第一篇:巧用全等三角形证明边角问题
龙源期刊网 http://.cn
巧用全等三角形证明边角问题
作者:王进
来源:《中学生数理化·八年级数学人教版》2013年第12期
在证明一些有关边角关系的问题时,往往需要抓住关键条件,大胆猜测和证明三角形全等,下面举例说明。
第二篇:全等三角形边角边教学反思
全等三角形的判定-边角边教学反思
石门县磨市镇中心学校 向琳才
本节课遵循“数学教学是数学活动的教学,学生是数学学习的主人”这一理念,坚持以学生为主体,教师为主导,让学生自始至终处于积极思维、主动探究的学习状态,同时借助多媒体进行演示,已增强教学的直观性。
本节课从整体上看,比较成功的完成了当堂的教学目标。通过课前热身回顾上节课所学的内容质疑导入,集中学生的注意力,激发学生的探究问题的欲望,引导学生通过问题一的引导“画一画、比一比、想一想”自己动手画出满足条件的三角形,认真观察,并作比较交流,从而发现自己所画出的三角形与其他同学画的三角形是全等的,运用所掌握命题的知识将所获取的定理转化为几何语言,具体的让学生明确了本定理的实际运用。教师引导学生在合理猜测的基础上,亲自动手实践去发现、验证所得结论、激发了学生的学习兴趣,使他们体会到探索的快乐,通过画图证明自己所得结论,增强了学习的信心,始终与学生的实际情况相结合,让不同水平的学生在本节课都能得到发展,通过学生之间的质疑对抗,发现此定理中角必为夹角,从而得出三角形全等的判定方法——边角边。进而引导学生通过运用展示的环节深刻理解“边角边”这一判定定理。
在学习方式上,大胆让学生去猜测、实验、进行合理推理、造就认知冲突,直至发展推理。在运用展示中,注意对学生进行说理的训练,让学生逐步熟悉和掌握由已知结论推出新结论的方法,按准备条件-指定范围-摆明条件-得出结论的过程,进一步掌握规范的书写格式。从直接条件,隐含条件,间接条件,各类题目的层层深入,使学生理解,解题时要先根据图形和已知分析它们所在的三角形,然后证明其全等。同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决。
总之:从我个人感觉来说,我觉得我比较成功的有以下几点:(1)目标明确,重点突出;
(2)方法得当,充分调动了学生的学习积极性;(3)习题由浅入深,设计合理;(4)关注每一位学生,知识落实好;
(5)教师引导,学生讲解,学生间、师生间讨论质疑对抗的场景层出不穷,体现了新课程的理念。从学生角度来说:
(1)学生自己动手操作,由感性认识上升到理性认识,训练了思维能力;
(2)在课堂上能合作交流,不只学习了知识,情感也得到了释放和发展;
(3)运用展示,当堂检测中发现学生对三角形全等的判定(SAS)掌握的好。
第三篇:全等三角形证明
全等三角形的证明
1.翻折
如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;
旋转
如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;
平移
如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。
2.判定三角形全等的方法:
(1)边角边公理、角边角公理、边边边公理、斜边直角边(直角三角形中)公理
(2)推论:角角边定理
3.注意问题:
(1)在判定两个三角形全等时,至少有一边对应相等;
(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
一、全等三角形知识的应用
(1)证明线段(或角)相等
例1:如图,已知AD=AE,AB=AC.求证:BF=FC
(2)证明线段平行
例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AE=CF.求证:AB∥CD
(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等
例3:如图,在△ ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE.求证:CD=2CE
例4 如图,△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD.
.
例5:已知:如图,A、D、B三点在同一条直线上,CD⊥AB,ΔADC、ΔBDO为等腰Rt三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。
例6.如图,已知C为线段AB上的一点,ACM和CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点。求证:CEF是等边三角形。
N
M
FE
C
A B
第四篇:全等三角形证明
全等三角形证明
1、已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。
CA2、已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。
F3、已知,点C是AB的中点,CD∥BE,且CD=BE,问∠D=∠E吗?说明理由。
4、已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?
A B
C
第五篇:初一全等三角形证明
全等三角形1.三角形全等的判定一(SSS)
1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?
2.如图,C是AB的中点,AD=CE,CD=BE.
求证△ACD≌△CBE.
3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF. 求证∠A=∠D.
4.已知,如图,AB=AD,DC=CB.求证:∠B=∠D。
B
5.如图, AD=BC, AB=DC, DE=BF.BE=DF.求证:∠E=∠F
A
DCBF
2.三角形全等的判定二(SAS)
1.如图,AC和BD相交于点O,OA=OC,OB=OD.求证DC∥AB.
2.如图,△ABC≌△ABC,AD,AD分别是△ABC,△ABC的对应边上的中线,AD与AD有什么关系?证明你的结论.
3.如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论.
E B
4.已知:如图,AD∥BC,AD=CB,求证:△ADC≌△CBA.
CB
5.已知:如图AD∥BC,AD=CB,AE=CF。求证:△AFD≌△CEB.
AC
6.已知,如图,AB=AC,AD=AE,∠1=∠2。求证:△ABD≌△ACE. AE D
3~4.三角形全等的判定三、四(ASA、AAS)
1.如图,点B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证AB=DE,AC=DF.
2.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm. 求BE的长.
3.已知,D是△ABC的边AB上的一点,DE交AC于点E,DE=FE,FC∥AB。求证:AE=CE。
E
DB
4.已知:如图 , 四边形ABCD中 , AB∥CD , AD∥BC.求证:△ABD≌△CDB
5.如图, AD∥BC, AB∥DC, MN=PQ.求证:DE=BE.3 QDPA
6.如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;
(2)求证:BC=2AB.07.如图,四边形ABCD中, (2)求证:E是CD的中点; (3)求证:AD+BC=AB.8.如图, 在△ABC中, AC⊥BC, CE⊥AB于E, AF平分∠CAB交CE于点F, 过F作FD∥ BC交AB于点D.求证:AC=AD.C