初中数学证明三角形全等找角

时间:2019-05-15 07:59:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学证明三角形全等找角》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学证明三角形全等找角》。

第一篇:初中数学证明三角形全等找角

初中数学证明三角形全等找角、边相等的方法

【摘要】“全等三角形的证明”是初中平面几何的重要内容之一,是研究图形性质的基础,而且在近几年的中考中时有出现,新课标的要求是“探索并掌握两个三角形全等的条件”,因此掌握三角形全等的证明及运用方法对初中生来说至关重要。证明三角形全等找角、边相等是最关键的步骤。如何找对应角、对应边相等,做如下总结。

【关键词】全等三角形相等角相等边

我们在初中课本上学过的三角形全等的证明方法有“SAS”、“ASA”、“AAS”、“SSS”,对于直角三角形还有“HL”。在做题的过程中我们时常发现,全等的条件往往隐藏在复杂的图形中,要找的条件就是相等的角、相等的边,初中阶段找相等的角、相等的边有以下几种情况。

一、相等的角

1、利用平行直线性质

两直线平行的性质定理:1.两直线平行,同位角相等

2.两直线平行,内错角相等

例、如图一所示,直线AD、BE相交于点C,AB∥DE,AB=DE

求证:△ABC≌△DBC

此题知道AB∥DE,根据平行线的性质可得

∠A=∠D ,∠B=∠E(两直线平行,内错角相等)

由ASA可证全等。图一

2、巧用公共角

要点:在证两三角形全等时首先看两个三角形是不是有公共交点,如果有公共交点,在看他们是否存在公共角。

例、如图二所示,D在AB上,E在AC上,AB=AC, ∠B=∠C.求证:△ABE≌△ADC

此题∠A是公共角,利用ASA可证全等。

3、利用等边对等角图二 要点:注意相等的两条边一定要在同一个三角形内才能利

用等边对等角

例.、如图三在△ABC中,AB=AC,AD是三角形的中线

求证:△ABD≌△ACD

此题已知AB=AC,由等边对等角可得

∠B=∠C.4、利用对顶角相等图三 例、已知:如图四,四边形ABCD中, AC、BD交于O点,AO=OC , BA⊥AC , DC⊥AC.垂足分别为A , C.

求证:AB=CD图四 此题利用对顶角相当可得∠AOB=∠DOC.利用AAS

可得△AOB≌△COD,再根据全等三角形对应边相等得到

AB=CD5、利用等量代换关系找出角相等

(1)∠A+公共角=∠B+公共角

例1.已知:如图五,AE=AC,AD=AB,∠EAC=∠DAB,求证:△EAD≌△CAB.

由图形可知:

∠DAE=∠EAC+∠DAC A ∠BAC=∠DAB+∠DAC

因此可得∠DAE=∠BAC图五

利用SAS可证△EAD≌△CAB

2、已知:如图六,AB=AC,AD=AE,∠BAC=∠DAE.求证:BD=CE

由图形可知:

∠DAB=∠BAC-∠DAC

∠EAC=∠DAE-∠DAC

因此可得∠DAB=∠EAC

利用SAS可证△BAD≌△CAE图六

(2)同角(等角)的补角相等;同角(等角)的余角相等

已知:如图,∠1=∠2,BC=EF,AC=DE,E、C在直线BF上.

求证:∠A=∠D

由图形可知:图七 B

由等角的补角相等可得∠DEC=∠ACE

利用SAS可得△ABC≌△DEF

(3)同角(等角)的余角相等 D

在直角三角形中常用到同角(等角)的余角相等得到相等的角。例:如图八△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作

B图八 ECF⊥AE, 垂足为F,过B作BD⊥BC交CF的延长线于

D.求证:AE=CD;

由图形中可以看出:

∠D+∠BCD=90°;∠CAE+∠BCD=90°

由同角的余角相等得到∠D=∠CAE,利用AAS可得△BCD≌△CAE6、结合旋转和对称图形的性质。

例1.如图九,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD•交于点F.图九

求证:△ABF≌△EDF;

根据对称的性质我们可以得到∠A=∠E=90°,利用AAS可以证明△ABF≌△EDF。

二、相等的边

1、利用等角对等边 ADAC

3CB

(注意:必须在同一个三角形中才能考虑)

例、如图十,已知∠1=∠2,∠3=∠4,求证:AB=CD

已知∠3=∠4,根据等角对等边可得OB=OC

利用AAS证明出△ABO≌△DCO。

2、利用公共边相等图十 A

(若果要证明的两个全等三角形有两个相同的对应点,那么可么马上得出它们具有公共边)

D例、如图十一,已知AB=AC,DB=DC,求证:∠BAD=∠CAD CB由图形可知AD是△ABD和△ACD的公共边,利用SSS可得 AB△ABD

≌△ACD

F3、利用等量代换

图十一 F

AB+公共边=DE+公共边

例,如图十二:AB=CD,AE=DF,CE=FB。求证:∠B=∠C

E图中:BE=BF+EF;CF=CE+EF.因此可以得到BE=CF

利用SSS可证△ABE≌△DCF因此得到∠B=∠C CD4、利用线段中点或三角形中线定理,或者等边三角形的性质

例、如图十三:∠B=∠C,ME⊥AB,MF⊥AC,垂足

图十二

分别为E、F,M是BC的中点。求证:ME=MF

M是BC的中点,则可以得到BM=CM;利用AAS可得△BME≌△CMF

C例题、如图十四,△ABE和△ACF是等边三角形,求证:CE=BF图十三 F △ABE和△ACF是等边三角形,则AE=AB,AC=AF

∠EAC=∠BAE+∠BAC;∠BAF=∠CAF+∠BAC.则∠EAC=∠BAF

那么△AEC≌△ABF,则可得CE=BF

C

图十四

5、利用三角形角平分线定理

(三角形角平分线上的点到角两边的距离相等)

注意、必须是角平分线上的点

例题、如图十五,在ΔABC中,AD平分∠BAC,DE垂直AB,DF垂直AC,垂足分别为E、F。求证:AE=AF

AD平分∠BAC, DE垂直AB,DF垂直AC,则根据角平分线

性质可得到DE=DF,那么Rt△ADE≌Rt△ADF(HL)

则可得到AE=AF

图十五 例题、已知:如图十六,BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD

于M,•PN⊥CD于N,判断PM与PN的关系.

A由题意知△ABD≌△CBD(SAS)可得BD也是∠AD的角平分线,PM⊥AD,PN⊥CD,由角平分线的性质

可得PM=PN

全等三角形的证明是初中数学几何证明中最重要的一部分,是证明线段相等和角相等最常用的方法。结合全等三角形的判定,全等的条件一般隐藏在已知当中,以上是证明全等隐藏条件的方法总结。

第二篇:全等三角形证明

全等三角形的证明

1.翻折

如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;

旋转

如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;

平移

如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。

2.判定三角形全等的方法:

(1)边角边公理、角边角公理、边边边公理、斜边直角边(直角三角形中)公理

(2)推论:角角边定理

3.注意问题:

(1)在判定两个三角形全等时,至少有一边对应相等;

(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。

一、全等三角形知识的应用

(1)证明线段(或角)相等

例1:如图,已知AD=AE,AB=AC.求证:BF=FC

(2)证明线段平行

例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AE=CF.求证:AB∥CD

(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等

例3:如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE

例4 如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.

例5:已知:如图,A、D、B三点在同一条直线上,CD⊥AB,ΔADC、ΔBDO为等腰Rt三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。

例6.如图,已知C为线段AB上的一点,ACM和CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:CEF是等边三角形。

N

M

FE

C

A B

第三篇:全等三角形证明

全等三角形证明

1、已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。

CA2、已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。

F3、已知,点C是AB的中点,CD∥BE,且CD=BE,问∠D=∠E吗?说明理由。

4、已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?

A B

C

第四篇:初一全等三角形证明

全等三角形1.三角形全等的判定一(SSS)

1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?

2.如图,C是AB的中点,AD=CE,CD=BE.

求证△ACD≌△CBE.

3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF. 求证∠A=∠D.

4.已知,如图,AB=AD,DC=CB.求证:∠B=∠D。

B

5.如图, AD=BC, AB=DC, DE=BF.BE=DF.求证:∠E=∠F

A

DCBF

2.三角形全等的判定二(SAS)

1.如图,AC和BD相交于点O,OA=OC,OB=OD.求证DC∥AB.

2.如图,△ABC≌△ABC,AD,AD分别是△ABC,△ABC的对应边上的中线,AD与AD有什么关系?证明你的结论.

3.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.

E B

4.已知:如图,AD∥BC,AD=CB,求证:△ADC≌△CBA.

CB

5.已知:如图AD∥BC,AD=CB,AE=CF。求证:△AFD≌△CEB.

AC

6.已知,如图,AB=AC,AD=AE,∠1=∠2。求证:△ABD≌△ACE. AE D

3~4.三角形全等的判定三、四(ASA、AAS)

1.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证AB=DE,AC=DF.

2.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm. 求BE的长.

3.已知,D是△ABC的边AB上的一点,DE交AC于点E,DE=FE,FC∥AB。求证:AE=CE。

E

DB

4.已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB

5.如图, AD∥BC, AB∥DC, MN=PQ.求证:DE=BE.3 QDPA

6.如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;

(2)求证:BC=2AB.07.如图,四边形ABCD中,

(2)求证:E是CD的中点;

(3)求证:AD+BC=AB.8.如图, 在△ABC中, AC⊥BC, CE⊥AB于E, AF平分∠CAB交CE于点F, 过F作FD∥

BC交AB于点D.求证:AC=AD.C

第五篇:全等三角形的证明

3eud教育网http://50多万教学资源,完全免费,无须注册,天天更新!

全等三角形的证明

1、已知:(如图)AD∥BC,AD=CB,求证:△ADC≌△CBA。

B C2、已知:如图AD∥BC,AD=CB,AE=CF。求证:△AFD≌△CEB。AC3、已知,如图,AB=AC,AD=AE,∠1=∠2。求证:△ABD≌△ACE。

A

C

ED4、已知,如图,点B、F、C、E在同一条直线上,FB=CE,AB∥ED,AC∥FD。求证:AB=DE,AC=DF。

E

B F C5、已知,D是△ABC的边AB上的一点,DE交AC于点E,DE=FE,FC∥AB。求证:AE=CE。

E

D

B

C

6、已知,如图,AB=AD,DC=CB,求证:∠B=∠D。

B

3eud教育网 http://教学资源集散地。可能是最大的免费教育资源网!

A 全等三角形的证明

2、已知:(如图)AD∥BC,AD=CB,求证:△ADC≌△CBA。

B C2、已知:如图AD∥BC,AD=CB,AE=CF。求证:△AFD≌△CEB。AC3、已知,如图,AB=AC,AD=AE,∠1=∠2。求证:△ABD≌△ACE。

C 1

B

ED4、已知,如图,点B、F、C、E在同一条直线上,FB=CE,AB∥ED,AC∥FD。求证:AB=DE,AC=DF。

E

B F C5、已知,D是△ABC的边AB上的一点,DE交AC于点E,DE=FE,FC∥AB。求证:AE=CE。

E

D

B C

6、已知,如图,AB=AD,DC=CB,求证:∠B=∠D。

B

A

下载初中数学证明三角形全等找角word格式文档
下载初中数学证明三角形全等找角.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    全等三角形练习题(证明)

    全等三角形练习题(8)一、认认真真选,沉着应战!1.下列命题中正确的是A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等 2. 下列......

    第八课 三角形全等证明

    第八讲 三角形全等的条件(2)5.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF, 三角形全等条件(3):有两角和它们的夹边对应相等的两个三角形全等.C求证:AC= BF。 如图,在ABC与DEF中......

    初二数学全等三角形证明[本站推荐]

    初二数学全等三角形证明班别_______姓名_______学号_______2007-5-151.如图,AB=CD,AD、BC相交于点O,要使△ABO≌△DCO,应添加的条件为.(添加一个条件即可)添加条件后,......

    全等三角形证明题(含角平分线)

    全等三角形证明题汇编1.如图,在四边形ABCD中,AC平分DAB,若AB>AD,DC=BC.求证:BD180.图2-12.如图:已知在ABC中,AC=BC,ACB90,BD平分ABC.DE⊥AB。求证:AB=BC+CD.图2-23.如图,在ABC中,C2B,12,试......

    全等三角形证明基础练习

    基础练习1、 如图1,△ABC≌△DEF,∠A=∠D,AB=DE,找出另外两对相等的边和相等的角。DABCE图1 F2、如图2,AO=DO,BO=CO,AB与CD相等吗?说明理由。 AOC图2图13、 如图2,BO=CO,AB∥CD,求证(1)△......

    全等三角形定义与证明

    全等三角形能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角......

    全等三角形证明写理由

    全等三角形证明1.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB到,使AE=,连接DE∵AD平分∠BAC∴∠EAD=∠CAD()∵AE=AC,AD=AD∴△AED≌△ACD()∴∠E=∠C()∵AC=AB+BD∴AE=AB+BD()∵AE=AB+BE∴BD=B......

    全等三角形的证明练习题

    全等三角形专项训练题1、如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不可能是A、∠B=∠CB、AD=AEC、∠ADC=∠AEBD、DC=BEACADBCEAODBCEF第1题图第2题图第3题图2、如图所示......