新人教版数学八年级勾股定理测试题(含答案)

时间:2019-05-15 09:23:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《新人教版数学八年级勾股定理测试题(含答案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《新人教版数学八年级勾股定理测试题(含答案)》。

第一篇:新人教版数学八年级勾股定理测试题(含答案)

新人教版数学八年级 勾股定理的逆定理 测试试题

一、基础加巩固

1.满足下列条件的三角形中,不是直角三角形的是()

A.三内角之比为1∶2∶3

B.三边长的平方之比为1∶2∶3 C.三边长之比为3∶4∶5

D.三内角之比为3∶4∶5 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是________ cm(结果不取近似值).图18-2-4

图18-2-5

图18-2-6 3.如图18-2-5,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________.4.如图18-2-6,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=形状.5.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?

1AD,试判断△EFC的4

图18-2-7

6.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形.二、综合·应用

12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD的面积.图18-2-10

参考答案

一、基础·巩固

1.思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A得有一个角是直角;B、C满足勾股定理的逆定理,所以应选D.答案:①(B)②没有考虑a=b这种可能,当a=b时△ABC是等腰三角形;③△ABC是等腰三角形或直角三角形.11.思路分析:(1)移项,配成三个完全平方;(2)三个非负数的和为0,则都为0;(3)已知a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形.解:由已知可得a2-10a+25+b2-24b+144+c2-26c+169=0, 配方并化简得,(a-5)2+(b-12)2+(c-13)2=0.∵(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.∴a-5=0,b-12=0,c-13=0.解得a=5,b=12,c=13.又∵a2+b2=169=c2,∴△ABC是直角三角形.12.思路分析:(1)作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA);

(2)DE=AB=4,BE=AD=3,EC=EB=3;(3)在△DEC中,3、4、5为勾股数,△DEC为直角三角形,DE⊥BC;(4)利用梯形面积公式,或利用三角形的面积可解.解:作DE∥AB,连结BD,则可以证明△ABD≌△EDB(ASA), ∴DE=AB=4,BE=AD=3.∵BC=6,∴EC=EB=3.∵DE2+CE2=32+42=25=CD2,∴△DEC为直角三角形.又∵EC=EB=3,∴△DBC为等腰三角形,DB=DC=5.在△BDA中AD2+AB2=32+42=25=BD2, ∴△BDA是直角三角形.它们的面积分别为S△BDA=11×3×4=6;S△DBC=×6×4=12.22∴S四边形ABCD=S△BDA+S△DBC=6+12=18.-

第二篇:八年级数学教学计划新人教

一、指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。80班、81班均是刚刚接手,对班上学生不了解,从原科任老师处得知:两班比较,81班优生稍多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。80班学生单纯,有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教材分析

第十一章 一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十二章 数据的描述通过对实际问题的讨论,使学生体会数据的作用,更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息,本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息。教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。

第十三章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十四章 轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十五章 整式在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

四、教学措施

1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素养。

5、教学中注重自主学习、合作学习、探究学习。

一、指导思想

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。80班、81班均是刚刚接手,对班上学生不了解,从原科任老师处得知:两班比较,81班优生稍多一些,但后进面却较大,学生非常活跃,有少数学生不上进,思维不紧跟老师。80班学生单纯,有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教材分析

第十一章 一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数————一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型————概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十二章 数据的描述通过对实际问题的讨论,使学生体会数据的作用,更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息,本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息。教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。

第十三章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十四章 轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。

第十五章 整式在形式上力求突出:整式及整式运算产生的实际背景————使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程————为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握————设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

四、教学措施

1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素养。

5、教学中注重自主学习、合作学习、探究学习。www.xiexiebang.com

五、教学进度

周 教学内容及课时安排

111。1。1变量(1)11。1。2函数(2)

211。1。3函数的图象(3)11。2。1正比例函数(1)11。2。2一次函数(1)

311。2。2一次函数(3)11。3。1一次函数与一元一次方程(1)

11。3。2一次函数与一元一次不等式(1)

411。3。3一次函数与二元一次方程(组)(1)第十一章小结(3)

512。1。1条形图与扇形图(1)12。1。2折线图(1)12。1。3直方图(1)

12。2。1用扇形图描述数据(1)12。2。2用直方图描述数据(1)

612。3课题学习(2)第十二章小结(2)

713。1全等三角形(1)13。2三角形全等的条件(4)

813。2三角形全等的条件(2)13。3角平分线的性质(1)

第十三章小结(2)

9段考

1014。1轴对称(3)14。2。1轴对称变换(1)14。2。2用坐标表示轴对称(1)

1114。3。1等腰三角形(3)14。3。2等边三角形体(2)

12第十四章小结(2)15。1。1整式(1)15。1。2整式的加减(2)

1315。2。1同底数幂的乘法(1)15。2。2幂的乘方(1)15。2。3积的乘方(1)

15。2。4整式的乘法(2)

1415。2。4整式的乘法(2)15。3。1平方差公式(2)15。3。2完全平方公式(1)

1515。3。2完全平方公式(2)15。4。1同底数幂的除法(1)15。4。2整式的除法(2)

1615。5因式分解(1)15。5。1提公因式法(1)15。5。2公式法(3)

17第十五章小结(3)总复习

18总复习

19总复习

20考试

第三篇:北师大版八年级上册数学第一章测试题勾股定理

………… … … … … … … …号考… … … 封 … … … … … … … … 名…姓… … … … … 密 … … … … … …… ……… 级……班…… …… …… … ……………………………… …线阳长镇海座小学

2017-2018学第一学期八年级上册数学

第一章《勾股定理》测试

(考试时间90分钟 满分100分)

沉着、冷静、快乐地迎接期末考试,相信你能行

一、填空题(每空3分,共30分)

1、在直角△ABC中,斜边 AB = 2,则 AB² + BC² + CA² =.2、一个三角形的三个内角的比为1 :2 :3,它的最大边为4cm,则最小边为

cm.3、一个等腰三角形的两边为4cm,9cm,则它的周长为

cm.4、一块正方形土地的面积为800m²,则它的对角线长为

m.5、△ABC的三边长分别是15、36、39,这个△ABC是

三角形.6、一个三角形的三边的比为5 :12 :13,那么这个三角形是

三角形.7、三边之比为3 :4 :5的三角形的面积为24cm²,则它的周长为

cm.8、等腰三角形的腰长为10cm,底边长为12cm,则其底边上的高为 cm.9、△ABC中∠C = 90°,∠B = 30°,b = 2cm,则c =

cm.10、如图,AB = AC = 10cm,AD⊥BC,∠B = 30°,则BD²=

.二、选择题(每题3分,共24分)

11、是勾股数的是()

.A、4,5,6 B、5,7,12 C、12,13,15 D、21,28,35

12、在长为3,4,5,12,13的线段中任意取三条可构成()个直角三角形.A、0

B、1

C、2

D、3

第1页,共4页

八年级上册数学测试卷

13、两条直角边为6cm,8cm的直角三角形的斜边上的高为()cm.A、1.2

B、2.4

C、3.6

D、4.8

14、一个直角三角形的斜边比一条直角边多2cm,另一条直角边为6cm,则斜边的长为()cm.A、4 B、8

C、10

D、12

15、如图,AB = AC = 10cm,CD⊥AB,∠B = 15°,则CD =()cm.A、2.5

B、5

C、10

D、20

16、一根大树被台风刮断,若树离地面3米处折断,树顶端落在离 树底部4米处,则树折断之前有()cm.A、5米

B、7米

C、8米

D、10米

17、一架4.1m长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.9m.那么梯子的顶端与地面的距离是()cm.A、3.2m

B、4.0m

C、4.1m

D、5.0m

18、一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()cm.A、18cm

B、20cm

C、24cm

D、25cm

三、解答题(共46分)

19、圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食的最短路程是多少?(π≈3)(8分)

第2页,共4页 阳长镇海座小学

20、一块长方形土地ABCD的长为28m,宽为21m,小明站在长方形的一个顶点A上,他要走到对面的另一个顶点C上拣一只羽毛球,他至少要走多少米?

(8分)

21、有一块四边形草坪,∠B = ∠D = 90°,AB = 24m,BC = 7m,CD = 15m,求草坪面积.(8分)

第3页,共4页

八年级上册数学测试卷

22、小明想知道学校的旗杆有多高,他发现旗杆顶上的绳子BD垂到地面还多CD = 1米,当他把绳子的下端D拉开5米到后,发现下端D刚好接触地面A.你能帮他把旗杆的高度求出来吗?(10分)

23、家的楼梯有若干级梯子。她测得楼梯的水平宽度AC = 4米,楼梯的斜面长度AB = 5米,现在她家要在楼梯面上铺设红地毯。若准备购买的地毯的单价为20元/米,则她家至少应准备多少钱?(10分)

第4页,共4页

第四篇:北师大版八年级数学勾股定理测试题及答案

北师大版八年级数学勾股定理测试题(1)

一、填空题(每小题5分,共25分):

1.已知一个直角三角形的两条直角边分别为6cm、8cm,那么这个直角三角形斜边上的高为_________________. 2..三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是_______. 3.△ABC中,AB=10,BC=16,BC边上的中线AD=6,则AC=___________. 4.将一根长24cm 的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中(如图1),设筷子露在杯子外面的长度是为hcm,则h的取值范围是_____________.

5.如图2所示,一个梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE图1 上的位置上,如图3,测得DB的长0.5米,则梯子顶端A下落了________米.

二、选择题(每小题5分,共25分):

6.在下列长度的四组线段中,不能组成直角三角形的是(). A.a=9 b=41 c=40 B.a=b=5 C=52

C.a:b:c=3:4:5 D.a=11 b=12 c=15

图2 图3

7.若△ABC中,AB=13,AC=15,高AD=12,则BC的长是(). A.14 B.4 C.14或4 D.以上都不对

8. 2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小小正方形拼成的一个大正方形(如图4所示),如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(ab)2的值为(). A.13 B.19 C.25 D.169

9. 如图5,四边形ABCD中,AB=3cm,BC=4cm,CD=12cm,DA=13cm,且∠ABC=90,则四边形ABCD的面积是(). A.84 B.30 C.

0

图4

D.无法确定 2/

/10.如图6,已知矩形ABCD沿着直线BD折叠,使点C落在C处,B C交AD于E,AD=8,AB=4,则DE的长为(). A.3 B.4 C.5 D.6

三、解答题(此大题满分50分):

011.(7分)在RtABC中,∠C=90.

(1)已知c25,b15,求a;(2)已知a12,A600,求b、c.

12.(7分)阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2b2c2a4b4,试判定△ABC的形状. 解:∵ a2c2b2c2a4b4,①

∴ c2(a2b2)(a2b2)(a2b2),② ∴ c2a2b2,③

∴ △ABC为直角三角形.

问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号______;

(2)错误的原因是___________________________;

(3)本题正确的结论是_______________________________.

13.(7分)细心观察图7,认真分析各式,然后解答问题:(1)212 S1图5

图6 22(2)213 S223(3)214 S32┉┉ ┉┉

图7

(1)用含有n(n是正整数)的等式表示上述变化规律;

(2)推算出OA10的长;

(3)求出S1S2S3S10的值.

14.(7分)已知直角三角形的周长是26,斜边长2,求它的面积.

15.(7分)小东拿着一根长竹杆进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果杆比城门高1米,当他把杆斜着时,两端刚好顶着城门的对角,问杆长多少米?

16.(7分)小明向西南方向走40米后,又走了50米,再走30米回到原地.小明又走了50米后向哪个方向走的?再画出图形表示

017.(8分)如图8,公路MN和公路PQ在点P处交汇,且∠QPN=30,点A处有一所中学,AP=160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否回受到噪声的影响?说明理由.如果受影响,已知拖拉机的速度为18千米/时,那么学校受影响的时间为多少秒?

图8 222 北师大版八年级数学(勾股定理)自测题(2)

一、选择题(共4小题,每小题4分,共16分.在四个选项中,只有一项是符合题目要求的,请把符合要求一项的字母代号填在题后括号内.)

1.下列说法正确的有()

①△ABC是直角三角形,∠C=90°,则a+b=c.②△ABC中,a+b≠c,则△ABC不是直角三角形.③若△ABC中,a-b=c,则△ABC是直角三角形.④若△ABC是直角三角形,则(a+b)(a-b)=c.A.4个

B.3个

C.2个

D.1个

2.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()

A.24cm

B.36cm

C.48cm D.60cm

3.已知,如图,一轮船以20海里/时的速度从港口A出发向东北方向航行,另一轮船以15海里/时的速度同时从港口A出发向东南方向航行,则2小时后,两船相距()

A.35海里

B.40海里

C.45海里 D.50海里 2

222

222

4.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C'处,BC'交AD于E,AD=8,AB=4,则DE的长为()

A.3

B.4

C.5

D.6

二、填空题(共4小题,每小题4分,共16分.把答案填在题后的横线上.)5.如图,学校有一块长方形草坪,有极少数人为了避开拐角走 “捷径”,在草坪内走出了一条“路”.他们仅仅少走了_________ 步路(假设2步为1米),却踩伤了青草.6.如图,圆柱形玻璃容器高20cm,底面圆的周长为48cm,在外侧距下底1cm的点A处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm的点B处有一只苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.7.如果三条线段的长度分别为8cm、xcm、18cm,这三条线段恰好能组成一个直角三角形,那么以x为边长的正方形的面积为__________.8.已知△ABC的三边a、b、c满足等式|a-b-1|+|2a-b-14|=-|c-5|,则△ABC的面积为________.三、解答题(共6小题,1、2题各10分,3-6题各12分,共68分.解答应写出文字说明,证明过程或演算步骤.)9.如图是一块地,已知AB=8m,BC=6m,∠B=90°,AD=26m,CD=24m,求这块地的面积.10.如图,将一根30㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和24㎝的长方体无盖盒子中,求细木棒露在盒外面的最短长度是多少?

11.如图,铁路上A、B两点相距25km, C、D为两村庄,DA⊥AB于A,CB⊥AB于B,若DA=10km,CB=15km,现要在AB上建一个周转站E,使得C、D两村到E站的距离相等,则周转站E应建在距A点多远处?

12.如图,折叠矩形纸片ABCD,先折出折痕(对角线)AC,再折叠使AB边与AC重合,得折痕AE,若AB=3,AD=4,求BE的长.13.如图,A、B两个小镇在河流CD的同侧,到河流的距离分别为AC=10km,BD=30km,且CD=30km,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每km3万元,请你在河流CD上选择建水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?

14.“交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直线行驶,某一时刻刚好行驶到车速检测仪所在位置A处正前方30米的C处,过了2秒后,测得小汽车所在位置B处与车速检测仪间距离为50米,这辆小汽车超速了吗?

附加题(10分,不计入总分)

如图,P是矩形ABCD内一点,PA=1,PB=5,PC=7,则PD=_________.一、1.C 2.A 3.D 4.C

二、5.4 6.30cm 7.260cm或388cm 8.30

三、9.解:连接AC.„„1分

在△ABC中,∵AB=8m,BC=6m,∠B=90°,∴由勾股定理,AC=AB+BC=8+6=100,AC=10.„„3分

在△ACD中,AC+CD=10+24=676,AD=676,∴AC+CD=AD.∴△ACD是直角三角形.„„6分 22222

答:求这块地的面积是96m.„„10分

10.解:由勾股定理,8+6=10,„„3分

10+24=26.„„6分

∴30-26=4.„„8分

答:细木棒露在盒外面的最短长度是4cm.„„10分 11.解:设E点建在距A点xkm处.„„1分

如图,则AE长xkm,BE长(25-x)km.„„2分

∵DA⊥AB,∴△DAE是直角三角形.由勾股定理,DE=AD+AE=10+x.„„5分 22

2222

„„8分

同理,在Rt△CBE中,CB+BE=15+(25-x).„„7分

依题意,10+x=15+(25-x),„„ 9分

解得,x=15.„„11分

答:E应建在距A15km处.„„12分

12.解:在AC上截取AF=AB,连接EF.„„1分

依题意,AB=AF, BE=EF, ∠B=∠AFE=90.„„3分

在Rt△ABC中,AB=3,BC=AD=4,∴AC=3+4=25,AC=5.∴CF=AC-AF=5-3=2.„„5分

设BE长为x,则EF=x,CE=4-x.„„7分 在Rt△CFE中,CE=EF+CF,即(4-x)=x+2.„„9分 22

2222

°222

2222

解得,x=.„„11分

答:BE的长为.„„12分 13.解:作点A关于CD的对称点E,连接EB,交CD于M.则AC=CE=10公里.„„2分 过点A作AF⊥BD,垂足为F.过点B作CD的平行线交EA延长线于G,得矩形CDBG.„„4分 则CG=BD=30公里,BG=CD=30公里,EG=CG+CE=30+10=40里.„„7分

在Rt△BGE中,由勾股定理,BE=BG+EG=30+40,BE=50km,„„9分

∴3×50=150(万元).„„11分

答:铺设水管的总费用最少为150万元.„„12分

14.解:依题意,在Rt△ACB中,AC=30米,AB=50米,由勾股定理,BC=AB-AC=50-30,BC=40米.„„3分

∴小汽车由C到B的速度为40÷2=20米/秒.„„5分

∵20米/秒=72千米/小时,„„8分

72>70,„„10分

因此,这辆小汽车超速了.„„12分

附加题 解:过点P作MN∥AD交AB于点M,交CD于点N,则AM=DN,BM=CN.„„2分

∵∠PMA=∠PMB=90°,∴PA-PM=AM,PB-PM=BM.„„4分

∴PA-PB=AM-BM.„„5分

同理,PD-PC=DN-CN.„„7分

∴PA-PB=PD-PC.又PA=1,PB=5,PC=7,„„8分

∴PD=PA-PB+PC=1-5+7,PD=5.„„10分

22222

22222222

222222222

222

第五篇:八年级数学专题-勾股定理

第十七章 勾股定理

17.1 勾股定理

第1课时 勾股定理(1)

了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.

重点

勾股定理的内容和证明及简单应用.

难点

勾股定理的证明.

一、创设情境,引入新课

让学生画一个直角边分别为3

cm和4

cm的直角△ABC,用刻度尺量出斜边的长.

再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长.

你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?

由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?

拼图实验,探求新知

1.多媒体课件演示教材第22~23页图17.1-2和图17.1-3,引导学生观察思考.

2.组织学生小组合作学习.

问题:每组的三个正方形之间有什么关系?试说一说你的想法.

引导学生用拼图法初步体验结论.

生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.

师:这只是猜想,一个数学命题的成立,还要经过我们的证明.

归纳验证,得出定理

(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.

①用多媒体课件演示.

②小组合作探究:

a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?

b.它们的面积分别怎样表示?它们有什么关系?

c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?

师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.

即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.

二、例题讲解

【例1】填空题.

(1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________;

(2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________;

(3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;

(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;

(5)已知等边三角形的边长为2

cm,则它的高为________cm,面积为________cm2.【答案】(1)17(2)(3)6 8(4)6,8,10(5)

【例2】已知直角三角形的两边长分别为5和12,求第三边.

分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.

【答案】或13

三、巩固练习

填空题.

在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________;

(2)如果∠A=30°,a=4,则b=________;

(3)如果∠A=45°,a=3,则c=________;

(4)如果c=10,a-b=2,则b=________;

(5)如果a,b,c是连续整数,则a+b+c=________;

(6)如果b=8,a∶c=3∶5,则c=________.

【答案】(1)24(2)4(3)3(4)6(5)12

(6)10

四、课堂小结

1.本节课学到了什么数学知识?

2.你了解了勾股定理的发现和验证方法了吗?

3.你还有什么困惑?

本节课的设计关注学生是否积极参与探索勾股定理的活动,关注学生能否在活动中积极思考、能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理地表达活动过程和所获得的结论等.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理.                  第2课时 勾股定理(2)

能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.

重点

将实际问题转化为直角三角形模型.

难点

如何用解直角三角形的知识和勾股定理来解决实际问题.

一、复习导入

问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?

师生行为:

学生分小组讨论,建立直角三角形的数学模型.

教师深入到小组活动中,倾听学生的想法.

生:根据题意,(如图)AC是建筑物,则AC=12

m,BC=5

m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13

m.所以至少需13

m长的梯子.

师:很好!

由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.

问题2:一个门框的尺寸如图所示,一块长3

m、宽2.2

m的长方形薄木板能否从门框内通过?为什么?

学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.

生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.

生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.

师生共析:

解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.

二、例题讲解

【例1】如图,山坡上两棵树之间的坡面距离是4米,则这两棵树之间的垂直距离是________米,水平距离是________米.

分析:由∠CAB=30°易知垂直距离为2米,水平距离是6米.

【答案】2 6

【例2】教材第25页例2

三、巩固练习

1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.

【答案】50米

2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B

200米,结果他在水中实际游了520米,求该河流的宽度.

【答案】约480

m

四、课堂小结

1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.

2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.

这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力.                  第3课时 勾股定理(3)

1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.

2.利用勾股定理,能在数轴上找到表示无理数的点.

3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.

重点

在数轴上寻找表示,,…这样的表示无理数的点.

难点

利用勾股定理寻找直角三角形中长度为无理数的线段.

一、复习导入

复习勾股定理的内容.

本节课探究勾股定理的综合应用.

师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?

学生思考并独立完成,教师巡视指导,并总结.

先画出图形,再写出已知、求证如下:

已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC=,B′C′=.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC≌△A′B′C′(SSS).

师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出所对应的点吗?

教师可指导学生寻找像长度为,,…这样的包含在直角三角形中的线段.

师:由于要在数轴上表示点到原点的距离为,,…,所以只需画出长为,,…的线段即可,我们不妨先来画出长为,,…的线段.

生:长为的线段是直角边都为1的直角三角形的斜边,而长为的线段是直角边为1和2的直角三角形的斜边.

师:长为的线段能否是直角边为正整数的直角三角形的斜边呢?

生:设c=,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为的线段是直角边长分别为2,3的直角三角形的斜边.

师:下面就请同学们在数轴上画出表示的点.

生:步骤如下:

1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点.

二、例题讲解

【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?

分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.

解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.

飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.

【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?

解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC=4.5,所以这里的水深为4.5分米.

【例3】在数轴上作出表示的点.

解:以为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示的点,如下图:

师生行为:

由学生独立思考完成,教师巡视指导.

此活动中,教师应重点关注以下两个方面:

①学生能否积极主动地思考问题;

②能否找到斜边为,另外两条直角边为整数的直角三角形.

三、课堂小结

1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.

2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.

本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力.

17.2 勾股定理的逆定理

第1课时 勾股定理的逆定理(1)

1.掌握直角三角形的判别条件.

2.熟记一些勾股数.

3.掌握勾股定理的逆定理的探究方法.

重点

探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.

难点

归纳猜想出命题2的结论.

一、复习导入

活动探究

(1)总结直角三角形有哪些性质;

(2)一个三角形满足什么条件时才能是直角三角形?

生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.

师:那么一个三角形满足什么条件时,才能是直角三角形呢?

生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形.

生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.

师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?

问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.

这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形.

画画看,如果三角形的三边长分别为2.5

cm,6

cm,6.5

cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4

cm,7.5

cm,8.5

cm,再试一试.

生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形.

生2:如果三角形的三边长分别是2.5

cm,6

cm,6.5

cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5

cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4

cm,7.5

cm,8.5

cm的三角形,可以发现8.5

cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论.

命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

再看下面的命题:

命题1 如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系?

师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题.

二、例题讲解

【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?

(1)同旁内角互补,两条直线平行;

(2)如果两个实数的平方相等,那么这两个实数相等;

(3)线段垂直平分线上的点到线段两端点的距离相等;

(4)直角三角形中30°角所对的直角边等于斜边的一半.

分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;

(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.

解略.

三、巩固练习

教材第33页练习第2题.

四、课堂小结

师:通过这节课的学习,你对本节内容有哪些认识?

学生发言,教师点评.

本节课的教学设计中,将教学内容精简化,实行分层教学.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.将目标分层后,满足不同层次学生的做题要求,达到巩固课堂知识的目的.

第2课时 勾股定理的逆定理(2)

1.理解并掌握证明勾股定理的逆定理的方法.

2.理解逆定理、互逆定理的概念.

重点

勾股定理的逆定理的证明及互逆定理的概念.

难点

理解互逆定理的概念.

一、复习导入

师:我们学过的勾股定理的内容是什么?

生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?

师生行为:

让学生试着寻找解题思路,教师可引导学生理清证明的思路.

师:△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?

我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(如图),把画好的△A′B′C′剪下,放在△ABC上,它们重合吗?

生:我们所画的Rt△A′B′C′,(A′B′)2=a2+b2,又因为c2=a2+b2,所以(A′B′)2=c2,即A′B′=c.△ABC和△A′B′C′三边对应相等,所以两个三角形全等,∠C=∠C′=90°,所以△ABC为直角三角形.

即命题2是正确的.

师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.

师:但是不是原命题成立,逆命题一定成立呢?

生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.

师:你还能举出类似的例子吗?

生:例如原命题:如果两个实数相等,那么它们的绝对值也相等.

逆命题:如果两个数的绝对值相等,那么这两个实数相等.

显然原命题成立,而逆命题不一定成立.

二、新课教授

【例1】教材第32页例1

【例2】教材第33页例2

【例3】一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量出了这个零件各边的尺寸,那么这个零件符合要求吗?

分析:这是一个利用直角三角形的判定条件解决实际问题的例子.

解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.

在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC是直角.

因此这个零件符合要求.

三、巩固练习

1.小强在操场上向东走80

m后,又走了60

m,再走100

m回到原地.小强在操场上向东走了80

m后,又走60

m的方向是________.

【答案】向正南或正北

2.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,求甲巡逻艇的航向.

【答案】解:由题意可知:AC=120×6×=12,BC=50×6×=5,122+52=132.又AB=13,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴∠CAB=40°,航向为北偏东50°.四、课堂小结

1.同学们对本节的内容有哪些认识?

2.勾股定理的逆定理及其应用,熟记几组勾股数.

本节课我采用以学生为主体,引导发现、操作探究的教学设计,符合学生的认知规律和认知水平,最大限度地调动了学生学习的积极性,有利于培养学生动手、观察、分析、猜想、验证、推理的能力,切实使学生在获取知识的过程中得到能力的培养.

下载新人教版数学八年级勾股定理测试题(含答案)word格式文档
下载新人教版数学八年级勾股定理测试题(含答案).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    八年级数学元勾股定理教案

    课题:《勾股定理》 张窝中学 马宏跃 一、教材分析: 1、 人民教育出版社出版,人民教育出版社中学数学室编著,九年义务教育八年级教科书《几何》,第三章第五单元《勾股定理》 2、本节......

    八年级数学勾股定理教学设计

    八年级数学勾股定理教学设计 八年级数学勾股定理教学设计1 一、教学任务分析勾股定理是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特点。学习勾股......

    人教版八年级数学 勾股定理说课稿

    《勾股定理》的说课稿 尊敬的各位评委、各位教师: 你们好!今天我说课的课题是《勾股定理》。本课选自九年义务教育人教版八年级下册初中数学第十八章第一节的第一课时。 下面......

    新人教八年级下册数学期末考试知识点归纳

    新人教八年级下册数学期末考试知识点归纳 二次根式知识回顾 1.二次根式:式子(ge;0)叫做二次根式。 2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因......

    八年级数学勾股定理7(共五则)

    18.1 勾股定理(二) 教学时间 第二课时 三维目标一、知识与技能 1.掌握勾股定理,了解利用拼图验证勾股定理的方法. 2.运用勾股定理解决一些实际问题.二、过程与方法 1.经历用拼图......

    八年级数学勾股定理全章测试

    梦幻网络( http://www.xiexiebang.com ) 数百万免费课件下载,试题下载,教案下载,论文范文,计划总结 第十八章勾股定理全章测试 一、填空题 1.若一个三角形的三边长分别为6,8,10,则......

    东莞市2013--2014学年度第二学期八年级数学月考试卷勾股定理测试题

    东莞市20132014学年度第二学期八年级数学月考试卷勾股定理测试题班级:________________姓名:________________座号:___________评分:___________一、填空题(每空4分,共40分)1、 能......

    初二数学下册测试题 含答案

    1. 当分式3有意义时,字母x应满足( ) x1A. x0 B. x0 C. x1 D. x1 x297.若分式2的值为0,则x的值为() x4x3A.3 B.3或-3 C.-3 D.0 9.如图,把一张平行四边形纸片ABCD沿BD对折。使C点落在E......