 四、课堂小结 师:通过这节课的学习,你对本节内容有哪些认识? 学生发言,教师点评. 本节课的教学设计中,将教学内容精简化,实行分层教学.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.将目标分层后,满足不同层次学生的做题要求,达到巩固课堂知识的目的. 第2课时 勾股定理的逆定理(2) 1.理解并掌握证明勾股定理的逆定理的方法. 2.理解逆定理、互逆定理的概念. 重点 勾股定理的逆定理的证明及互逆定理的概念. 难点 理解互逆定理的概念. 一、复习导入 师:我们学过的勾股定理的内容是什么? 生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形. 师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢? 师生行为: 让学生试着寻找解题思路,教师可引导学生理清证明的思路. 师:△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗? 我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(如图),把画好的△A′B′C′剪下,放在△ABC上,它们重合吗? 生:我们所画的Rt△A′B′C′,(A′B′)2=a2+b2,又因为c2=a2+b2,所以(A′B′)2=c2,即A′B′=c.△ABC和△A′B′C′三边对应相等,所以两个三角形全等,∠C=∠C′=90°,所以△ABC为直角三角形. 即命题2是正确的. 师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理. 师:但是不是原命题成立,逆命题一定成立呢? 生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立. 师:你还能举出类似的例子吗? 生:例如原命题:如果两个实数相等,那么它们的绝对值也相等. 逆命题:如果两个数的绝对值相等,那么这两个实数相等. 显然原命题成立,而逆命题不一定成立. 二、新课教授 【例1】教材第32页例1 【例2】教材第33页例2 【例3】一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量出了这个零件各边的尺寸,那么这个零件符合要求吗? 分析:这是一个利用直角三角形的判定条件解决实际问题的例子. 解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角. 在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC是直角. 因此这个零件符合要求. 三、巩固练习 1.小强在操场上向东走80 m后,又走了60 m,再走100 m回到原地.小强在操场上向东走了80 m后,又走60 m的方向是________. 【答案】向正南或正北 2.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,求甲巡逻艇的航向. 【答案】解:由题意可知:AC=120×6×=12,BC=50×6×=5,122+52=132.又AB=13,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴∠CAB=40°,航向为北偏东50°.四、课堂小结 1.同学们对本节的内容有哪些认识? 2.勾股定理的逆定理及其应用,熟记几组勾股数. 本节课我采用以学生为主体,引导发现、操作探究的教学设计,符合学生的认知规律和认知水平,最大限度地调动了学生学习的积极性,有利于培养学生动手、观察、分析、猜想、验证、推理的能力,切实使学生在获取知识的过程中得到能力的培养. 八年级下册拓展资源——勾股定理与第一次数学危机 在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数的诞生。小小的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的**,史称“第一次数学危机”。 二百年后,大约在公元前370年,才华横溢的欧多克索斯建立起一套完整的比例论。他本人的著作已失传,他的成果被保存在欧几里德《几何原本》一书第五篇中。欧多克索斯的巧妙方法可以避开无理数这一“逻辑上的丑闻”,并保留住与之相关的一些结论,从而解决了由无理数出现而引起的数学危机。但欧多克索斯的解决方式,是借助几何方法,通过避免直接出现无理数而实现的。这就生硬地把数和量肢解开来。在这种解决方案下,对无理数的使用只有在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。或者说无理数只被当作是附在几何量上的单纯符号,而不被当作真正的数。一直到18世纪,当数学家证明了基本常数如圆周率是无理数时,拥护无理数存在的人才多起来。到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数本质被彻底搞清,无理数在数学园地中才真正扎下了根。无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。 课题:《勾股定理》 张窝中学 马宏跃 一、教材分析: 1、人民教育出版社出版,人民教育出版社中学数学室编著,九年义务教育八年级教科书《几何》,第三章第五单元《勾股定理》 2、本节内容在全书及章节的地位:《勾股定理》是初中数学知识中非常重要的一个定理,在此之前,学生已经知道直角三角形两个锐角互余,会解方程,本节内容是直角三角形边与边之间的关系,它会为学生将来学习解直角三角形,四边形,函数等知识作好准备。 二、教学目标 1、了解勾股定理的证明,掌握勾股定理的,初步会用它进行有关的计算。 2、通过对勾股定理的应用,培养学生方程的思想和逻辑推理能力 3、对比介绍我国古代数学家和西方数学家对勾股定理的研究,培养学生的爱国主义精神。 三、教学重点难点 重点是勾股定理的应用。难点是勾股定理的证明; 四、多媒体计算机 五、新授课 六、教学方法与学法 采用直观的方法,以多媒体手段辅助教学,引导学生、启发学生发现问题、思考问题,培养学生逻辑思维能力。逐步设疑,引导学生积极参与讨论,肯定成绩,使其具有成就感,提高他们学习约兴趣和学习的积极性。 八年级的学生形象思维较好,理性思维欠缺,教师需及时引导,帮助学生形成结论。 七、教学过程 (一)、激发学生兴趣,引人新课 请同学以组为单位,利用事先准备好的三角形(边长为a,b,c),拼成边长为a,b,c的正方形。 (二)定理的探求,证明及命名 1、探求定理,猜想结论 教师用计算机演示:在RtΔABC中,∠A、∠B、∠C所对的边为a、b、c,通过平移、旋转,变动ΔABC的形状、大小,以改变a、b、c的长度。在此过程中始终计算a2、b2、c2请同学们观察a2、b2、c2之间的数量关系,得到猜想。再演示非直角三角形的a2、b2、c2 之间不具备这样的关系,得到a2+b2=c2 是直角三角形所特有的性质。 请同学们用语言叙述猜想,并画图写出已知、求证。 2、定理的证明 目前世界上已有几百种勾股定理的证明方法,而我国古代数学家用割补、拼接图形计算面积的方法也有了很多种证法。 (1) (2) 3、定理的命名 (1).约 2000年前,代算书《周髀算经》中就记载了公元前1120年我国古人发现的“勾三股四弦五”.当时把较短的直角边叫做勾, 较长的直角边叫做股,斜边叫做弦.“勾三股四弦五”的意思是,在直角三角形中,如果勾为3,股为 4,那么弦为5.这里 .人们还发现,勾为6,股为8,那么弦一定为10.勾为5,股为12,那么弦一定为13等.同样,有 ,„„即 .所以我国称它为勾股定理.(2).西方国家称勾股定理为毕达哥拉斯定理 毕达哥拉斯(Pythagoras,约公元前580—前500年)是古希腊杰出的数学家,天文学家,哲学家.他不仅提出了定理,而且努力探求了证明方法.(三)定理的应用 例1在 Rt△ABC中,∠C= 90°,∠A,∠B,∠C所对边分别为a,b,c.(1)已知a= 6,b=8,求c;你能求出哪些量?(2)a=40,c=41,求 b;(3)b=15,C=25求 a;(4)a:b=3:4,c=15,求b. (四)深入探索 在 Rt△ABC中,∠C= 90°,∠A,∠B,∠C所对边分别为a,b,c.已知a= 6,b=8,你能求出哪些量? “知二求一”(1)面积(2)周长(3)斜边上的高(4)斜边被高分成的两条线段的长„„ 例3 已知△ABC中,∠A=60°,∠B=45°,AC=4cm,求AB,BC的长 例4 如图,A=60,AB=60CM,CD=30CM,求BC,AD的长 (五)小结 (六)作业:习题3.9 4题 八 教学评价 本节课从学生的实际情况出发, 由浅入深,层层递进.教学设计的说明: 依据《数学课程标准》,数学源于生活,从生活中构建数学模型,应用数学思维方式观察、分析、探索、发现规律,并应用其解决生活中的实际问题,培养学生的实践能力,使学生学有所值,且能学以致用。通过观察、动手操作、合作研究发现规律,并尝试用学到的方法解决生活中的实际问题,使内容首尾呼应,知识完整、培养应用意识实践能力。 八年级数学勾股定理教学设计 八年级数学勾股定理教学设计1 一、教学任务分析 勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股定理极其逆定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必然基础。《20xx版数学课程标准》对勾股定理教学内容的要求是: 1、在研究图形性质和运动等过程中,进一步发展空间观念; 2、在多种形式的数学活动中,发展合情推理能力; 3、经历从不同角度分析问题和解决问题的方法的过程,体验解决问题方法的多样性; 4、探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。 本节《勾股定理的应用》是北师大版八年级数学上册第一章《勾股定理》第3节、具体内容是运用勾股定理及其逆定理解决简单的实际问题、在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;有些探究活动具有一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力、 本节课的教学目标是: 1、能正确运用勾股定理及其逆定理解决简单的实际问题。 2、经历实际问题抽象成数学问题的过程,学会选择适当的数学模型解决实际问题,提高学生分析问题、解决问题的能力并体会数学建模的思想、 教学重点和难点: 应用勾股定理及其逆定理解决实际问题是重点。 把实际问题化归成数学模型是难点。 二、教学设想 根据新课标提出的“要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的同时,在思维能力情感态度和价值观等方面得到进步和发展”的理念,我想尽量给学生创设丰富的实际问题情境 ,使教学活动充满趣味性和吸引力,让他们在自主探究,合作交流中分析问题,建立数学模型,利用勾股定理及其逆定理解决问题。在教学过程中,采用一题多变的形式拓宽学生视野,训练学生思维的灵活性,渗透化归的思想以及分类讨论思想,方程思想等,使学生在获得知识的同时提高能力。 在教学设计中,尽量考虑到不同学习水平的学生,注意知识由易到难的层次性,在课堂上,要照顾到接受较慢的学生。使不同学生有不同的收获和发展。 三、教学过程分析 本节课设计了七个环 《勾股定理的应用》教学设计节、第一环节:情境引入;第二环节:合作探究;第三环节:变式训练;第四环节:议一议;第五环节:做一做;第六环节:交流小结;第七环节:布置作业、 第一环节:情境引入 情景1:复习提 问:勾股定理的语言表述以及几何语言表达? 设计意图:温习旧知识,规范语言及数学表达,体现 数学的 严谨性和规范性。《勾股定理的应用》教学设计情景2: 脑筋急转弯一个三角形的两条边是3和4,第三边是多少? 设计意图:既灵活考察学生对勾股定理的理解,又增加了趣味性,还能考察学生三角形三边关系。 第二环节:合作探究(圆柱体表面路程最短问题) 情景3:课本引例(蚂蚁怎样走最近) 设计意图:从有趣的生活场景引入,学生探究热情高涨,通过实际动手操作,结合问题逆向思考,或是回想两点之间线段最短,通过合作交流将实际问题转化为数学模型从而利用勾股定理解决,在活动中体验数学建模,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念、 第三环节:变式训练(由圆柱体表面路程最短问题逐步变为长方体表面的'距离最短问题) 设计意图:将问题的条件稍做改变,让学生尝试独立解决,拓展学生视野,又加深他们对知识的理解和巩固。再将圆柱问题变为正方体长方体问题,学生有了之前的经验,自然而然的将立体转化为平面,利用勾股定理解决,此处长方体问题中学生会有不同的做法,正好透分类讨论思想。 第四环节:议一议 内容:李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,《勾股定理的应用》教学设计(1)你能替他想办法完成任务吗? (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么? (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢? 设计意图: 运用勾股定理逆定理来解决实际问题,让学生学会分析问题,正确合理选择数学模型,感受由数到形的转化,利用允许的工具灵活处理问题、 第五环节:方程与勾股定理 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池的中央有《勾股定理的应用》教学设计一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多 少尺?《勾股定理的应用》教学设计意图:学生可以进一步了解勾股定理的悠久历史和广泛应用,了解我国古代人民的聪明才智;学会运用方程的思想借助勾股定理解决实际问题。、 第六环节:交流小结内容:师生相互交流总结: 1、解决实际问题的方法是建立数学模型求解、 2、在寻求最短路径时,往往把空间问题平面化,利用勾股定理及其逆定理解决实际问题、 3、在直角三角形中,已知一条边和另外两条边的关系,借助方程可以求出另外两条边。 意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史、《勾股定理的应用》教学设计第七环作业设计: 第一道题难度较小,大部分学生可以独立完成,第二道题有较大难度,可以交流讨论完成。 八年级数学勾股定理教学设计2 教学目标具体要求: 1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。 2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。 3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。 重点: 勾股定理的应用 难点: 勾股定理的应用 教案设计 一、知识点讲解 知识点1:(已知两边求第三边) 1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。 2.已知直角三角形的两边长为3、4,则另一条边长是______________。 3.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC的长? 知识点2: 利用方程求线段长 1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在公路AB上建一车站E, (1)使得C,D两村到E站的距离相等,E站建在离A站多少km处? (2)DE与CE的位置关系 (3)使得C,D两村到E站的距离最短,E站建在离A站多少km处? 利用方程解决翻折问题 2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长? 3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。 4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF的长是多少? 5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。求点F和点E坐标。 6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式. 知识点3:判断一个三角形是否为直角三角形间接给出三边的长度或比例关系 1.(1).若一个三角形的周长12cm,一边长为3cm,其他两边之差为1cm,则这个三角形是___________。 (2).将直角三角形的三边扩大相同的倍数后,得到的三角形是____________。 (3)在ABC中,a:b:c=1:1:,那么ABC的确切形状是_____________。 2.如图,正方形ABCD中,边长为4,F为DC的中点,E为BC上一点,CE=BC,你能说明∠AFE是直角吗? 变式:如图,正方形ABCD中,F为DC的中点,E为BC上一点,且CE=BC,你能说明∠AFE是直角吗? 3.一位同学向西南走40米后,又走了50米,再走30米回到原地。问这位同学又走了50米后向哪个方向走了 二、课堂小结 谈一谈你这节课都有哪些收获? 应用勾股定理解决实际问题 三、课堂练习以上习题。 四、课后作业卷子。 本节课是人教版数学八年级下册第十七章第一节第二课时的内容,是学生在学习了三角形的有关知识,了解了直角三角形的概念,掌握了直角三角形的性质和一个三角形是直角三角形的条件的基础上学习勾股定理,加深对勾股定理的理解,提高学生对数形结合的应用与理解。本节第一课时安排了对勾股定理的观察、计算、猜想、证明及简单应用的`过程;第二课时是通过例题分析与讲解,让学生感受勾股定理在实际生活中的应用,通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决问题的意识和应用能力。 针对本班学生的特点,学生知识水平、学习能力的差距,本节课安排了如下几个环节: 一、复习引入 对上节课勾股定理内容进行回顾,强调易错点。由于学生的注意力集中时间较短,学生知识水平低,引入内容简短明了,花费时间短。 二、例题讲解,巩固练习,总结数学思想方法 活动一:用对媒体展示搬运工搬木板的问题,让学生以小组交流合作,如何将木板运进门内?需要知道们的宽、高,还是其他的条件?学生展示交流结果,之后教师引导学生书写板书。整个活动以学生为主体,教师及时的引导和强调。 活动二:解决例二梯子滑落的问题。学生自主讨论解决问题,书写过程,之后投影学生书写过程,教师与学生一起合作修改解题过程。 活动三:学生讨论总结如何将实际生活中的问题转化为数学问题,然后利用勾股定理解决问题。利用勾股定理的前提是什么?如何作辅助线构造这一前提条件?在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,让学生体会到数学来源于生活,又应用到生活中去,在学习的过程中体会获得成功的喜悦,提高了学生学习数学的兴趣和信心。 二、巩固练习,熟练新知 通过测量旗杆活动,发展学生的探究意识,培养学生动手操作的能力,增加学生应用数学知识解决实际问题的经验和感受。 在教学设计的实施中,也存在着一些问题: 1.由于本班学生能力的差距,本想着通过学生帮带活动,使学困生充分参与课堂,但在学生合作交流是由于学习能力强的学生,对问题的分析解决所用时间短,而在整个环节设计中转接的快,未给学困生充分的时间,导致部分学生未能真正的参与到课堂中来。 2.课堂上质疑追问要起到好处,不要增加学生展示的难度,影响展示进程出现中断或偏离主题的现象。 3.对学生课堂展示的评价方式应体现生评生,师评生,及评价的针对性和及时性。 八年级数学勾股定理教学设计3 教学目标 1、知识与技能目标 学会观察图形,勇于探索图形间的关系,培养学生的空间观念、 2、过程与方法 (1)经历一般规律的探索过程,发展学生的抽象思维能力、 (2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想、 3、情感态度与价值观 (1)通过有趣的问题提高学习数学的兴趣、 (2)在解决实际问题的过程中,体验数学学习的实用性、 教学重点: 探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题、 教学难点: 利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题、 教学准备: 多媒体课件 教学过程: 第一环节:创设情境,引入新课(3分钟,学生观察、猜想) 情景: 如图:在一个圆柱石凳上,若小明在吃东西时留下了一点 食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于 是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近? 第二环节:合作探究(15分钟,学生分组合作探究) 学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算、 学生汇总了四种方案: (1)(2)( 学生很容易算出:情形(1)中A→B的路线长为:AA’+d, 情形(2)中A→B的路线长为:AA’+πd/2 所以情形(1)的路线比情形(2)要短、 学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短、 如图: (1)中A→B的路线长为:AA’+d; (2)中A→B的`路线长为:AA’+A’B>AB; (3)中A→B的路线长为:AO+OB>AB; (4)中A→B的路线长为:AB。 得出结论:利用展开图中两点之间,线段最短解决问题、 在这个环节中,可让学生沿母线剪开圆柱体,具体观察、 接下来后提问:怎样计算AB? 在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12cm,底面半径为3cm,π取3,则。 第三环节:做一做(7分钟,学生合作探究) 教材23页 李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺, (1)你能替他想办法完成任务吗? (2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么? (3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢? 第四环节:巩固练习(10分钟,学生独立完成) 1、甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6km/h的速度向正东行走,1小时后乙出发,他以5km/h的速度向正北行走、上午10:00,甲、乙两人相距多远? 2、如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离、 3、有一个高为1。5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0。5米,问这根铁棒有多长? 第五环节课堂小结(3分钟,师生问答) 内容: 1、如何利用勾股定理及逆定理解决最短路程问题? 第六环节:布置作业(2分钟,学生分别记录) 内容: 作业:1、课本习题1、5第1,2,3题、 要求:A组(学优生):1、2、3 B组(中等生):1、2 C组(后三分之一生):1第二篇:八年级数学专题-勾股定理
第三篇:八年级下册拓展资源——勾股定理与第一次数学危机
第四篇:八年级数学元勾股定理教案
第五篇:八年级数学勾股定理教学设计