第一篇:关于锅炉氮氧化合物升高原因分析及措施
关于锅炉烟气氮氧化物升高原因分析及
预控措施
一、NOx的形成与分类
氮氧化物:NO,NO2,N2O、N2O3,N2O4,N2O5等,但在燃烧过程中生成的氮氧化物,几乎全是NO和NO2。通常把这两种氮的氧化物称为NOx
1、热力型NOx(Thermal NOx),它是空气中的氮气在高温下(1000℃-1400℃以上)氧化而生成的NOx
2、快速型NOx(Prompt NOx),它是燃烧时空气中的氮和燃料中的碳氢离子团如CH等反应生成的NOx
3、燃料型NOx(Fuel NOx),它是燃料中含有的氮化合物在燃烧过程中热分解而又接着氧化而生成的NOx
二、NOx的升高的分析
1、煤粉燃烧中各种类型NOx的生成量和炉膛温度的关系
热力型NOx是燃烧时空气中的氮(N2)和氧(O2)在高温下生成的NO和NO2
O2十M←→2O十M O十N2←→NO十N N十O2←→NO十O 因此,高温下生成NO和NOx的总反应式为 N2十O2←→2NO NO十1/2O2←→NO2
2、煤粉炉的NOx排放值和燃烧方式及锅炉容量的关系
1)若燃料N全部转变为燃料NOx,则燃料中1%N燃烧生成NOx为1300ppm,实际上燃料N只是一部分转变为NOx,取转变率为25%,则燃料NOx为325ppm,即650mg/Nm。2)热力NOx一般占总NOx的20%~30%,现取25%,即为217 mg/Nm。因此,总的NOx生成量为867 mg/m。
3333)若锅炉采用了低NOx燃烧器、顶部燃尽风等分级燃烧、以及提高煤粉细度和低α措施等,炉内脱硝率可达ηNOx≥50%,因此预计NOx排放浓度≤433mg/Nm。N2和O2生成NO的平衡常数Kp
3当温度低于l000K时Kp值非常小,也就是NO的分压力(浓度)很小
温度和N2/O2(ppm)初始比对NO平衡浓度的影响
40N2/O2(ppm)是N2和O2之比为40:1的情况,这大致相当于过量空气系数为1.1时的烟气 NO氧化成NO2反应的平衡常数Kp
由表可以看出Kp随温度的升高反而减小,因此低温有利于NO氧化成NO2。当温度升高超过1000℃时,NO2大量分解为NO,这时NO2的生成量比NO低得多
煤炭中的氮含量一般在0.5%-2.5%左右,它们以氮原子的状态与各种碳氢化合物结合成氮的环状化合物或链状化合物,如喹啉(C6H5N)和芳香胺(C6H5NH2)等
当燃料中氮的含量超过0.1%时,所生成的NO在烟气中的浓度将会超过130ppm。煤燃烧时约75%-90%的NOx是燃料型NOx。因此,燃料型NOx是煤燃烧时产生的NOx的主要来源。
3、过量空气系数对燃料N转化为挥发分N比例的影响
热解温度对燃料N转化为 煤粉细度对燃料N转化为挥发分N比例的影响 挥发分N比例的影响
综合上述图表及所查资料得出,锅炉氮氧化合物升高的原因主要有下述几点
1、锅炉氮氧化合物升高主要和炉膛温度有关,温度越高生成的氮氧化合物越高,在锅炉运行当中,改变磨煤机运行方式如:B、C、D磨运行,炉膛火焰中心就会升高,炉膛下部吸热量减少,炉膛温度升高,产生氮氧化合物就会升高。
2、锅炉氮氧化合物升高与锅炉过量空气系数有关,综合现在锅炉氧量2.0%-3.0%得出锅炉过量空气系数a 如下所示: 公式a=21/21-Q2 锅炉氧量2.0%所对应下的过量空气系数1.10 锅炉氧量2.2%所对应下的过量空气系数1.11 锅炉氧量2.4%所对应下的过量空气系数1.12 锅炉氧量2.6%所对应下的过量空气系数1.14 锅炉氧量2.8%所对应下的过量空气系数1.15 锅炉氧量3.0%所对应下的过量空气系数1.16 锅炉氧量3.5%所对应下的过量空气系数1.2 通过对过量空气系数的计算,锅炉氧量越高的,燃烧所产生的烟气量就相应增加,锅炉所产出的氮氧化合物就会增加,但锅炉氧量偏低会造成,煤粉燃烧不完全,锅炉化学和机械不完全燃烧热损失升高。
3、煤粉细度对锅炉氮氧化合物的影响 锅炉在运行当中及时调整磨煤机煤粉细度,在锅炉未改变燃烧方式的前提下,煤粉细度的粗细也会影响锅炉氮氧化合物升高和降低。
二、锅炉降低氮氧化合物的措施
1、在燃用挥发分较高的烟煤时,燃料型NOX含量较多,快速型NOX极少。燃料型NOX是空气中的氧与煤中氮元素热解产物发生反应生成NOX,燃料中氮并非全部转变为NOX,它存在一个转换率,降低此转换率,控制NOX排放总量,可采取减少燃烧的过量空气系数在运行当中控制锅炉氧量在2.0%-2.5%控制锅炉氮氧化合物升高。
2、控制燃料与空气的前期混合,通过对降低磨煤机出口一次风速,控制煤粉进入炉膛着火时间,现磨煤机A磨风量60t/h、B磨55-58t/h、C磨45t/h,D磨运行时45t/h,逐步降低磨煤机一次风量,通过对降低磨煤机出口一次风速,控制煤粉进入炉膛着火时间,加强配风通过一、二次风的调整。
3、通过调整磨煤机出口挡板来控制磨煤机煤粉细度,找出煤粉细度的粗细在炉内燃烧产生氮氧化合物的最佳煤粉细度,来控制锅炉氮氧化合物。
4、提高入炉的局部燃料浓度,在锅炉D磨运行时,对锅炉配风进行调整,降低火焰中心位臵,降低D磨煤机的给煤量,在调整时尽量调整其他磨煤机的煤量,避免大幅度调整D磨煤机的给煤量,造成锅炉氧量大幅度波动,控制炉膛负压在-30Pa至-50Pa之间,加强煤粉在炉燃烧时间,防止煤粉燃烧不充分,火焰中心上移,造成炉膛出口烟温高,造成锅炉氮氧化合物升高。
5、改变配风方式:将炉内火焰采用倒三角的配风方式,将从主燃烧器供入炉膛的空气量减少(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧,降低燃烧区内的燃烧速度和温度水平,延迟燃烧过程,而且在还原性气氛中降低了生成NOX的反应率,抑制了NOX在这一燃烧中的生成量,第二阶段燃烬阶段,为了完成全部燃烧过程,完全燃烧所需的其余空气则通过布臵在主燃烧器上方的二次风喷口送入炉膛,与朱主燃烧所产生的烟气混合,完成全部燃烧过程。
第二篇:锅炉承压管道泄漏原因分析及应对措施
锅炉承压管道泄漏原因及应对措施
xxxx有限公司#
1、2机组分别于2011年8月11日和2011年10月5日完成“xx”工程正式投入商业运行。锅炉设备由xx锅炉厂有限公司制造,型号为:DG2030/17.5-II8。
承压管道的泄漏主要就是指水冷壁管、过热器管、省煤器管、再热器管及相关附属管道的泄漏。xxxx有限公司#
1、2机组自投产以来,共计发生过8次锅炉承压管道的泄漏事件,其中水冷壁2次,省煤器1次,过热器5次(#1炉包墙过热器2次、#1炉高过出口A侧放空气管泄漏2次)。
一、承压管道泄漏原因分析
1、引起锅炉承压管道泄漏的原因很多,包括设计、制造、安装、检修、运行、及煤种等多方面,某一管道泄漏故障往往非单一因素所致,而是多种因素同时存在并交互作用的结果。依据各个燃煤发电厂统计“四管”泄漏事故的统计数据来看,磨损、焊接缺陷、过热、腐蚀、疲劳拉裂等是引起锅炉承压管道泄漏的主要原因。同时也可将其分成三大类: a、慢性、积累型泄漏:包括由疲劳、腐蚀、蠕变、磨损等引起的管道泄漏,统称为a类型。这类问题一般与运行时间相关,随着机组运行累计时间的延长和设备的老化,这类问题呈现上升趋势。b、先天缺陷引起的泄漏:这往往由于制造、安装或检修等环节的质量控制问题引起,如焊接缺陷、缺陷部位的寿命因缺程度的大小变化很大,统称为b类型。这一类型管道泄漏随时间的推移呈逐渐下降的趋势。
c、快速、随意型泄漏:这类泄漏往往是由于运行中的短期异常问题引起,比如运行中的汽水回路流量中断、吹灰器异常吹损等,统称为c类型。与前面两类不同,这类炉管泄漏问题一般是由短期因素作用引起,它发生的几率与机组的运行时间无关。
2、结合我公司发生的锅炉承压管道泄漏情况分析统计来看,其中主要由于设计不良或施工环节存在问题导致管道疲劳拉裂5次(#1炉省煤器管泄漏,#1炉前包墙过热器泄漏2次,#1炉高过出口A侧放空气管泄漏2次),焊接缺陷2次(#1炉水冷壁垂直管束泄漏,#2炉冷灰斗处泄漏),设备质量1次。为类型b和a类型或b和c类型协同下导致管道泄漏。
二、预防措施
防承压管道泄漏是一项综合性工作,必须有整体观念,比如汽机凝汽器泄漏影响汽水品质;化学对汽水品质和垢量的监控;金属对泄漏管的金相分析、焊口探伤等,因此需要相关专业的共同协作与配合。随着我厂机组运行时间的增加,a类主导因素的管道泄漏比例将会增加,这也是重点需要进行预防的对象。
1、根据我厂设备的特点,重点加强检查,检查时要求全面、仔细、认真。检查的内容有:
(1)水冷壁管燃烧器两侧、炉膛四角、冷灰斗、水冷壁管与包墙交界处等这些部位需重点检查,除仔细检查外观状况外,还要视情况测量水冷壁壁厚。
(2)省煤器管主要检查磨损情况,其次是腐蚀,包括管外腐蚀及管内腐蚀。靠墙、弯头及节距不均处,易形成烟气走廊,管卡和防磨片易变形松动,都是磨损剧烈之处,须重点检查。检查管道外观与壁厚,大修期间还须割管检查内部结垢情况。针对#1炉省煤器U型管90°弯曲位置在制造商弯制省煤器弯管过程中,炉管金属变形不均而形成环向张应力现象应进行抽样检查(建议取30个弯头进行张应力检查分析)。
(3)过热器主要检查过热烧坏与磨损。对热负荷最高的管道和屏过下部,应重点检查蠕胀。低温过热器应重点检查管道的磨损。包墙过热器应重点检查与其它受热面与其靠近出,因为这些地方都易出现磨损。
(4)高温再热器除重点检查磨损情况外还需检查其蠕胀情况。低温过热器重点检查边排管和弯头磨损情况。
(5)吹灰器附近管束及吹灰器下方省煤器管件应重点检查管道磨损情况。
(6)针对#1锅炉高过出口联箱左侧放管座与管子焊口泄漏事件应对锅炉排空气、取样等小管道与母管焊接位置支吊架进行检查,同时对该类型焊口重点监视检查。
(7)针对运行中炉外小管管座爆裂的预防及整改要求;加强炉外小管的现场巡查,发现振动较明显的管段,拆卸管座部位的保温装置,利用目测方法进行检查外观管壁及焊口部位有无异常。利用停机机会对炉外小管管座进行着色探伤检测,发现问题及时处理。
(8)对采购的高温高压管道,验收时除了有合格检测证明外,对于不锈钢类的管道,还需逐根进行外观宏观检查,发现可疑还需进一步进行着色检查,防止管道制作的缺陷。
2、检修管理落实
(1)承压管道的检修中要始终把质量放在第一位,保证检修质量。焊口施工前要进行材质光谱分析,焊接时严格执行焊接工艺要求,焊后要做无损探伤检验。
(2)我厂调峰负荷变化较大,由于频繁变负荷运行,锅炉水冷壁热胀冷缩,易使壁面的氧化膜脱落,为高温腐蚀提供了有利条件,另外,如果负荷变化太快而影响正常的水循环,导致水冷壁局部温度升高,也会加速高温腐蚀。建议对水冷壁进行喷涂防磨,可有效的地保护水冷壁,使其不在发生高温腐蚀。
(3)检查过程中磨损、腐蚀超标的防磨片、管件应及时进行更换。并建立起检查更换台账。
(4)确保炉管泄漏检测系统的稳定与可靠性。
(5)制定炉外小管管座台账,制定专门巡检部位监视表。(6)禁止使用乙炔切割的形式进行管道切割,条件不允许必须使用乙炔切割时,应去除10mm范围内硬化区并且做好防止焊渣掉入管道内的措施。
3、运行管理
(1)严格遵守锅炉安全操作规程。严格控制锅炉运行参数,加强管壁温度监视,加强锅炉燃烧调整,防止气流刷墙、贴壁、火焰偏斜,减少烟温偏差和受热面热偏差。
(2)重视吹灰器正常投入和退出的可靠性,不但要求确保其机械部分能正常运行,而且从其控制系统的逻辑设置来确保吹灰器的正常投入和退出,避免吹损受热面管。
(3)加强化学监督工作,确保锅炉给水,炉水水质遵循锅炉给水标准。严格执行化学清洗的规定,做好锅炉停用期间的保养工作。
第三篇:锅炉缺水、满水事故的原因分析及解决措施
锅炉缺水、满水事故的原因分析及解决措施
1.1 锅炉缺水事故
在锅炉重大事故中,缺水事故是最常见的一种。我国多年的锅炉事故统计数据显示,缺水事故约占锅炉重大事故的50%左右。缺水事故常造成严重后果。对锅炉缺水事故必须给予足够的关注。
1.1.1 锅炉容水的特点
锅炉中容水的特点在蒸汽锅炉运行中,锅筒(锅壳)内容纳和维持一定的水量,可使蒸汽压力和锅炉水位相对稳定,也有利于锅炉自然循环和汽水分离,是锅炉安全运行的基本条件。锅炉中容水有以下特点:
(1)锅炉中容水多少是相对于锅炉蒸发量而言的。比如锅炉中容纳有1吨水而中断供水,若锅炉蒸发量为1吨,则锅炉中的水1小时可蒸干;若锅炉蒸发量为10吨/小时,则锅炉中的水1/10小时即可蒸干。锅炉蒸发量越大对供水可靠性的要求越高。
(2)锅炉是在密闭承压条件下容水的。锅炉水位不便显示,用水位表显示时有时不十分可靠;容水系统的任何破裂或泄漏都会影响水位的维持。
1.1.2 根据缺水的程度不同,可分为一般缺水和严重缺水
(1)一般缺水:液位计水位在规定的最低水位以下,但还能看得见;或水位虽看不见,但用“叫水法”后可见到水位时,称为一般缺水。
(2)严重缺水:液位计水位通过“叫水法”后,仍不能看见水位时,称为严重缺水。
1.1.3 锅炉缺水现象
锅炉缺水现象及危害锅炉运行中,水位表显示的水位低于最低安全水位线时,叫锅炉缺水。严重缺水时水位表内看不到水位;低水位警报装置发出低水位报警声响;有过热器的锅炉,过热蒸汽温度升高;给水流量不正常地小于蒸汽流量。
严重缺水会使锅炉蒸发受热面管子过热变形甚至被烧塌;管子胀口渗漏以致胀管脱落;受热面钢材过热或过烧,降低或丧失承载能力,管子爆破;炉墙损坏。处理不当时可能导致锅炉爆炸。1.1.4 锅炉缺水的原因
(1)运行人员疏忽大意,对水位监视不严;或运行人员脱岗睡岗,放弃对水位的监视。(2)水位警报装置和给水自动调节器失灵。
(3)水位表汽,水连管堵塞,旋塞渗漏或其他原因形成虚假水位。(4)给水设备或给水管路发生故障,使供水减少或中断。(5)锅炉排污后,未关闭及未关严排污阀,或排污阀泄漏。(6)锅炉水冷壁,对流臂束,省煤器臂子或烟管爆破泄放水汽。
1.1.5 锅炉缺水采取的措施
(1)认真冲洗液位计,对照液位计与水位的实际位置观察其是否一致。(2)自动控制给水切换成手动控制上水。
(3)检查水池水位,判断水泵运行是否正常,管道有无堵塞并排除故障。(4)减少蒸汽输出负荷。及时补充上水,注意缓慢上水,不可猛上。(5)采取“叫水法”实现正常液位,其操作如下: 打开液位计的放水阀门,让液位计得以冲洗; 再关闭液位计的蒸汽阀门让水连通管得以冲洗; 然后关闭放水阀门,打开蒸汽阀门应有水位出现。连续操作几次可实现正常液位。“叫水法”只适用于液位计通水高于锅炉受热面最高水面及炉水容量大的锅炉。否则不可采取“叫水法”操作,以免造成延误缺水事故处理时间,使事故扩大。
1.1.6 锅炉缺水事故的防范
①锅炉运行人员持证上岗,严格执行“锅炉运行操作规程”和“岗位责任制”。
②新装,改造或检修后的锅炉,应检查水位表安装的位置是否正确,防止锅炉出现虚假水位。
③为保证水位表指示正确,水位表的清洗检查工作每班至少应进行两次。
④水位表的汽,水旋塞发现泄漏时,应及时修理,防止因水位表旋塞堵塞,泄漏等原因形成虚假水位。
⑤妥善维护锅炉给水设备和管路阀门,保证锅炉可靠供水。
⑥锅炉排污时,应严格监视水位下降的情况,排污后应关好排污阀。
1.2 锅炉满水(溢水)事故
锅炉水位高于水位表最高安全水位刻度线的现象,称为锅炉满水。锅炉满水时,水位表内也往往看不到水位,但表内发暗,这是满水与缺水的重要区别。
满水发生后,高水位报警器动作并发出警报,过热蒸汽温度降低,给水流量不常地大于蒸汽流量。严重满水时,锅水可进入蒸汽管道和过热器,造成水击及过热器结垢。因而满水的主要危害是降低蒸汽品质,损害以致破坏过热器。1.2.1 锅炉带水会造成危害
使蒸汽管道发生水冲击;有过热器的锅炉将水带到过热器可造成结垢,损坏设备。发现锅炉满水后,应冲洗水位表,检查水位表有无故障;一旦确认满水,应立即关闭给水阀停止向锅炉上水,启用省煤器再循环管路,减弱燃烧,开启排污阀及过热器,蒸汽管道上的疏水阀;待水位恢复正常后,关闭排污阀及各疏水阀;查清事故原因并予以消除,恢复正常运行。如果满水时出现水击,则在恢复正常水位后,还须检查蒸汽管道,附件,支架等,确定无异常情况,才可恢复正常运行。上述事故虽然是锅炉运行中最常见也是最基本的几种事故,但如果不及时予以排除,仍将会对锅炉运行产生一定的影响,甚至带来更大的后果,造成一定的经济损失。为此,工程技术人虽和运行人员应及时判断事故的类型,并采取有效措施,予以迅速排除。
1.2.2 根据满水的程度不同,可分为一般满水和严重满水
(1)一般满水:液位计水位在规定的最高水位以上,但还能看得见;或水位虽看不见,但用“叫满水法”后仍可看见水位时,称为一般满水。
(2)严重满水:液位计水位通过“叫满水法”后仍看不见水位时,称为严重满水。
1.2.3 现象
(1)水位计内充满炉水时其颜色发暗。
(2)水位警报器发出高水位呜叫,高水位灯亮报警。(3)装有过热器的锅炉,过热蒸汽温度下降。(4)蒸汽带水量增大。
(5)集汽包(分汽缸)中大量存水,疏水器振动,打开后全是水。(6)给水量不正常地大于蒸汽量。
(7)蒸汽管振动,阀门,法兰均有水溢出。
1.2.4 造成满水的原因主要可见两种
(1)操作人员失职,违反操作规程,未能对液位计严密观察,致使上水过多。
(2)仪表,设备缺陷所致:如液位计,汽水连管,阀门位置安装不合理,造成假液位(与安装位置过高有关);液位计冲洗不净时,满水误认为没有水而堆续上水;高水位报譬器失灵;液位计放水阀漏水,水位指示不正确;给水自动调节器失灵;给水阀严重渗漏等等。
1.2.5 锅炉满水(溢水)采取的措施
(1)认真冲洗液位计,对照液位与水位的实际位置观察其是否一致。(2)切换自动给水调节器,改为手动上水。(3)停止给水,必要时打开排污阀放水。(4)打开集汽包下的疏水器,放掉存水。
第四篇:电厂锅炉分隔屏过热器常见问题原因分析及处理措施
电厂锅炉分隔屏过热器常见问题原因分析及处理措施
(大唐长春第三热电厂 吉林省长春市 130103)
摘 要:随着当今电厂锅炉锅炉容量与蒸汽压力的不断增加,过热器在锅炉中的的地位也越来越重要。但是由于恶劣的工作环境,经常发生管屏出列、管子内壁腐蚀等问题。本文结合长春某电厂多年运行的实际情况对分隔屏常见问题进行了分析,并制定了处理措施。将大大提高机组的可靠性,为设备长周期稳定运行提供可靠的保障。
关键词:过热器 变形 腐蚀 超温
0引言
电厂锅炉是火力发电厂的三大主机中最基本的能量转换设备。它使燃料在炉内燃烧放热,并将锅炉内工质水加热成具有足够数量和质量的过热蒸汽,工汽轮机使用。分隔屏是锅炉的重要过热器,但是由于分隔屏过热器的工作环境十分恶劣,随着工作时间增加,设备会出现变形、腐蚀等问题,所以必须采取一定的手段和措施,才能为了避免分隔屏损坏,延长设备使用寿命。
1锅炉分隔屏过热器的工作原理
过热器的作用是将饱和蒸汽加热成具有一定温度的过热蒸汽。在锅炉负荷或其他工况变动时应保证过热蒸汽温度正常,并保持在规定范围内波动。从电厂热力循环看,蒸汽的初参数越高,则循环热效率越高。随着锅炉容量的增大及蒸汽初参数的提高,过热器的作用就更加重要。
过热器由五个主要部分组成: a)末级过热器;b)过热器后屏;c)过热器分隔屏;d)立式低温过热器和水平低温过热器;e)顶棚过热器和包墙过热器。
随着锅炉容量增大和蒸汽压力的进一步提高,水蒸发所需要的热量减少,而蒸汽过热热进一步增加,必然要将过热器布置在炉内的高烟温区,如分隔屏过热器。分隔屏过热器是以吸收炉膛辐射热为主的辐射换热器。可以降低炉膛出口烟温,减少烟气扰动和旋转,改善过热蒸汽的气温特性。
2锅炉分隔屏过热器的布置及结构
以长春某电厂为例,该电厂拥有两台350MW锅炉为亚临界参数、一次中间再热、自然循环汽包炉,采用平衡通风、直流式燃烧器、四角切圆燃烧方式,燃用褐煤。锅炉的最大连续蒸发量为1165t/h;机组电负荷为350MW(即THA工况)时,锅炉的额定蒸发量为1045.56t/h。
分隔屏过热器就布置在炉膛上方,前墙水冷壁和过热器后屏之间,沿炉宽方向布置四大屏,每大屏又沿炉深方向分为6小片。每小片由9圈共18根管组成。由于处于炉膛位置和受热的不同,管子的材质也不同,通常分别为12Cr1MoVG、SA-213TP304H。管屏从炉膛中心开始,分别以一定的横向节距沿整个炉膛宽度方向布置。
分隔屏沿炉膛宽度方向有四组汽冷定位夹紧管并与墙式再热器之间装设导向定位装置以作管屏的定位和夹紧,防止运行中管屏的晃动;同时,管子与管子之间有活动卡块(如图1所示),能保证管子之间能上下窜动,但不会突出管屏面。
3锅炉分隔屏过热器常见问题
锅炉分隔屏过热器位于炉膛内,工作环境恶劣,出口蒸汽温度达到540℃,经常发生以下问题:
(1)分隔屏管排卡块脱开、管排出列;
(2)分隔屏管排弯曲变形;
(3)分隔屏管排内壁腐蚀;
(4)分隔屏流体夹管内弯头渗漏。
以?L春某电厂2号锅炉为例。检修期间进行受热面检查时,发现2号炉分隔屏过热器有15根管出列,出列管位置分别在分隔屏夹屏管上方至顶棚管下方,出列管不同程度弯曲(如图2所示)。出列管全部进行割管更换,割管下口距下弯头最低处为5.7m,上口距下弯头最高处为13.4m。
以长春某电厂1号锅炉为例。检修期间,对1号炉分隔屏过热器进行检查,发现内壁存在结垢(如图3所示)与腐蚀情况,附着物去除后,可见管内壁有点蚀坑(如图4所示)。
4锅炉分隔屏过热器常见问题原因分析
针对分隔屏常见的问题,通过检修记录、水汽指标记录、现场查验、化验分析以及同类型锅炉分隔屏过热器设备情况对比,对导致这些问题的原因进行了分析,得出以下结论。
4.1 分隔屏管排出列的原因分析
(1)由于安装、制造及运输、运行过程中个别屏管与管之间管卡变形卡涩,运行中出现膨胀偏差时管卡断裂,部分管失去约束逐渐出列。
以长春某电厂2号锅炉分隔屏过热器管排出列情况以及出列管排割管情况进行实物分析(割管下口距下弯头最低处为5.7m,上口距下弯头最高处为13.4m)。出列管标高在56.684m至64.384m之间,在此区间由5道活动夹块,每间隔2.37m有一组活动夹块固定管排,由此分析管排固定不存在问题,造成管排出列的主要原因就是活动夹块断裂。
(2)个别管排超温,膨胀量增大,也是造成管排出列的原因之一。
以长春某电厂分隔屏过热器超温记录进行分析。根据1、2号锅炉超温情况分析,两台炉分隔屏过热器个别管屏在14年、15年均存在超温情况,其中,2号炉分隔屏第2、5、7、23、24、25点超温较为频繁。此处的分隔屏过热器管均有弯曲变形现象。
特别要强调一点,分隔屏过热器使用的是12Cr1MoVG,使用温度是580℃,温度超限值是484℃。由超温记录来看,超温均在2~5℃之间,时间在1~5分钟。虽然超温限值较低,超温量较小,但测量的是炉外温度,近似于蒸汽温度,而没有考虑炉内管壁存在55℃~110℃换热温差,两者存在温度梯度。
(3)有时从经济角度考虑采用给水泵低压运行。压力低时蒸发段吸热量增加过热段吸热量减小,导致过热受热面管排超温。
4.2 分割屏管内腐蚀原因分析
(1)水汽品质不合格是导致腐蚀发生的原因之一。在设备运行过程中,曾将发生过热网加热器漏泄,当时锅炉给水、炉水、过热蒸汽、再热蒸汽和饱和蒸汽氢电导率超标。抽查21日,过热蒸汽DDH 0.186μs/cm,22日,过热蒸汽DDH 0.179μs/cm。
(2)给水、炉水及蒸汽含有微量Cl-、SO42-、乙酸等阴离子导致金属表面氧化膜破坏,使腐蚀加剧。
(3)过热器管内壁直接与高温高压蒸汽流中的干过热蒸汽发生高温蒸汽腐蚀是腐蚀产生的又一可能原因。
(4)基建阶段及锅炉停备用期间,过热器管内不免存在脏污、积水和氧气进入,产生腐蚀会使Fe3O4保护膜遭到破坏。
5锅炉分隔屏过热器常见问题处理措施
5.1 分割屏管排出列处理措施
国内锅炉屏过出现大面积乱排、出列还是非常普遍的,轻微的管排出列问题并不严重,只要进行处理即可。
(1)重点应该关注管壁超温问题。建议电厂对各屏炉外测点对应的回路及温度进行统计,以便了解各回路吸热及水动力分配情况是否存在问题。
(2)检修期间,对管屏活动夹块进行全面检查,看是否存在卡涩、变形、撕裂,致使管排膨胀受阻和出列因素。
(3)低负荷时注意控制运行压力,避免过热器管壁超温。
(4)在炉内加温度测点监测屏过金属壁温,避免炉内管壁存在55℃~110℃换热温差对监测的影响。
(5)进行分隔屏过热器检查或检修,应做好检查和检修的详细记录以及影像资料,定期进行劣化分析,判断劣化趋势,在发生故障前进行更换工作。
(6)给水泵低压运行可产生一定节能效果,但是低压运行将导致过热器超温,对锅炉安全运行带来影响较大,建议谨慎采用低压运行方式。
5.2 分割屏管内腐蚀处理措施
(1)防止热网加热器、凝汽器泄漏,降低蒸汽中的氯离子和氧的含量。加强对给水质量监督,防治减温水水质不合格。
(2)加强对炉水质量监督,保证过热蒸汽纯度。加强锅炉排污,降低炉水含盐量,减少蒸汽携带量。
(3)加强凝结水精处理出水质量控制,按月进行水汽系统痕量离子检测。
(4)加强停炉期间的防腐,每30min监测一次水汽pH值、电导率和氢电导率,每1小时测定一次水汽中的铁、铜含量,保证炉水和分离器出水pH值大于9。
(5)大小修时加强对汽包内水汽分离装置的维护,保证水汽分离效果,减少蒸汽带水。
(6)严格加强锅炉过热蒸汽温度的控制,保持热负荷稳定,防止高温腐蚀及低熔点腐蚀性化合物贴附在金属表面上。
6总结
电力工业是国民经济发展的基础。电力工业的发展水平和电能供应的数量和质量是衡量工业、农业、国防和科技现代化的重要标准。特别是在我国北方,供热电厂肩负着冬季为千家万户供热的重要任务,将近6个月的供热期,机组需要连续运行,其设备稳定性至关重要。而分隔屏过热器作为电厂锅炉的重要设备,一旦发生问题必将直接导致机组停运,冬季供热中断的严重后果。及时发现问题,采取科学有效的措施,降低分隔屏过热器的事故发生率,将大大提高机组的可靠性,为设备长周期稳定运行提供可靠的保障。
参考文献:
[1]叶江明.电厂锅炉原理及设备(第二版).北京:中??电力出版社,2007
[2]郑体宽,杨晨.热力发电厂.北京:中国电力出版社,2007
作者简介:
孙洪坤(1986.11-),男,籍贯:吉林省公主岭市,学历:研究生学历,工程师,研究方向:电力工程
第五篇:循环流化床锅炉磨损原因及改进措施
循环流化床锅炉磨损原因及改进措施 金属件的磨损 1.1 布风装置磨损 1.1.1 原因分析
循环流化床锅炉布风装置的磨损主要有2 种情况: 第一种情况是风帽的磨损, 通常发生在循环物料回料口附近, 主要原因是由于较高颗粒浓度的循环物料以平行于布风板的较大速度冲刷风帽造成的。另一种情况是风帽小孔的扩大, 这类磨损将改变布风特性, 同时造成固体物料漏至风室。1.1.2 改进措施
a.改变风帽结构来延长风帽寿命, 用钟罩式结构的风帽来代替蘑菇状风帽, 有效减少磨损, 延长使用寿命。
b.在炉膛底部四周打1 圈台阶, 可使流化床锅炉中沿墙面下流的固体物料转而流向布风板上面的空间, 从而避免冲击炉底的布风板和周界的风帽。
1.2 水冷壁管的磨损 1.2.1 原因分析
循环流化床锅炉水冷壁管的磨损主要发生在炉膛下部敷设的卫燃带和水冷壁管交界的区域。造成磨损的原因有以下2 个方面: 一是在这个过渡区域内, 沿壁面下流的固体物料与炉内向上运动的固体物料运动方向相反, 因此在局部产生了旋涡流;另一个原因是沿炉膛壁面下流的固体物料在这个交界区域发生流动方向的改变, 对水冷壁管产生了冲刷。1.2.2 改进措施
a.采用金属表面热喷涂技术防磨。涂层的硬度高于基体的硬度, 且涂层在高温下会生成致密、坚硬和化学稳定性更好的氧化层, 提供更好的保护。
b.通过改变该区域的流体动力特性来达到水冷壁管防磨的目的。在水冷壁管过渡区域的一定位置加焊挡板或浇注料梁, 用以阻挡固体物料向下流动, 采用这种措施后水冷壁管的磨损大大减轻了。
c.另一种较常用的方法是改变水冷壁的几何形状, 耐火材料结合简易弯管使卫燃带区域与上部水冷壁管保持平直, 这样固体物料沿壁面平直下流时,撞击区下移至耐火材料部分, 消除了边界处造成的旋涡效应, 从而保护传热管不受磨损。d.炉膛下部壁面垂直段与渐缩段交界处、炉顶及炉膛出口等处, 都是易发生磨损的部位, 因此在设计时应在结构上给以考虑或加设防磨措施。1.3 省煤器的磨损 1.3.1 原因分析
省煤器尾部对流受热面的磨损也是不能忽略的。在省煤器尾部的烟道中烟气是向下流动的, 烟气中的颗粒受重力作用, 速度较大。高的颗粒浓度和颗粒速度, 导致省煤器尾部的受热面磨损严重。1.3.2 改进措施
一般在省煤器每级的第1、2 排管的烟气迎风面装上护瓦, 在贴炉墙处或弯头等易产生局部磨损部位装上护帘、护瓦等, 从而减少受热面的磨损。
1.4 管式空气预热器 1.4.1 原因分析
在管式空气预热器中, 烟气在管内纵向冲刷, 因此飞灰粒子对管子的磨损较小, 只在进口段管壁处磨损较严重。烟气在进入管前是平行流动的, 无旋涡。烟气进入管子后, 在入口处气流会产生收缩, 收缩处管壁附近就会出现负压旋流区, 吸引烟气, 所以收缩至最小截面后又会迅速扩张, 经过一定距离后才完全恢复与管壁的平行流动。在烟气流扩张过程中, 灰粒随烟气以一定的角度斜向冲击管壁, 产生了冲击磨损, 所以在烟气进口段(1~ 3)Dn(Dn为管子内径)的范围内会产生较严重的磨损, 很容易磨穿管壁造成漏风, 导致空气预热器低温腐蚀和堵灰, 降低锅炉效率。1.4.2 改进措施
在进口处加装防磨管或加防磨环。特别需要注意的是应使用外接防磨管, 防磨内套管是不可行的。因为在加装防磨内套管后, 空气预热器进口段虽受到了保护, 但防磨内套管出口处的烟气会突然扩张,产生旋涡区, 使出口处的管壁局部磨损加剧。所以加装防磨内套管不但不能有效防磨, 反而会加重磨损。2 耐火材料的磨损及破坏
循环流化床长期运行在高温条件下(温度可达900~ 1 000 ℃), 且温度变化频繁, 易造成循环热冲击, 此外炉内有大量高速流动的高温固体物料, 因此循环流化床锅炉常使用大量的耐火材料进行保护。这些区域主要包括燃烧室、分离器、烟道和物料回送管路。因耐火材料破坏而造成的事故是仅次于受热面磨损的第二大事故原因。因此正确设计、选择及安装耐火材料对循环流化床锅炉的安全运行至关重要。2.1 耐火材料破坏的主要原因
2.1.1 温度循环波动和热冲击以及机械应力造成了耐火材料的裂缝和剥落。温度循环波动时, 由于耐火材料骨料和粘合料的热膨胀系数不同, 继而形成内应力破坏耐火材料, 温度循环波动常常造成耐火材料内衬的大裂缝和剥落。温度快速变化产生的热冲击(如启动时)可使耐火材料内的应力超过抗拉强度而产生剥落。机械应力造成的耐火材料的破坏则主要是由于耐火材料与穿过耐火材料内衬处金
属件热膨胀系数不同而造成, 因此在设计时应考虑增加适当的膨胀空间来避免耐火材料的剥落。2.1.2 固体物料的冲刷造成了耐火材料的破坏。循环流化床锅炉耐火材料的易磨损区域主要包括边角区、旋风分离器和固体物料回送管路等部分。耐火材料的磨损随冲击角的增大而增加, 因此应尽量减少旋风分离器、烟道等的冲击角。2.2 各部位耐火材料的设计注意事项
主要采用循环流化床锅炉膛和高温旋风分离器区域的耐火层主要采用水冷壁衬里, 用短销钉将25~ 50mm 厚的致密耐火材料支撑在烟气侧的锅炉管件上。外侧(即非向火侧)则采用常规保温材料来保持温度。薄衬里比厚衬里更能经得起热冲击。为增加刚性和抗冲击性能, 常在水冷壁衬里内增加纤维。一般说来薄衬里的厚度为150mm , 通常分为致密的工作层和保温层。使用分层衬里比使用厚衬里更为经济, 也更易于维修。但是, 对于较高温度的外壳(温度范围为150~ 260 ℃的情况), 会因使用薄衬里而散热多, 降低机组效率。厚衬里通常由2 层或3 层构成, 总厚度为300~ 460mm。最里面一层是致密的耐热工作表面, 由耐磨砖、耐磨可塑料砌筑而成或由浇注料浇注而成,防止受热面受到高温高速运动的物料颗粒的磨损。打底保温材料可减少热损失, 从而提高整台机组效率。2.2.1 炉膛
炉膛部分采用厚衬里, 由75~ 150mm 的致密抗磨损的浇注料或可塑料覆盖住相似厚度的保温材料构成。对于有缺陷的区域, 可用磷酸盐黏合剂来修补。磷酸盐黏合剂体积稳定, 抗磨特性好, 且具有与现有材料结合力好的特点。修补的区域至少应使用2个销钉, 暴露在高温区的可塑料衬里应使用陶瓷或铸造合金销钉。2.2.2 旋风分离器
旋风分离器筒体和锥体都承受着相当恶劣的工作条件。对许多衬里来说, 反复的热冲击和温度循环变化、磨损及挤压剥落是导致大面积损坏的原因。修补的方案之一是用耐火砖或耐火预制块来代替浇注的厚衬里, 用磷酸黏结可塑料进行修补。分离器锥体所处的工作状况与其筒体大致相同。建议使用震动浇注来保证衬里具有足够的强度和耐磨性能, 锥体部分建议使用膨胀系数低的浇注料。2.2.3 返料回路及返料机构
热冲击、严重的磨损及温度循环变化是导致这部分经常损坏的原因。可采用厚的密实保温浇注料,但缺点是施工困难。最好在耐磨浇注料中适当添加不锈钢纤维丝, 也可用保温砖或浇注料打底, 上铺耐磨砖。3 结束语
循环流化床燃烧技术在我国还是一门新技术,其金属构件和耐火材料磨损存在着比较突出的问题, 应根据不同部位, 不同磨损机理, 采取不同的防磨措施。