第一篇:2014软件建模技术大作业
2014软件建模技术大作业
1、实验的目的和意义
通过综合性实验的设计,使计算机科学与技术专业的学生综合训练自己的分析问题、解决问题的能力,积累软件建模开发的工作经验,结合所学的统一建模语言开发理论,指导综合性应用系统的开发实践,提高学生专业开发所需具备的专业素质以及团队协作能力。为以后完成毕业设计和从事软件系统开发工作打下坚实的基础。
2、实验类型
本课程涉及到的实验类型主要是综合型设计实验。本课程综合实验的推荐方法: 充分理解题目内容,明确题目需求,从题目介绍和实际情况出发,找出一些隐含
条件或者隐含的需求。
查阅有关资料,按照统一建模语言的思路和方法来解决问题。
着重从建模的角度和实际应用去考虑问题,从反复的动手做中积累经验。
按照建模语言具体的要求,训练软件文档的书写能力,多画图、多分析,从图表
中分析,把分析设计的结果用图表表示出来。和同组的同学充分合作,利用团队精神进行软件开发。
3、实验的设计题目及内容要求
公开信息管理系统设计
本设计目的在于面向外界介绍学院的公共信息,达到宣传学院的目的。介绍的信息包括:学院历史、专业介绍、部门介绍、实验室介绍、教师信息、学生信息、认证培训等信息,具体的信息在设计的实际调研过程中收集获得。显示页面美观大方,页面操作方便简易,维护工作动态方便。
论文信息管理系统设计
本设计实现论文信息的管理工作。教师网上填写论文信息,管理人员审核信息,教师可网上查询通过审核的科研信息,学院可以统计整个学院的科研情况以及各教研室的科研情况。
科研项目信息管理系统设计
本设计实现科研信息的管理工作。教师网上填写科研信息,管理人员审核信息,教师可网上查询通过审核的科研信息,学院可以统计整个学院的科研情况以及各教研室的科研情况。
课程设计题目信息管理系统设计
本设计实现课程设计题目的管理工作。教师网上提交申报信息;学生可以网上查看、选报题目;教师审核学生的申请,确定学生的申报请求;能记录学生设计过程的信息,并提供相应的查询功能。
资料信息管理系统设计
本设计实现资料信息管理工作。管理员网上维护这些信息,教师可查询相关资料,并实现借阅等功能。
党建信息管理系统设计
本设计实现党建信息管理工作。通过该系统可网上查询人员的基本情况,共青团推优人员、先进积极分子、预备党员情况;可网上审核共青团推优人员、先进积极分子、预备党员;可查询党员党费交费情况等。
学生评教信息管理系统设计
本设计实现学生评教管理工作。学生按照不同考评项进行评教,考评项分为定量考评和定性考评。能计算考评结果;网上可查阅考评的相关信息。
学生信息管理系统设计
本设计完成对学生的信息管理工作。可网上查询学生基本情况,学生干部情况,学生奖励处分情况。
网上答疑信息管理系统设计
本设计建立网上答疑信息系统。学生在网上提出问题,教师回答各种问题;整个系统以课程为组织单位,每门课程有专门管理人员,系统管理人员管理使用人员及权限。消息传递信息管理系统设计
本设计实现教师、学生的信息交流。类似于电子邮件,教师之间,教师学生之间,学生之间可交流信息;每个用户可以方便地管理各种信息资源。
门诊挂号信息管理系统设计
本设计实现医院门诊部的挂号信息管理功能。提供一个可维护的医生坐诊表,灵活安排每个医生上班的时间;对医生的基本信息进行管理,为病患挂号提供查询;根据不同的医生产生不同的挂号费,对每天、每月、每年的挂号量和费用进行统计;每次挂号都需要产生这个病患的就诊号。
4、实验环境
采用自己熟悉的开发工具,应用JSP技术进行开发;推荐基于Tomcat+Mysql或Tomcat+MS-SQLServer作为调试和运行的环境。
JDK版本:J2SDK1.4以上版本
操作系统:主流操作系统,如Windows2000/XP/2003、Linux等
程序开发工具:Eclipse、Netbeans、JBuilder、JCreator等
网页制作工具:DreamWaver、FrontPage等
应用服务器:Tomcat、Resin等
数据库:MySQL、MS-SQLServer等
本课程要求学生以开发小组为单位进行软件开发实验,每个小组在实验的设计题目中选择一个进行设计,最后得出能用于UML应用实例的相应的文档并交上,UML应用实例要求请参见教材第三篇的内容。
分组原则:组员应需求分析、用例建模、系统静态建模、系统动态建模、UML应用实例总结进行合理分工,组员之间应团结合作共同完成系统开发;每组人数为4-6人,不提倡单独进行软件开发。
第二篇:电力电子电路建模与分析大作业
XX大学
研究生课程论文/研究报告
课程名称:电力电子系统建模与分析
任课教师:
完成日期:
2016
年
X
月
X
日
专
业:
电力电子与电力传动
学
号:
姓
名:
同组成员:
成绩:
题目要求
某用户需要一直流电源,要求:直流输出24V/200W,输出电压波动及纹波均<1%。用户有220V交流电网(±10%波动变化)可供使用:
(1)
设计电源主电路及其参数;
(2)
建立电路数学模型,获得开关变换器传函模型;
(3)
设计控制器参数,给出控制补偿器前和补偿后开环传递函数波特图,分
析系统的动态和稳态性能;
(4)
根据设计的控制补偿器参数进行电路仿真,实现电源要求;
(5)
讨论建模中忽略或近似因素对数学模型的影响,得出适应性结论(量化
性结论:如具体开关频率、具体允许扰动幅值及频率等)。
主要工作
本次设计主要负责电源主电路及其参数的的设计,以及建立电路数学模型并获得开关变换器传函模型这两部分内容,具体如下:
(1)
本次设计电源主电路及其参数,采用从后向前的逆向设计思想。首先根据系统输出要求,设计了后级DC/DC型Buck电路的参数。接着设计了前级不控整流电路以及工频变压器的参数。考虑到主电路启动运行时的安全性,在主电路中加入了软启动电路;
(2)
本次DC/DC变换器的建模并没有采用传统的状态空间平均方法,而是采用更为简单、直观的平均开关建模方法,建立了Buck变换器小信号交流模型。最后,推到出了开关变换器的传递函数模型,并给出了Buck电路闭环控制框图。
设计主电路及其参数
1.1主电路设计
根据题目要求,系统为单相交流220V/50Hz输入,直流24V/200W输出。对于小功率单相交流输入的场合,由于二极管不控整流电路简单,可靠性高,产生的高次谐波较少,广泛应用于不间断电源(UPS)、开关电源等场合。所以初步确定本系统主电路拓扑为:前级AC-DC电路为电源经变压器降压后的二极管不控整流,后级DC-DC电路为Buck斩波电路,其中Buck电路工作在电感电流连续模式(CCM),前后级之间通过直流母线和直流电容连接在一起。系统主电路结构如图1-1所示。
图1-1
系统主电路结构图
1.2主电路参数设计
本次设计电源主电路参数,采用从后向前的逆向设计思想。先对后级DC/DC型Buck电路的参数进行设计,接着对前级不控整流电路以及工频变压器的参数进行设计。下面分别对后级的Buck电路和前级经变压器降压后的不控整流电路各参数进行分析设计。
1.2.1
输出电阻计算
根据系统电路参数:,可计算:
输出电流:
(1-1)
负载等值电阻:
(1-2)
1.2.2
BUCK电路占空比及开关频率选择
根据Buck电路占空比计算公式:
假定占空比,可得:
(1-3)
由于开关频率越低,低频扰动频率的选择范围越小,滤波电感的体积越大,整体装置的体积和重量越大。开关频率高,可以用更小的电感来滤除高次谐波,但是开关频率过高会导致开关管功耗变大,发热量显著增加,电路效率变低,散热器体积也更大。因此要折中效率、体积选择开关频率,本次设计选择MOSFET开关频率。
1.2.3
BUCK电路滤波电感选择
由BUCK电路电感电流连续的临界条件:
可得要保证电路工作在CCM模式下,则电感应满足:
(1-4)
根据开关频率,则
(1-5)
假定电感纹波电流为输出负载电流额定值的30%,此时电感值应为:
(1-6)
保留一定余量,本系统实取。
1.2.4
BUCK电路滤波电容选择
电容容值越大,输出电压将近似为恒定,但电容越大,装置体积和成本也相应增大,因此本系统根据输出电压的纹波要求选取电容。本设计按输出电压纹波不超过输出电压的1%进行计算:
(1-7)
保留一定余量,本系统实取。
1.2.5
开关管MOSFET选择
开关导通时MOSFET端电压近似为0V,开关关断时MOSFET承受最大电压为:
(1-8)
一个开关周期内流过开关管的电流最大值等于电感电流最大值,即:
(1-9)
综上,考虑裕量,选择MOSFET的型号为IRF650A,其额定参数为。
1.2.6
整流后直流侧电容选择
直流母线电压通过单相桥式整流而来故每个周期发生2次脉动,单相工频电压的周期为T=0.02s,在T/2周期内电容完成一个充电和放电的周期。直流侧电容的选择依据有:
(1)
有依电流为依据的,例如:每0.5A电流1000uF
(2)
有依RC时间常数为依据的,例如:单相不控整流电路
其中,T为交流电源周期
则:
(1-10)
(3)还有一种经验数据:
负载电流(A)
2A
1A
0.5-1A 0.1-0.5A
<0.1A <0.05A
滤波电容(μF)4000
2000
1000
500
200-500 200
根据直流侧电压平均值为48V,则直流侧的等效电流约为,由经验数据可大概估算直流侧电容为10000uF。本系统实际选择100V/100uF
CL20型金属化聚脂膜电容器,采用10只并联。
1.2.7
整流二极管选择
(1)确定整流二极管的耐压值
根据全桥整流电路中每个二极管所承受的反向电压:
可得整流二极管耐压值为:
(1-11)
其中,为整流桥输入电压有效值,1.1为电压波动系数,为安全系数。
则二极管耐压值为:
(1-12)
(2)确定整流二极管的额定电流值
流过每个二极管的平均电流为直流侧电流的一半,取电流波动系数取1.1,安全系数,则整流二极管额定电流值为:
(1-13)
根据上述参数选择二极管型号为P600D,查其参数手册可知二极管的通态压降为,则每个二极管额通态损耗为:
(1-14)
1.2.8
变压器选择
电压比:
变压器电压比的计算原则是电路在最大占空比和最低输入电压的条件下,输出电压能达到要求的上限。根据公式:
其中,为二极管整流桥输出电压最小值;为最大占空比,取0.9;为
考虑管压降和线压降,取2V;为最高输出电压。
实际根据单相二极管不控整流电路的输入输出关系,可得不控整流的输入侧电压,即变压器二次侧电压为:
(1-15)
则变压器电压比为:
(1-16)
容量:
根据系统输出功率,考虑电路损耗及效率,变压器容量选择为300VA。
铁芯截面积:
铁芯截面积是根据变压器总功率P确定的,根据变压器次级功率为P2=200W。计算变压器输入功率P1(考虑变压器效率η=0.9)P1=P2/0.9=222.2w。
则铁芯截面积为:
(1-17)
匝数:
变压器匝数的选择(工频变压器)
根据变压器最高输出电压,电源周期,铁心截面积,铁心材料所允许的最大磁通密度的变化量,则变压器二次侧绕组匝数为:
(1-18)
则变压器一次侧绕组匝数:
(1-19)
绕组导体截面:
根据流过每个绕组的电流值和预先选定的电流密度,即可计算出绕组导体截面:
(1-20)
其中,导体电流密度选。
1.2.9
主电路软启动设计
由于二极管不控整流后直流侧电容上的初始电压为零,在输入电路合闸的瞬间,会形成很大的瞬时冲击电流,主电路软启动电路不仅可以防止合闸时电路受到浪涌电流的冲击,它还能使电路缓慢的启动,减小了变换器和输出电容上的电流最大值,软启动电路性能的好坏,会直接影响到电源的工作性能,元器件的寿命,所以很重要。常用的软启动有:采用功率热敏电阻电路、采用SCR、R电路、继电器与电阻构成的回路、采用定时触发器的继电器与限流电阻的电路等等。根据系统实际的需要为了避免系统启动可能引起系统内浪涌问题,采用加入软启动环节进行处理,如下图1-2所示。先通过电阻R对输入滤波环节的滤波电容进行预充电,充电完成后接入时间继电器KT使电阻R短路。加入了软启动环节后,避免了瞬时大电压及大电流的冲击,保证了系统工作安全及元器件安全。
图1-2
软启动电路结构图
建立电路数学模型,获得开关变换器传函模型
由于状态空间平均方法建模纯粹基于数学,计算推导比较繁琐、模型不直观。而平均开关建模方法,是直接通过电路变换得到电力电子电路小信号交流模型,更直观、使用更方便,所以本次DC/DC变换器建模采用平均开关方法建模。
2.1建立电路数学模型
任一DC/DC变换器可分割成两个子电路,一个子电路为线性定常子电路,另一个为开关网络子电路。线性定常子电路无需进行处理,关键是通过电路变换将非线性的开关网络子电路变换成线性定常电路。如图2-1所示,为Buck变换器电路。图2-2给出了Buck变换器的开关网络子电路,开关网络子电路用二端口网络表示,端口变量为。
图2-1
Buck变换器电路
图2-2
Buck变换器开关网络子电路
根据开关管导通时,开关管关断时。将上述开关网络子电路用受控源替代,如图2-3所示。且替代后,受控源网络端口与开关网络子电路端口的电量波形应保持一致。将替代后的开关网络的受控源电路与原来的线性定常子电路组合一起,得到含有受控源的等效Buck电路如图2-4所示。
图2-3
受控源替代开关网络子电路
图2-4
受控源替代开关网络的Buck电路
应用开关周期平均的概念,对图2-4等效电路中的各个电量作开关周期平均运算:
(2-1)
得到以开关周期平均值表示的等效电路如图2-5所示,该电路仍是一个非线性电路。
图2-5
经开关周期变换后的Buck变换器
采用扰动法,对上述等效电路中的各个电量引入小信号扰动,即令:
(2-2)
得到有小信号扰动作用的等效电路如图2-6所示。
图2-6
小信号扰动的Buck电路
其中:
(2-3)
将图2-6等效电路各个电量中含有的二次项忽略(主要是受控源电量)
:
(2-4)
得到线性近似、受控源表示的小信号等效电路如图2-7所示。
图2-7
忽略二次项影响的小信号扰动的Buck电路
进一步用理想变压器替代受控源,得到线性近似、理想变压器表示的小信号等效电路如图2-8所示。
图2-8
用理想变压器表示的小信号等效Buck电路
2.2开关变换器传递函数模型
由上述建立的Buck电路小信号交流平均开关模型可推出变换器的传递函数为:
输入至输出的传递函数:
(2-5)
控制至输出的传递函数:
(2-6)
Buck电路闭环控制框图如图2-9所示。
图2-9
Buck电路闭环控制框图
其中:
(1)
为需要设计的控制器;
(2)
为PWM调制器传递函数;
(3)
为输出电压对占空比的传递函数;
(4)
为反馈环节的传递函数。
设计中取,将计算数值带入闭环控制框图,可得本系统Buck电路闭环控制框图如图2-10所示。
图2-10本系统
Buck电路闭环控制框图
其中原始回路增益为:
(2-7)
设计控制器参数
没有加控制器补偿前变换器原始回路增益函数:
(3-1)
其伯德图如图3-1所示。
图3-1
原始回路增益伯德图
利用超前—滞后补偿网络来校正系统,设计的补偿网络的传递函数为:
(3-2)
相应的补偿网络的伯德图如图3-2所示。
图3-2
补偿网络伯德图
补偿后系统开环传递函数伯德图如图3-3所示。
图3-3
补偿后系统伯德图
由图可以看出此时系统的相位余量为67.5°,幅值余量为20.3dB。
电路仿真
根据以上设计的主电路以及控制器参数,在PSIM中搭建仿真电路,并进行仿真验证,仿真模型以及仿真结果如下所示:
图4-1
主电路仿真模型
图4-2
控制电路仿真模型
系统输出电压Uo与输出电流Io的波形如图4-3和4-5所示。
图4-3
输出电压波形图
图4-4
输出电压有效值
图4-5
输出电流波形图
图4-6
输出电压局部放大图
由图4-6可知,输出电压稳态值为24V,波动约为0.02%<1%,满足设计要求,超调量为12.5%,调节时间大约为3ms。
图4-7
突加100%负载输出电压波形图
由图4-7可知,在0.04s时加入100%的负载扰动,输出电压依然稳定在24V,且满足1%的纹波设计要求。
图4-8
输出电路电压、电流波形图
图4-9
输出电路电压、电流有效值
由图4-9中输出电压、电流有效值计算,输出功率约为P=U*I=24*8.3=199.2W,输出功率基本满足设计要求。
建模中忽略或近似因素对数学模型的影响
(1)开关频率对电路模型的影响
开关频率越低,低频扰动频率的选择范围越小,滤波电感的体积越大,整体装置的体积和重量越大。开关频率高,可以用更小的电感来滤除高次谐波,但是开关频率过高会导致开关管功耗变大,发热量显著增加,电路效率变低,散热器体积也更大,更加因此要折中效率、面积选择开关频率。
电路模型的开关频率越大,输出结果越接近数学模型,一般开关频率可以取截止频率的100倍。
(2)扰动频率对数学模型的影响
扰动频率过高:如果高于开关频率,由于一般使用正弦信号模拟扰动,在一个开关周期内扰动信号正负分量相互抵消,小信号扰动失去意义。
扰动频率过低:如果扰动频率过低,在多个开关周期内扰动信号基本为恒定值,相当在给定电压上叠加了一个几乎不变的直流量,不能很好地体现其为小信号“动态”模型。
综上,扰动频率的选择应在一个合适的范围内,这样既可以方便地对电路进行分析和控制,又不失动态建模的意义。
(3)扰动幅度的影响
小信号扰动的幅值应远小于稳态工作点的各量的幅值。根据仿真结果可得随着扰动幅度增大,数学模型的输出电压变化幅度较小。扰动幅值不超过±5V时,输出电压纹波仍满足1%的设计要求。
(4)其他影响
实际电路中存在电感的等效电阻、开关管的开通关断时间、管压降等都会对电路模型的输出产生影响,这些量的大小也会影响小信号建模的准确性和适用性。
参考文献
[1]
裴云庆,等.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.[2]
王兆安,等.电力电子技术[M].5版.北京:机械工业出版社,2009.[3]
林渭勋.现代电力电子技术[M].北京:机械工业出版社,2006.[4]
张崇巍.PWM整流器及其控制[M].北京:机械工业出版社,2003.[5]
徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2006.[6]
张占松
蔡宣三.开关电源的原理与设计(修订版)[M].电子工业出版社,2006.
第三篇:建模考试作业
兰州商学院陇桥学院2012—2013学年第1学期期末考试 数学建模与数学实验、经济管理数学模型
试题
“数学建模与数学实验”、“经济管理数学模型”考试说明:
1.本试卷共十个题,其中一、二必做,三至十题中任选若干题来做;
2.本课程考试为开卷考试,按规定时限交卷。且开卷考试要求独立完成。雷同卷一律作废; 3.上交打印稿,交卷时间 第十八周上课时间; 4.认真填写试卷首页各项内容,不能空白。必需填写内容: 1. 姓
名:陈泳纲
2. 专
业:金融学(理财方向)
3. 计算机能力(等级考试级别及使用软件情况): 4. 是否参加全国大学生数学建模竞赛(否)5. 联系电话:*** 一.简述什么是数学模型和数学建模的基本步骤.(20分)
数学建模的基本步骤
一、数学建模题目
1)以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。
2)给出若干假设条件:
1.只有过程、规则等定性假设; 2.给出若干实测或统计数据; 3.给出若干参数或图形等。
根据问题要求给出问题的优化解决方案或预测结果等。根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。
二、建模思路方法
1、机理分析根据问题的要求、限制条件、规则假设建立规划模型,寻找合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。
2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有:
1).回归分析法(数理统计方法)-用于对函数f(x)的一组观测值(xi,fi)i=1,2,„,n,确定函数的表达式。
2).时序分析法--处理的是动态的时间序列相关数据,又称为过程统计方法。
3)、多元统计分析(聚类分析、判别分析、因子分析、主成分分析、生存数据分析)。
3、计算机仿真(又称统计估计方法):根据实际问题的要求由计算机产生随机变量对动态行为进行比较逼真的模仿,观察在某种规则限制下的仿真结果(如蒙特卡罗模拟)。
三、模型求解:
模型建好了,模型的求解也是一个重要的方面,一个好的求解算法与一个合 适的求解软件的选择至关重要
常用算法有:数据拟合、参数估计、插值等数据处理算法
线性规划、整数规划、多元规划、二次规划、动态规划等通常使用
图论算法,、回溯搜索、分治算法、分支定界等计算机算法, 模拟退火法、神经网络、遗传算法。
四、自学能力和查找资料文献的能力:
建模过程中资料的查找也具有相当重要的作用,在现行方案不令人满意或难以进展时,一个合适的资料往往会令人豁然开朗。常用文献资料查找中文网站:CNKI、VIP、万方。
五、论文结构:
0、摘要
1、问题的重述,背景分析
2、问题的分析
3、模型的假设,符号说明
4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等)
5、模型的求解
6、模型检验:模型的结果分析与检验,误差分析
7、模型评价:优缺点,模型的推广与改进
8、参考文献
9、附录
六、需要重视的问题 数学建模的所有工作最终都要通过论文来体现,因此论文的写法至关重要:
1、摘要:这是评阅者首先将会看到的部分,摘要的好坏对一篇论文能否获奖起到非常重要的作用。
2、一个模型的好坏往往取决于所采用的方法是否合适,采用了一种方法就要明确说明它的合理性,决不能拿到一个问题随便找个方法便往上套。如数据分析预测问题:数据的特点决定了所能采用的方法,对小样本数据的预测往往采用灰色预测、支持矢量机等,而数据量较大的预测则多用神经网络、时间序列等,优化问题的数据优化求解方法更是多种多样,不同的方法适合于不同类型的问题,选择一个合适的方法往往事半功倍。
3、最终数值结果的正确性或合理性是第一位的,结果的表示方法也是不容忽视的,直观清晰的表示更容易为人们所注意、所理解。精心设计表格或采用直观的图形无疑是两种较好的结果表示方法。
4、对论文结果进行合理地分析与误差检验也必不可少,在模型的推广与改进中大胆的提出创新性的想法也会引人注意。
5、论文的排版:一个好的版式会让一篇好的论文更增光彩,一篇论文应该包括两个层次的含义:内容与表现,前者是指文章作者用来表达自己思想的文字、图片、表格、公式及整个文章的章节段落结构等,而后者则是指论文页面大小、边距、各种字体等
二.请结合各自专业谈谈学习数学模型和数学建模课程的体会.(20分)
数学方法在现代经济发展中起着越来越重要的作用,而数学模型是经济学研究必需的工具,运用所学的数学知识通过建立模型来解决经济问题是经济专业学生参加工作后经常要做的工作。大学教育,对于大部分学生来说是他们走向工作岗位前最后的以学习为主的阶段,也是他们各项单科知识得以融会贯通,综合素质积淀最快,最关键的时期。因此,在经济类专业学生的数学基础课上,应该重视培养学生在这方面的能力。数学建模选修课的开设和数学建模竞赛的开展,为培养学生的知识应运能力和创造性思维提供两人良好的环境和机会。数学建模是运用数学的语言和方法,去描述或模拟实际问题中的数量关系,并解决实际问题的一种强有力的数学手段。这门课程作为高等数学,线性代数,概率论与数理统计的后继课程,学生已经初步掌握高等数学的相关基础理论知识和思维方法,具备开设这门课的基础。数学建模的一般步骤可概括为以下几点:
1.2.3.4.5.建模准备。了解问题的实际背景,明确建模目的,搜集掌握必要的数据资料。分析问题,弄清其对象的本质特征。
建模假设。根据实际问题的特征和建模的目的,对问题进行必要的简化,提出若干符合客观实际的假设。、建立模型。根据模型假设,利用适当的数学工具,建立各个量之间的定量或定性关系,采用尽量简单的数学工具,建立数学模型。
模型求解。为了得到结果解决实际问题,要对模型进行求解,在难以得出解析解时,应当借助计算机求出值解。
模型解析。对模型求解得带的结果进行数学的分析,有时是根据问题的性质,分析各变量之间的依赖关系或稳定性态,有时则根据所得的结果给出数学上的预测,有时则是给出数学上的最优决策或控制。不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏度分析等。
模型检验。分析所得结果的实际意义,用实际问题的数据现象等来检验模型的真实性,合理性和适用性。模型只有在被检验,评价,确认基本符合要求后,6.才能被接受,否则需要修改模型。要得到一个符合现实的数学模型,一个真正适用的数学模型其实是需要不断改进和完善的。
数学教育是基础教育的提高阶段,应着眼于未来,为培养高素质的人才打好基础。数学建模课程的数学以掌握概念,强化应用,培养技能为教学重点,在教学环节中,充分注意引导学生通过对各种实际问题建立数学模型,求解及检验,掌握数学概念,方法的应用,逐步培养学生综合应运所学知识解决实际问题的能力,并结合数学内容特点培养数学独立学习的习惯。充分重视习题课的安排和课外作业的选择,使学生有足够的复习和练习时间,及时正确地独立完成作业。根据数学建模的特点,不难看出,在对经济类专业学生的数学教学中,渗透建模思想,开展建模活动,具有深远意义。
1.培养学生的应用意识.数学具有极其广泛的应运性。在我们的日常生活中,运用到数学知识的例子随处可见。在社会盛会的各个领域里,数学的概念,法则和结论更是被广泛地应运着,很多看似与数学无关的问题都可以运用数学工具加以解决。数学建模是沟通实际问题与数学工具之间的桥梁,通过对学生进行数学建模教学,能够促进理论与实践相结合,并且逐步培养学生的应用意识。
2.培养学生的能力。通过数学建模课程的教学与参加数学建模竞赛的实践,使我们深刻感受到数学建模过程,不仅是对大学生知识和方法的培养,更是对当代大学生各种能力的培养。(1)抽象能力概括。应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立数学模型过程,是把错综复杂的实际问题简化,抽象,概括为合理的数学结构的过程。数学建模过程使学生对复杂的事物有意识地区分主要因素与次要因素,本质与表面现象,从而抓住本质解决问题。它有利于提高学生思维的深刻性和抽象概括能力。
自学能力。使大学生在未来的工作和科研中受益匪浅。
洞察力和想象力。数学建模的模型假设过程就是根据对实际问题的观察分析,类比,想象用数理建模或系统辨识建模方法作假设,通过形象思维对为题进行简化,模型化,作出合理的想象,形成实际问题数理化的设想。
利用计算机解决问题的能力。
创新能力。鼓励学生开阔视野,大胆怀疑,勇于进取。让学生充分发挥想象力。
论文写作和表达能力。数学建模成绩的好坏与论文的撰写有着密切的关系数学建模的答卷,是评价的唯一依据。写好论文的训练,是科技写作的一种基本训练。通过数学建模竞赛,学生能够学会如何更加准确地阐述自己的观点想法。
(7)合作交流能力,团队合作精神。大学生数学建模竞赛过程中,必需学会如何清楚地表达自己的思想,实现知识的交流与互补。必需学会如何倾听别人的意见以发挥整体的作用,学会合作,从不同的观点中总结出最优的方案以谋求最大成功。
3.体现学生的主体性。数学建模发挥了学生的参与意识,体现了学生的主题性。教师的主导作用体现在创设好问题情境,激发学生自主地探索解决问题的途径,而学生的主体作用体现在始终明确自身是竞赛的主体。学生必须在全过程集中自己的思想系统区接受教师发出的教学信息,与原有知识体系融合,内化为新的体系。学生要(2)(3)
(4)(5)(6)对教师所给予的信息有批判性地,发展性地能动反映,要在相互讨论,启发下寻求更多更好的解答方案。强化数学建模的对策:
1.激发学生的学习兴趣。兴趣是学习的动力。
2.通过组建数学建模协会,推进数学建模教学。我们可以开展一些讲座,宣传数学建模的意义,激发学生学习数学建模的兴趣,提高学生的数学应用意识和参加数学建模的积极性。
3.不断提高教师自身的水平。首先要求教师本身具有数学建模的能力,否则无法组织学生的数学建模活动。因此,应该对数学教师进行建模培训,帮助他么树立数学建模的意识,掌握数学建模的知识,方法和教学形式,使他们能够最大限度地利用学校资源开展数学建模活动。
综上所述,对经济类专业学生开设数学建模课程,对学生的发展有着非常重要的意义。通过组织数学建模活动和竞赛,不仅能够提高师生对数学的认识水平,而且能够培养一批既具有创新意识,创新精神和实践应运能力,有具有竞赛意识和团队意识,团结协作和拼搏精神的优秀大学生,从而促进学生综合素质的全面发展。全国大学生数学建模竞赛组委会李大潜院士曾经说过:“数学教育本质上就是一种素质教育,数学建模的教学及竞赛是实施素质教育的有效途径。”因此,我们队经济类专业学生开设数学建模课程,将数学建模活动和数学教学有机地结合起来,就能够在胡傲雪实践中更好地体现和完成素质教育。
七.酒驾检测
设警方对司机饮酒后驾车时血液中酒精含量的规定为不超过80%(mg/ml)。现有一起交通事故,在事故发生3个小时,测得司机血液中酒精含量是56%(mg/ml);又过两个小时后,测得其酒精含量降为40%(mg/ml)。试判断:事故发生时,司机是否违反了酒精含量的规定?(设酒精浓度的变化率与酒精含量成正比)。(30分)
解:设C(t)为t时刻血液中酒精的浓度,则浓度递减率的模型应为
d(t)kC(t)dt其通解是:C(t)C(0)ek,而C(0)就是所求量。由题设可知C(3)56,C(5)40, 则:
C(0)e由此解得e2k3k56,C(0)e5k40.56k0.17C(0)56e8k94 40可见在事故发生时,司机血液中酒精的浓度已经超出了规定
第四篇:三维建模技术
计算机三维建模及其应用 作者:刘胜平指导老师:
南昌航空大学航空制造工程学院
摘要:为了更好的应用计算机三维建模技术,本文讲述了计算机三维建模的含义,描述了三维建模的发展历史,说明了三维曲面建模和三维实体建模的主要方法与应用、数据交换接口、三维建模技术的发展趋势。关键字:三维建模技术 1 引言
为了能够在计算机环境下更逼真地模拟现实世界的人和物及其运动形态, 必须在三维空间系统中利用已有的三维建模技术 ,精确地描绘这些事物以实现三维物体的真实再现 ,进而为用户创造一个身临其境、形象逼真的环境。对现实世界的事物进行建模和模拟,就是根据研究的目标和重点, 在三维空间中对其形状、色彩、材质、光照、运动等属性进行研究 ,以达到 3D 再现的过程。因而, 对三维实体的图形图像处理及其模型建模研究显得尤为必要。2三维建模技术的定义、发展历史
三维建模技术是研究在计算机上进行空间形体的表达、存储和处理的技术,在CAD技术发展初期,CAD仅限于计算机辅助绘图,随着三维建模技术的发展,CAD技术 才从二维平面绘图发展到三维产品建模,随之产生了三维线框模型、曲面模型和实体造型技术等。线框模型:20世纪60年代末开始研究线框和多边形构造三维实体,这样的模型被人称为线框模型。三维物体是由他的全部顶点以及边的集合来描述。曲面模型:曲面模型是在线框模型的数据结构基础上,增加可形成立体面的各相关数据后构成的。
实体造型技术:实体模型在表面看来往往类似于经过消除隐藏线的线框模型在线框模型或经过消除隐藏面的曲面模型;但实体模型上如果挖一个孔,就会自动生产一个新的表面,同时自动识别内部和外部;实体模型可以使物体的实体特性在计算机中得到定义。
特征参数化技术:参数化造型的主体思想是用几何约束、工程方程与关系来说明产品模型的形状特征,从而达到设计一系列在形状或功能上具有相似性的设计方案。
变量化技术:我们在进行机械设计和工艺设计时,总是希望零部件能够让我们随心所欲地构建,可以随意拆卸,能够让我们在平面的显示器上,构造出三维立体的设计作品,而且希望保留每一个中间结果,以备反复设计和优化设计时使用。三维曲面建模和三维实体建模的主要方法与应用
第五篇:南昌大学软件学院大作业封面
南昌大学软件学院
C语言程序设计工程实训
大
作
业
题目:班级:组长:小组成员:指导老师:
2012年12月15日