第一篇:电站锅炉结焦问题分析及措施研究
电站锅炉结焦问题分析及措施研究
摘要:由于电站锅炉燃烧器附近出现结焦以及锅炉膛内的大量结焦、积灰等情况,通常会使空气的动力工况遭到一定的破坏,使锅炉膛出口的温度升高,从而引起锅炉的对流受热面壁温升高,进而破坏锅炉水循环,最终降低了锅炉的效率。本文分析了电站锅炉运行的特点,并针对电站锅炉运行中的一些特点分析结焦问题,提出如何防止电站锅炉结焦的措施。
关键词:结焦;问题;措施
目前我国电力行业已经步入了“大机组、大电网、高自动化、高电压”的时代,但是在电站锅炉的运行当中,很多的锅炉存在不同程度的膛壁结焦现象,大量的炉膛结焦会影响电站锅炉的经济性和安全性,缩短其使用寿命。产生电站锅炉结焦问题的原因是多样的:温度的影响、材料的选择、锅炉设计的技术等。本文就电站锅炉结焦问题及解决措施进行分析和研究。
1.结焦的具体表现
电站锅炉结焦现象是多样的,具体来说主要有:(1)锅炉在结焦初期料层差压是下降,但结焦严重时,料层差压出现急剧增加的现象;(2)炉膛负压增大,风室风压波动大;(3)氧量下降;(4)压力、汽温、负荷指标均下降;(5)床层排渣管发生堵搴,排渣不畅;(6)流化床内出现白色火花,可得知床料、渣块在炉内发生不正常的地运动;
2.#9炉结焦问题概述
HG-220/100-10型电站锅炉中以#9锅炉最具代表,该锅炉是采用自然循环、悬浮燃烧、平衡通风、固态排渣,同时结合单炉膛、单汽包、倒U型设置,采用中间储仓式热风送粉的煤粉炉。
2.1#9燃烧器基本情况
#9采用的是直流煤粉燃烧器,该燃烧器为正四角切圆布置,该切圆直径设计值的一次风、二次风的直径分别为400mm、800mm,同时每组燃烧器有三个二次风,且一、二次风相互交错,三次风在最上方。各次风参数具体如下:
表l各次风参数
名称风率%风速m/S风温C
一次风24.7329220
二次风39.9342327
三次风24.45570
周界风6.7842327
2.2#9锅炉结焦具体部位
#9锅炉结焦部位如图中灰色部分所示,主要分布在后墙靠近#4角方向,同时甲侧墙和后侧墙也出现了一些。
我们可以想象,#4的燃烧器多次出现掉焦、挂焦现象,如果在冬季供暖时期,会因此出现锅炉灭火情况,大块的焦块落入锅炉的冷灰斗,破坏冷灰斗,使得灰水溢出。
3影响结焦的因素
3.1煤质结焦特性的分析
融化温度和灰质的成分是影响结焦的主要内因。总的来说,碱性氧化物可以起到灰熔点降低的作用,而酸性氧化物能够使灰的薪度和熔点提高,碱性氧化物和酸性氧化物之间组分的多少以及互相的比例对灰熔点有较大的影响。如,灰质中的碱性氧化物Na2O、K2O、Fe2O3、CaO、MgO,会呈现出一定的结焦性。低熔点共熔体的主要组成部分是Fe2O3和CaO,可以说碱性氧化物对灰的沾污性有很大关系;酸性氧化物A12O3、SiO2、TiO2,都有增高灰熔点的作用,但对灰熔点的影响程度不同。A12O3能够阻碍熔体变形的骨架。SiO2的含量过高会使得灰的黏度增高,同时灰提早的软化,可以用来解决一些难以复合的化合物。
3.2炉膛结构设计特性分析
3.2.1炉膛内温度影响
灰的软化或融化的难易与燃烧器区域的温度有密切关系。燃烧器的温度愈高,灰就愈容易实现软化或熔融,但是其也越有可能产生结焦。第一,一些熔点中等的煤,放在一般的炉膛下并不会产生结焦,但在燃烧器区域的火焰温度特别高的情况下,同样也会结焦。这是由于煤中易挥发的物质气化与锅炉内温度成正比,这为结焦创造了条件。第二,炉膛出口处温度增高,容易在炉膛上部形成结焦。尽管有时炉膛出口温度低于煤的熔化温度,但由于成分是不均匀的,因此某些易熔颗粒仍未完全熔化,有可能粘在受热面上,形成结焦。采用较低的炉膛出口温度,能够满足低灰熔点的燃煤的需要。
3.2.2炉膛结构特性参数影响
炉膛断面热负荷、容积热负荷、燃烧器区域壁热负荷和炉膛的几何尺寸有着直接的关系。炉膛容积热负荷的选取燃烬有关,还与炉膛温度和炉膛出口温度有关,尤其是对燃煤灰熔点低的来说。如果过低,反映炉膛容积过大,炉膛内水冷壁的设计过多,炉膛的火焰温度偏低,容易灭火;反之,过高,表示炉膛容积过小,炉膛水冷壁布置过少,炉膛的火焰温度较高,容易产生结焦。
3.3运行调整与检修安装分析
3.3.1火焰的影响
一次风与二次风相比,尽管一次风含粉,但其速度较低,如果选择燃用无烟煤、贫煤的燃烧器,宜选用二次风,同时可以把二次风布置在火焰的下游侧的水冷壁上,这样在不影响火的同时下,又降低了火焰下游的负压,减少火焰两侧的压差,提高了火焰的刚性;燃用高挥发成分的烟煤,可选取一次风,通过设置偏置周界风,提高火焰的刚性。
3.3.2炉内空气影响
以整个炉膛来进行燃烧的切向燃烧方式,与炉内空气动力息息相关。在进行切向燃烧时,会在炉中形成一个火球。如果炉内气流旋转的直径增大,会使射流根部和上邻角过来的火焰靠的更近。如此对炉膛充满度有好处、对混合也有好处、对着火也有利。但事实上,假想切圆直径总是小于切圆直径的:切圆直径过大,一次风所带来的煤粉气流可能会发生偏转贴壁,进而引起结焦,这是我们必须要避免的。因此,减少气流偏离的重要措施是较小假想切圆直径。
表三
4.防止结焦技术的措施
第一,加强燃料管理。要保证良好的入炉煤的质量,特别是对煤的细度、粒度、熔点、矸石等指标的严格控制。
第二,做好事前准备工作。在点火之前一定要做好流化试验工作,观察底料流化的情况以及厚度,保证合格。
第三,加快锅炉启动速度,减少结焦。锅炉启动时应尽量缩短时间,由于调整不当极易出现结焦,特别是投煤初期的煤油混烧阶段,当大量的煤投入到锅炉,无法完全燃烧,形成局部高温结焦。因此当床温达到投煤要求时,应立即投煤,在燃烧稳定后迅速断油,防止结焦。
第四,加强锅炉运行的检查,建立常规的运行检查制度。每班的值班人员必须对锅炉的结焦情况至少进行一次检查,一旦发现有大量结焦情况,需及时汇报、解决。
第五,严格执行厂家的运行程序,确保回料设备安全运行。避免因回料阀内部的局部死区而出现的结焦现象。回料阀内的充气量应严格控制在1%的标准之内,避免回料阀内结渣。
第六,在设计时,制造厂因采用国外先进技术对锅炉热力性能进行预测,进而确保沿炉膛断面的温度的均匀。同时,设计应选适当布风板以及床层阻力,以保证其在运行中床层流化均匀,减少或避免大颗粒在布风板上发生沉积现象,保证床层内没有死区。选用炉前气力播煤装置,煤均匀入炉,避免而引起局部结焦现象。
5.结论
电站锅炉结焦问题的产生受设计、制造、运行多方面的影响。制造商应及时开展质量回访工作,力求完善。作为运行单位,应不断提高锅炉技术运用的理论水平,同时不断学习同类机组的优秀经验,分析本锅炉产生结焦的具体原因,找出解决本锅炉结焦问题的最佳方案。同时不断积累工作经验。锅炉结焦问题是可以解决的。
【参考文献】
[1]刘永刚,刘文献.某电厂#3锅炉结焦问题的原因分析[J].河北电力技术,2003(5).[2]武美玲.浅析准能公司发电厂1#锅炉结焦问题[J].内蒙古石油化工,2011(20).
第二篇:(论文)电站锅炉稳定燃烧的措施
锅炉稳定燃烧的措施
班级:动力姓名:代飞学号:课程:燃烧理论与技术
0802
200802000604
电站锅炉稳定燃烧的措施
摘要:该文从稳定燃烧的机理出发,详细阐述了锅炉稳定燃烧的方法,采用先进的燃烧方式,使锅炉燃烧稳定且燃烧完全.通过提高二次风与炉膛差压,使燃烧更加充分.合理关小燃烧器上部二次风挡板开度,增加主燃烧区域二次风量,使得着火充分燃烧稳定,燃烧完全.本技术对同类型机组有着重要的推广价值。
关键词:锅炉;稳定燃烧;燃烧稳定;影响因素;措施
引言
锅炉燃烧是否稳定,通常取决于炉膛的温度、氧量、煤粉浓度及锅炉的燃烧方式。本文重点从以上4个方面对锅炉燃烧进行技术分析。通过采用C型燃烧方式及采用燃烧器摆角“对冲”型燃烧方式,合理关小燃烧器上部二次风挡板开度,使锅炉燃烧稳定,避免锅炉灭火,同时还可以降低锅炉飞灰、灰渣含碳量,降低机组的发电煤耗。
1.影响因素分析
燃烧的稳定性直接影响锅炉的安全性,即锅炉是否稳定持续的燃烧是关系燃烧安全的重要因素。锅炉燃烧是一个复杂而多变的过程。锅炉的燃烧稳定性既反映了过来着火的难易程度又体现了着火后的燃烧状况。合理的燃烧工况应该是迅速着火,快速的火焰转播,强力的燃烧和充分的燃尽。着火阶段是整个燃烧过程的关键。要使燃烧在较短的时间完成,必须强化着火过程,即要保证着火过程能够稳定迅速的进行。稳定的着火是燃烧过程良好的开端,而充分燃烧且燃尽是实现锅炉稳定经济燃烧所必须的。要组织良好的燃烧过程其标志就是尽量接近完全燃烧。保证燃烧在炉膛内完全燃烧的条件是:着火要及时稳定;适合的燃烧速度并使燃烧完全。
高炉煤粉气流是一种低热值燃料,其主要成分CO、CO2、N2 和少量的H2、H2O等,热值约为3000KJ/ Nm。所以纯燃高炉煤粉气流的锅炉在组织燃烧时采用了一些强化燃烧的措施如:采用双缩腰炉膛将燃烧区单独隔开并在燃烧器处敷设卫燃带,燃烧区加设蓄热器,燃料、空气同时预热,双旋流平焰燃烧器、新型钝体隙缝式燃烧器等。对于全燃高炉煤气锅炉的稳定完全燃烧主要体现在形成稳定的火炬和尾部烟道CO的含量接近于0。
影响锅炉燃烧稳定性的因素除与锅炉本身结构有关,燃料本身的因素与燃烧条件对锅炉的稳定运行 起着重要的作用。全燃高炉煤气的锅炉燃料由冶金行业的高炉运行工况决定。高炉煤气成分、压力、热值随之波动。有时高炉煤气的供应量也会波动,这些对于全燃高炉煤气的锅炉安全经济运行有着重要的影响。本文主要讨论高炉煤气本身因素和燃烧环境变化对锅炉燃烧稳定性的影响。通过高炉煤气的着火机理的研究和对现场实际运行状况的了解,可以知道影响全燃高炉煤气锅炉的燃烧稳定性的主要因素为:高炉煤气成分变化(高炉煤气热值变化);高炉煤气压力变化;高炉煤气入炉初温;助燃空气量和空气温度;锅炉负荷。
2.煤粉在炉膛稳定燃烧的影响分析
2.1氧量
充足的氧量是煤粉燃烧和燃烬的必要条件,氧量不足就会造成煤粉不能完全燃烧,飞灰、灰渣的含碳量会增大,所以锅炉煤粉燃烧必须提供充足的氧量,保证煤粉燃烬。2.2燃烧温度
要想保证煤粉可靠着火,必须提供足够的着火热量,使环境提供的热量大于煤粉的着火热,使煤粉着火环境温度大于着火温度,保证煤粉可靠燃烧。2.3煤粉细度
理论和试验研究证明,煤粉的着火温度与煤粉浓度(固气比)在一定范围内成反比关系,提高一次风煤粉的浓度可降低煤粉的着火温度,使煤粉提前着火,进而保证稳定燃烧。
3.锅炉稳定燃烧技术分析
3.1采用C型燃烧方式,提高一次风煤粉浓度
理论和试验研究证明,煤粉的着火温度与煤粉浓度(固气比)在一定范围内成反比关系。这一原理说明,在调整锅炉燃烧时,可以通过提高相应一次风煤粉的浓度来降低煤粉的着火温度,使煤粉提前着火,进而达到稳定燃烧和降低锅炉飞灰、灰渣含碳量的目的。
通过采用C型燃烧方式,使燃烧更加集中,燃烧加强炉膛温度提高,燃烧完全。采用这种燃烧方式,煤粉集中,煤粉浓度增大,即采用集中燃烧方式。这种燃烧方式煤粉的着火热降低,着火温度降低,煤粉着火提前,且容易着火,煤粉着火后热量集中,膛温度提高,着火充分燃烧完全,使煤粉在主燃烧区域大部分被燃烧,燃烬程度增大,这样使燃烧过程缩短,火焰中心下移,锅炉飞灰、灰渣含碳量下降。实践证明通过提高燃烧区域火焰温度,对稳定锅炉燃烧,降低锅炉飞灰、灰渣含碳量,是一种非常有效的方法。3.2采用燃烧器摆角对冲燃烧方式
采用燃烧器摆角“对冲”型燃烧方式。所谓的“对冲”型燃烧方式,就是燃烧器分上下两组的锅炉,采用下组燃烧器上摆,上组燃烧器下摆,使两组燃烧器煤粉气流形成“对冲”。采用这种燃烧方式使炉膛火焰下移,使燃烧更加集中。这种燃烧方式煤粉的着火热降低,着火温度降低,煤粉着火提前,容易着火,煤粉着火后热量集中,炉膛火焰中心温度提高,着火充分,燃烧完全,使煤粉在主燃烧区域大部分被燃烧,燃烬程度增大。这样使燃烧过程缩短,火焰中心下移,锅炉飞灰、灰渣含碳量下降。采用C型燃烧方式和“对冲”型燃烧方式,还可以使煤粉的挥发份集中,使煤粉着火容易。3.3合理调整燃烧器上部二次风挡板
要想保证煤粉完全燃烧,就必须保证主燃烧区域内有充足的氧量,充足的氧量是煤粉燃烧和燃烬的必要条件,氧量不足就会造成煤粉不能完全燃烧,飞灰、灰渣的含碳量会增大,所以锅炉煤粉燃烧必须提供充足的氧量,以保证煤粉燃尽。
二次风挡板开度直接影响燃烧区域的氧量,燃烧器上部二次风档板开度过大,会造成燃烧器区域供风不足,主燃烧区域相对缺氧,主燃烧区域因缺氧煤粉燃烧不完全,燃烧器区域炉膛温度低,燃烧不稳定,锅炉容易发生灭火。另外,燃烧器上部二次风投入过多,炉膛出口烟气量增加,烟气流速增加,会使炉膛火焰向上偏斜,火焰中心上移,锅炉燃烧不稳定。因此燃烧器上部二次风挡板的开度应随负荷的降低而逐渐关小,尤其燃用较差的煤种时,燃烧器上部二次风投入率要适当减少。3.4锅炉负荷
锅炉负荷发生变化的时,炉膛的平均烟温发生变化,燃烧区的烟温也随之变化,从而引起锅炉燃烧稳定性发生变化。锅炉负荷降低时,进入锅炉的燃料减少,进入炉膛的热量也减少,尽管炉膛的吸热量也下降了,但两者综合起来后,炉膛的平均温度仍然是下降的,燃烧区的温度也下降。锅炉稳定性下降,克服外界的干扰能力下降,诸如高炉煤气热值、压力波动等。所以锅炉负荷下降对燃烧稳定性不利。全燃高炉煤气锅炉对负荷影响往往来自于燃料侧,因为它的燃料为高炉生产时的副产品,高炉运行工况决定高炉煤气的产量和品质。当然,还有炉膛负压波动、燃烧器被杂质堵住等也会影响锅炉燃烧的稳定性。
4.稳定锅炉燃烧技术措施
(1)、负荷低于140MW,采取滑压运行方式,减负荷速度3MW/min。减负荷前通过各项参数及就地观察证实炉内确实无焦子,逐渐停止第四层给粉机,停止#4排粉机,根据煤质情况停止第三层部分给粉机。不允许断层、缺角燃烧。(2)、给粉机下粉插板应保持全开,转速保持在400-500r/min,尽可能保持给粉机高速运行,采用集中燃烧方式。(3)、双通道燃烧器锅炉,边风开度20%,腰风开度20%(必要时可全关,视燃烧器温度而定,使其不超过400℃即可)(4)、适当降低一、二风压,以不堵一次风管和保持氧量4-6%为原则。任何情况下确保油枪可靠备用。(5)、副司炉在制粉系统启停操作时要缓慢进行,倒风时要保持一次风压稳定,停运的制粉系统一次风温保持75~80℃,制粉系统运行时要保证磨煤机出口温度维持在65~70℃,同时对运行的制粉系统要精心监盘,加强调整,保证制粉系统出力,粉仓粉位在3.0米以上,煤粉细度控制在20%~30%。严禁停止磨煤机而不倒风现象的发生。
(6)、当发现有燃烧不稳迹象时,立即解列压力自动手动调整。保持合适的给粉机转数,在保证一次风管不堵的前提下采用火焰集中的办法稳定燃烧。(7)、燃烧调整时避免给粉机转数大幅度波动,要保持各单管一次风压平稳。同时要与值长和汽机司机联系好,必要时可利用加、减负荷来控制汽压,任何情况下都要以保持燃烧稳定为主。
(8)、当发生燃烧不稳时要立即投油助燃,并立即加负荷至燃烧稳定为止,汇报值长及分厂。油枪投入的数量要保证炉内煤粉能充分燃烧,防止炉内高浓度煤粉局部灭火而发生爆燃事故,并检查给粉机来粉情况。(9)、相关人员要严格控制炉膛压力的变化,当燃烧不稳时要维持炉膛负压不要过大,适时调整炉膛压力,维持锅炉稳定燃烧。
结论
这些都是非常好的方法,同时对降低锅炉飞灰、灰渣含碳量,降低机组发电煤耗也非常有效,对同类型机组有着重要的推广价值。有以下几点结论:(1)高炉煤气着火和燃烧稳定及燃烧条件对全燃高炉煤气锅炉的燃烧稳定性至关重要。
(2)在对高炉煤气着火、稳燃机理和现场运行状况了解的基础上提出影响全燃高炉煤气锅炉的五个主要因素:高炉煤气压力;高炉煤气成分和热值;高炉煤气初温;送风空气量和空气初温;锅炉负荷。
(3)系统地对影响全燃煤气锅炉稳定性各个因素进行分析,使运行人员能了解影响锅炉稳定运行的主要因素,进而对实际操作产生积极的影响,为全燃高炉煤气锅炉系统运行优化提供基础。
第三篇:秸秆电站锅炉火力发电
稻壳秸秆生物质发电锅炉参数简介:
容量:10—75蒸吨;
热效率:85—92%;
适用燃料:稻壳、秸秆、木屑等农林废弃物;
应用范围:大型集中供热、火力电厂发电;
简介:郑锅稻壳秸秆生物质发电锅炉主要有三种形式,ZG型生物质电站锅炉(链条炉排)、ZG型生物质电站锅炉(角管式链条炉排)、ZG型生物质电站锅炉(循环流化床),完全满足了不同企业的供热及发电需求。下面来分别的了解下此三类产品:
1、ZG型生物质电站锅炉(循环流化床):
避免或解决了生物质燃烧及换热过程中的积灰和结渣问题,并且能够长期稳定运行。烟气的排放满足国家相关的环保标准,灰渣含碳量低,可以实现飞灰的综合利用。
2、ZG型生物质电站锅炉(链条炉排):
配有鼓引风机进行机械通风,并配有螺旋出渣机实现机械出渣,控制监测仪表齐全,锅炉运行安全可靠,排出的灰、渣可直接作为农家肥使用,是一种高效节能环保产品。
3、ZG型生物质电站锅炉(角管式链条炉排):
锅炉本体采用角管式、自承重结构,巧妙地解决了锅炉的膨胀与支撑结构简单、可靠。燃料采用喷播方式加入炉膛,使燃料以“层燃+悬浮燃烧”的混合方式进行燃烧,燃烧效率高。
随着社会对能源需求的日益增长,作为主要能源来源的石化燃料在迅速地减少。因此,寻找一种可再生的替代能源,成为社会普遍关注的焦点。生物质能是一种理想的可再生能源,它来源广泛,每年都有大量的工业,农业及森林废弃物产出。
在目前世界的能源消耗中,生物质能消耗占世界总能耗的14%,仅次于石油、煤炭和天然气,位居第四位。而在我们国家特别是北方地区的玉米杆、南方的稻壳等可再生资源非常丰富,用其代替或部分代替燃煤,不仅为企业带来丰厚的经济回报,也增加了广大农民的收入。另一方面,生物质能是一种清洁可再生能源,CO2排放接近于零,因此利用生物质能对保护环境、改善生态、提高农民生活水平等都具有重要的作用。
生物质燃料直接作为锅炉燃料,也是利用生物质能的一种有效途径。近年来,生物质锅炉在我国得到了迅速的发展。郑锅生物质电站锅炉是将农村地区的农林秸秆废弃物直接或加工成生物质颗粒燃料供电站锅炉使用,具有社会效益和经济效益的双重统一,且使用生物质发电享受国家优惠补贴政策。
郑锅生产的生物质电站锅炉具备国内领先技术,能够成功避免积灰和结渣问题,烟气的排放量满足国家相关的环保标准,可以实现飞灰的综合利用。
第四篇:电站锅炉检常见问题
电站锅炉内检 常见问题及案例分析
一、常见问题
(一)、锅筒检验的常见问题
1、裂纹(图1-2)
锅炉检验中经常发现锅筒内部预埋件焊缝、汽水挡板焊缝存在裂纹,有时也发现下降管、给水套管、安全阀管座等焊缝存在裂纹,偶尔还发现锅筒对接焊缝存在裂纹。
图1 锅筒封头环焊缝裂纹
2、腐蚀(图3)
一般常见于筒体汽空间及两侧封头等应力集中处。
3、结垢(图4)
水垢一般位于水位线附近及筒体底部。
图3 汽空间腐蚀
图4 水位线附近结垢
4、汽水分离装置及安全附件损坏(图5-6)常见的有钢丝网分离器损坏和电接点水位计损坏
图5 钢丝网分离器损坏 图6 水位计损坏
(二)、水冷壁检验的常见问题
1、过热、变形(图7-8)
一般常见于热负荷较高区域及折焰角处水冷壁管。
图7 热负荷较高区域炉膛水冷壁变形
图8 汽水分界线处炉膛水冷壁变形
2、磨损
折焰角、防渣管、燃烧器周围、各门孔两侧、热电偶温度计两侧、吹灰器附近、进风口、落料口以及冷灰斗区域水冷壁管等烟气流速较大部位最易磨损。
3、鼓包、胀粗
一般位于高热负荷或水循环不良区域,例如:防渣管、燃烧器周围、各门孔两侧以及折焰角处水冷壁管等部位较易鼓包或胀粗。
4、裂纹(图9-10)
热负荷较高区域水冷壁管及防渣管,可分为长期超温裂纹和短期超温裂纹。
图9 水冷壁裂纹(短期过热)
图10 水冷壁裂纹(长期过热)
5、机械损伤(图11-12)
因焦块脱落而导致下部水冷壁管、冷灰斗区域水冷壁管及流化床锅炉埋管等被碰伤或砸扁。此外,检修时人为机械刮伤也时有发生。
图11 冷灰斗落焦砸伤
图12 人为机械损伤
6、鳍片开裂、烧穿(图13-14)
燃烧器周围、各门孔两侧及热负荷较高区域水冷壁鳍片开裂或烧穿。
图13 炉膛水冷壁鳍片开裂
图14 吹灰器附近鳍片烧损
7、腐蚀、结垢(图15-16)
热负荷较高区域水冷壁管外壁高温腐蚀、内壁氧化腐蚀及结垢,可通过割管检查或其他方法检查发现。
图15 水冷壁管炉侧外壁氧化层
图16 水冷璧取样管内部情况明显结垢
8、燃烧器喷嘴烧坏(图17)
9、节流孔异物(图18)
10、积灰、结渣、挂焦
图17 燃烧器喷嘴烧坏
图18 螺旋段与垂直段水冷壁内部异物
(三)、省煤器、过热器、再热器检验的常见问题
1、磨损(图19-24)
一般常见于上部管排、穿墙管、烟气走廊管子以及吹灰器附近的管子。
图19 过热器磨损
图20 过热器磨损(烟气走廊)
图21 一级再热器管子弯头磨损
图22 烟道省煤器支撑管下部吹损
图23 导流板脱离
图24 一级再热器管子磨损
2、变形、移位(图25-26)
高温管组(排)因管卡开裂而导致管组(排)变形、移位最常见。
图25 屏式过热器变形
图26 冷夹管变形离行
3、积灰、堵灰(图27-28)
一般为管排积灰,蛇行管组堵灰。
图27 顶棚及后包墙过热器积灰
图28 再热器蛇形管组堵灰
4、氧化、腐蚀(图29-30)
一般省煤器腐蚀为氧腐蚀或低温腐蚀,而过热器、再热器大多为高温腐蚀。
图29 一级再热器管子内壁氧化
图30 后墙吊挂管(穿墙套管)烧损
5、管卡、防磨瓦等损坏(图31-32)
常见的有悬吊结构件、固定卡、管卡、阻流板、防磨板等烧坏、脱落、变形等。
图31 省煤器防磨瓦脱落
图32 管卡移位
6、胀粗、鼓包(图33-34)
常见于过热器及再热器高温管段部位。
图33 末级过热器管鼓包
图34 三级过热器出口联箱管子弯管处胀粗
7、裂纹(图35-36)
一般顶棚过热器、包墙过热器鳍片因膨胀而开裂,异种钢接头因应力作用而产生裂纹。
图35 通道墙与包墙附近的鳍片烧裂
图36 顶棚过热器鳍片开裂
(四)、集箱检验的常见问题 1、裂纹(图37-38)
常见的有管座角焊缝表面裂纹,支座、吊耳与集箱角焊缝表面裂纹和环焊缝表面裂纹,以及母材表面裂纹。
图37 集箱管座角焊缝裂纹
图38 集箱支座与筒体焊缝开裂
2、腐蚀
有内表面腐蚀和外表面腐蚀两种形式;既包括化学腐蚀,又有电化学腐蚀等多种形式存在。
3、内部异物(图39-40) 常见的有水渣、泥垢、铁锈等杂物
图39 省煤器进口集箱内部异物
图40 水冷壁进口集箱内部异物
4、护板开裂(图41-42)
因护板无法传热而导致受热开裂。
图41 包墙集箱包覆板开裂
图42 水冷壁集箱包覆板开裂
(五)、减温器检验常见问题
1、喷嘴减温器(图43-44)
常见的有内衬套、喷嘴及筒体焊缝裂纹,喷口磨损,内壁腐蚀、冲刷等。
图43 喷水减温器加强板脱落
图44 喷水减温器喷嘴喷头破裂
2、面式减温器(图45-46)
常见的有筒体焊缝及母材裂纹;芯管泄漏等。
图45 面式减温器筒体母材表面裂纹
图46 面式减温器筒体环焊缝表面裂纹
(六)、锅炉范围内管道检验常见问题
1、腐蚀
包括化学腐蚀和电化学腐蚀等多种腐蚀形式,受外部腐蚀气体影响而导致管道外表面腐蚀更常见。
2、裂纹
以高温裂纹和应力裂纹为主。
3、材质劣化
一般常见的有材料珠光体球化或材料晶体石墨化等。
(七)、其他常见问题
1、制造、安装遗留缺陷(图47-52) 常见的有焊口未熔合、未焊透、夹渣等制造遗留问题;以及外购件材质错用,弯管椭圆度超标,支吊架、杂项管安装不规范等安装遗留缺陷。
图47 膨胀受阻
图48 膨胀指示器安装错误
图49 支座安装错误
图50 椭圆度超标
图51 管道表面裂纹(材质错用)
图52 热工仪表管安装错误
2、炉墙漏烟、钢架过热(图53-54)
图53 炉墙漏烟
图54 钢架过热
3、浇注料、耐火骨料开裂、脱落(图55-56)
图55 浇注料开裂
图56 间隔包墙吊挂处耐火骨料脱落
4、炉顶密封不严(图57-58)
图57 三级过热器管与顶棚之间密封不良
图58 外护板密封不良,漏灰严重
5、吊杆松动、变形、过热氧化(图59-60)
图59 吊杆变形
图60 吊杆松动
6、安全附件
安全阀、压力表超期未校验,水位计、热电偶损坏未维修等。
7、外置式汽水分离器角焊缝裂纹、未熔合(图61-62)
8、资料不齐全。
图61 汽水分离器管座角焊缝裂纹
图62 汽水分离器管座角焊缝未熔合
一、典型案例分析
(一)、锅筒裂纹(图63-64)
1、案例
某厂一台型号为WGZ-220/9.8-1的发电锅炉,累计运行小时约45000小时,经我所目视检查发现锅筒内部预焊件与接水盘支撑角钢、汽水挡板、锅筒间焊缝存在肉眼可见裂纹近20条,最长一条为100mm左右;经MT进一步检查发现封头对接焊缝也存在1条裂纹,内部预焊件另有10多条裂纹,后经打磨处理发现裂纹最深达6mm。
图63 锅筒托水盘预埋件角焊缝裂纹
图64 汽水挡板与筒体焊缝裂纹
2、原因分析
经查,该锅炉内部预焊件材质为Q235A,锅筒材质为19Mn6,焊条采用E4303,在制造厂内焊接后整体热处理。由于该锅炉锅筒材质与内部预焊件材质性能差异较大,错用酸性焊条,锅筒母材与焊缝及内部预焊件之间热膨胀系数相差较大,且该发电机组启停比较频繁,因此该锅炉在频繁的启停运行过程中,受锅筒母材与焊缝及内部预焊件之间巨大热应力的影响,从而产生了疲劳裂纹。
3、处理措施
经现场打磨消除裂纹后,实测其剩余壁厚,并查强度计算书。若剩余壁厚大于该锅筒最小需要壁厚,则可以无需处理继续投入使用;若剩余壁厚小于该锅筒最小需要壁厚,则可采用堆焊或挖补处理,也可降压使用,以便确保锅筒安全运行。需要强调的是,修理应委托有相应资质的单位施工,并请有资质的特种设备检验检测机构实施修理监检。
(二)、水冷壁管鼓包、磨损
1、案例
某厂一台型号为DHCF35-3.82/450-WⅡ的发电锅炉,累计运行小时约6万小时,检验人员在对锅筒检查发现水垢很厚,经了解得知该厂锅炉水质管理非常薄弱,于是在对水冷壁进行宏观检查时,重点检查热负荷较高区域水冷壁管的鼓包、胀粗情况,检查结果发现该区域水冷壁管约有1/3存在不同程度的鼓包。同时考虑到该炉型为循环流化床锅炉,具有烟 气流速大、飞灰多等特点,检验人员本次重点检查了以往未被重视的热电偶温度计两侧的管子磨损情况,经壁厚测量发现热电偶温度计两侧的管子磨损已经很严重了,许多管子壁厚减薄量竟高达30%以上。
2、原因分析
由于该厂锅炉水质管理薄弱,锅炉水质经常不合格,造成水冷壁结垢,结垢后导致传热不良,因此导致水冷壁过热鼓包、胀粗。又由于该锅炉为循环流化床锅炉,具有烟气流速大、飞灰多等特点,受热电偶温度计阻挡影响,烟气在电偶温度计两侧流速增大,从而导致热电偶温度计两侧的管子磨损加剧。
3、处理措施
根据检验结果知道,由于水质不合格造成该锅炉水冷壁过热鼓包、胀粗,因此建议使用单位加强日常水质管理,并对现有水垢进行一次化学清洗。更换壁厚减薄量超标的管子,并对热电偶温度计两侧的管子实施局部喷涂金属,增加耐磨性能。
(三)、省煤器磨损(图65-66)
1、案例
某厂一台型号为WGZ-220/9.8-1的发电锅炉,累计运行小时约45000小时,每次锅炉检修都要更换因磨损减薄的同一部位的省煤器管组,使用单位与检修单位均未分析原因。
图65 省煤器管磨损
图66 省煤器管磨损
2、原因分析
经现场检查,发现磨损原因是由槽钢形成烟气走廊引起的,而烟气走廊的形成增大烟气流速,并造成磨损的。
3、处理措施
在槽钢凹槽面焊上扁铁,以便消除烟气走廊,消除了烟气走廊,也就解决了磨损问题。
(四)、再热器爆管(图67-70)
1、案例
某厂一台600MW机组超临界直流锅炉,运行中一级再热器突然爆管,造成紧急停炉。该锅炉累计运行时间约30000小时,上次检修期间未见一级再热器管壁厚异常减薄。停炉检查发现,水平烟道前包墙处的耐火骨料损坏严重,一级再热器前侧省煤器吊挂管的防磨瓦焊缝开裂多处,省煤器防震梁下滑,前侧省煤器吊挂管附近的一级再热器由于管子磨损减薄而爆破。
图67 结构示意图
图68 一级再热器磨损爆破
图69 吊挂管防磨板焊缝开裂防震梁下滑
图70 水平烟道前包墙处耐火骨料脱落
2、原因分析
运行中,水平烟道前包墙处的耐火骨料由于高温烟气冲刷等原因造成开裂、松动、脱落;省煤器吊挂管的防磨瓦焊缝因传热不良产生裂纹开裂,造成省煤器防震梁下滑。由于水平烟道前包墙处的耐火骨料损坏造成烟气流向改变,改变流向的烟气碰到省煤器防震梁后反弹到一级再热器管上,遇阻反弹造成烟气流向突然改变、流速突然加大,加剧了一级再热器管的局部磨损,最终导致一级再热器管特定部位壁厚减薄而爆管停炉。
3、处理措施
修复损坏的耐火骨料和省煤器吊挂管的防磨瓦焊缝,更换严重磨损减薄的一级再热器管和省煤器悬吊管。检修期间加强对水平烟道前包墙处的耐火骨料、省煤器吊挂管的防磨瓦焊缝等非受压件的维护和检查,防止此类事故再次发生。
(五)、过热器爆管(图71-74)
1、案例
某厂一台600MW机组超临界直流锅炉,运行中三级过热器出口高温段管因胀粗而爆管,造成紧急停炉。停炉检查发现,该锅炉三级过热器出口高温段管子靠近三过出口联箱侧弯头明显胀粗,壁厚减薄;检查还发现,三级过热器有20个出口侧最小弯内氧化皮堆积超过30%。图71 三级过热器出口高温段管(弯管处)胀粗
图72 三级过热器管与出口集箱的角焊缝
图73 三级过热器管子弯内异物
图74 3SH管子弯内异物(氧化皮集聚物)
2、原因分析
据了解,三级过热器出口高温段管材质为SA213T91, 出口侧最小弯曲半径R=29 mm。由于电力紧张,该锅炉曾长时间满负荷运行。由于满负荷运行,三过处于高热负荷区域,加之可能存在炉膛热负荷偏差,因此容易造成三级过热器出口高温段管壁温度超过材质设计温度,最终导致过热、胀粗,甚至爆管。又由于三级过热器管排内侧管子汽流流程长、弯曲半径小、阻力大,因此运行中容易造成管子内壁高温氧化,堆积氧化皮,甚至堵塞,从而导致过热、胀粗、爆管。
3、处理措施
因为属于设计原因造成的,因此要从设计方面进行整改。将三级过热器出口高温段管材质更换为SA213TP347H,以便提高管子耐高温性能;并改造内侧管排,加大弯曲半径(改造后,弯曲半径R=75 mm),减少异物堵塞的危险性。经过改造后,运行到下一次检修期检查,未发现出口高温段管因胀粗和弯内氧化皮堆积。
第五篇:电站锅炉原理----知识点
低压锅炉小于2.45;中压锅炉2.94~4.90; 高压锅炉7.84~10.8,超高压锅炉11.8~14.7;亚临界锅炉15.7~19.6;超临界压力锅炉 大于22.1MP
煤的工业分析:水分、挥发分、固定碳、灰分
变形温度DT、软化温度ST、流动稳定FT 当受热时由固态逐渐向液态转化,但没有明显界限温度的转化特性称为灰的熔融性。理论空气量:1kg燃料完全燃烧所需的最少空气量(空气中没有剩余)。
HGI大于86的煤为易磨煤,HGI小于62的现代大型锅炉,水冷壁普遍采用模式水冷壁,小形是光管水冷壁。
炉膛热力计算中,炉膛受热面的污染系数被定义为水冷壁实际吸收热量占投射到水冷壁受热面热量的份额。
对流过热器采用逆流布置方法,具有最大的传热温压。
根据一二次风向的分布情况,直流煤粉燃烧器分为均等配风和分级配风两种形式。假想切圆:在采用直流燃烧器锅炉中,以直流燃烧器同一高度喷口的几何轴线作为切线,在炉膛横截面中心部所形成的假象几何圆。
炉膛截面热强度定义为以锅炉燃料消耗量和燃料收到基低位发热量乘积为分子,与燃烧器区域炉膛横截面积的比值。
旋转射流燃烧器特点:1气流初期的扰动非常强烈,但后期的扰动不够强烈使其射程比较短2具有内外两个回流区3旋转射流的扩展角较大。
锅炉排污:放掉一部分浓缩的锅水,即排掉一部分盐分,代之以比较干净的给水,这样可维持锅水品质。
气温特性:锅炉负荷变化时,过热器和再热器出口的蒸汽温度跟随变化的规律。多相燃烧:物质在相的分界面上发生的反应,投粉后立即检查燃烧器喷嘴着火情况和总体燃烧工况。3投粉后要认真监盘,精心操作,根据燃烧情况,及时调整一二次风、风速、风率和总风量,防止风分比例失调。4锅炉各处严密,发现漏风及时联系堵塞,运行中要关闭所有孔门、检查门、着火孔等。防止冷风漏入,保证炉膛温度。
特别注意控制汽包水位原因:锅炉升压过程中,锅炉工况变化比较多,气温、气压升高后,排气量改变,进行定期排水等过程里它的变化都会对水位产生不同程度的影响,如果对水位调节控制不当,将很容易引起水位的事故,因此在锅炉升压过程中应该特别注高位发热量:煤在氧弹中燃烧放出的热量减去硫和氮生成酸的校正值后所得到的热量。低位发热量:煤的高位发热量减去煤样中的水和氢燃烧时生成的水的蒸发潜热后的热值。
锅炉尾部烟道再燃烧现象和处理
现象:尾部烟道烟气温度不正常地突然升高、炉膛和烟道负压剧烈变化、烟道孔门等不严密处冒烟或冒火星。
处理:1烟道内烟气温度不正常时,应立即调整燃烧,对受热面吹灰,加强对受热面的冷却。2尾部烟道发生严重的再燃烧时应立即停止锅炉运行,停止送、引风机运行,关闭各受热面泄露、风机单侧运行、空颈器故障或堵塞、一侧风挡板未开、燃烧不均匀、漏风、仪表坏、吹灰不均、尾部烟道二次燃烧。蒸汽温度调节:喷水减温、汽-汽热交换、蒸汽旁通、烟气再循环、分隔烟道挡板、调节和改变火焰的位置。四种流型以及传热恶化 流型:泡状、弹状、柱状和液雾
第一类传热恶化:当热负荷很高时,管子内壁汽化核心数急剧增多,气泡形成速度超过气泡脱离速度,使管子壁面形成一个连续的蒸汽膜,a2急剧下降,壁温急剧上升,这种由核态沸腾转变为膜态沸腾的传热恶化称为煤为难磨煤。
煤粉完全燃烧原则条件:1充足合适的空气量2适当高的炉温3空气和煤粉的良好混合4在炉内有足够的停留时间。
直流燃烧器布置在炉膛四角,......四角布置切圆燃烧方式。
循环故障的具体表现:停滞、倒流、下降管带气
干燥无灰基挥发分Vdaf <10%为无烟煤,>10%为烟煤,>37%为褐煤。
粗粉分离器是利用重力、离心力、惯力作用 使粗煤粉分离出来。
汽水分离装置工作原理:惯性分离、离心力分离、水膜分离、重力分离。
影响钢球磨煤机工作的主要因素:转速、钢球充满系数、钢球直径、通风量、筒内存煤量
自然循环锅炉的蒸发设备由汽包、下降管、联箱和汽水分离器及其连接管道组成。燃煤锅炉的火焰中具有辐射能力的介质是三原子气体、飞灰粒子、焦炭粒子和炭黑粒子。锅炉热力计算分为校核计算和设计计算。锅炉各个受热面中,金属壁温最高的受热面是过热器。
煤中有害物质有:氮、灰分、水分、硫。烟气中含有二氧化硫,会使烟气露点温度升高。
在自然循环中,循环倍率为上升管进口的循环水量与上升管出口产生的蒸汽量的比值 钢球滚筒磨煤机临界转速只取决于磨煤机钢球直径。
按工质在蒸发受热面内的流动方式,可将锅炉分为自然循环锅炉、强制循环锅炉、直流锅炉、复合循环锅炉。
现代电厂大型锅炉各项热损失中,最大的一项热损失是排烟热损失。固定碳和灰分组成了焦炭。
锅炉运行中存在的热损失有:排烟热损失、固体未完全燃烧热损失、气体未完全燃烧热损失、灰渣物理热损失、散热损失。对流受热面热力计算基本方程:排烟侧热平衡方程、工质侧热平衡方程、管壁的导热方程。
自然循环具有自补偿能力的工况为:上升管内含气率小于界限含气率的工况。
自补偿特性:当自然循环锅炉的循环倍率大于临界循环倍率时,循环速度随着热负荷增加而增大的特性。
自然循环循环流速:上升管开始沸腾出的饱和水速,可以表征流动的快慢,是反映循环水动力特性的指标。
质量含气率:上升管中汽水混合物中蒸汽的质量份额。
热偏差系数:平行工作管中,偏差管内工质的焓增与整个管组工质的平均含增的比值。管间脉动:在管屏两端压差相同,当给水量和流出量总量基本不变的情况下,管屏里管子流量随时间作周期性波动。是一种不稳定的水动力特性。
额定蒸发量:指在额定蒸汽参数,额定给水温度和使用设计燃料时,长期连续运行时所能达到的最大蒸发量。
经济煤粉细度:指机械不完全燃烧损失、排烟热损失和制粉电耗之和为最小的煤粉细度。
蒸汽的溶解携带:蒸汽通过直接浴盐而污染称之为蒸汽的溶解性携带。
烟气焓:指在等压条件下,1kg燃料所产生的烟气量从0℃被加热到某一温度所需的热量。煤的可磨性系数:煤被磨成一定细度的煤粉的难易程度(越大越好磨)。
锅炉热平衡指锅炉输入热量与输出热量及各项热损失之间的热量平衡。
蒸汽污染原因是饱和蒸汽的机械携带和选择携带。
且燃料与氧化剂的相态不同。
动力燃烧区:当燃烧反应温度不高时,化学反应速度不快。此时氧的供应速度远大于氧的消耗速度。即扩散能力远大于化学反应的能力,这时燃烧工况所处的区域称为动力燃烧区。
扩散燃烧区:当燃烧反应温度很高,化学反应速度远大于扩散能力,这时燃烧工况所处的区域称为扩散燃烧区。
气蚀:当离心泵入口的最低压力低于该温度下的被吸液体的饱和压力时,产生大量的气泡,气泡的形成、发展和破裂过程中,会对叶轮材料产生破坏作用,这种现象叫气蚀。漏风系数:锅炉受热面所在烟道漏入烟气的空气量与理论空气量之比,亦即该烟道出、进口处烟气中过量空气系数之差。
高温腐蚀:高温受热面表面粘附的烧结性积灰下发生的金属腐蚀。
低温腐蚀:受热面壁温接近或低于烟气露点时,烟气中的硫酸在壁面凝结后对壁面产生的腐蚀。既有化学腐蚀又有电化学腐蚀。提高自然循环安全性的措施:1减少受热不均匀2确定合适的上升管吸热量3确定合适的上升管高度和管径4确定合适的汽水管高度和截面积5减少旋风分离器阻力6减少下降管阻力。
直吹式:具有系统简单,设备部件少,运行电耗低,钢材消耗省,占有空间小,投资少和爆炸危险性小等优点。
仓储式:增加了煤粉仓,有较多的煤粉储存,因此磨煤机的出力不再受锅炉负荷的限制,始终可以在最佳工况下运行,具有较高经济性,锅炉负荷变化时,可以通过改变给粉机转速直接调整给粉量。
锅炉点火初期投粉防爆措施有:1投粉前各油枪运行良好,并保持最大出力,油枪全部投入使用,着火正常。2投粉不着火时,应立即停止该给粉机运行,严禁使用爆燃法投粉,意控制汽包水位在正常范围内。
水冷壁角系数:投射到受热面上的热量与投射到炉壁的热量之比。
直流燃烧器有哪几种配风方式,有什么特点?
均等配风方式:一二次风口相间布置并相互紧靠,其喷口边缘的上下间距较小。沿高度间隔排列的各个二次风口的风量分配接近均匀。
分级配风方式:一次风口喷口相对集中布置,并靠近燃烧器下部,而且一二次风口的边缘保持较大距离,二次风分层,分阶段送到燃烧着的煤粉气流中去。
过热器和再热器设有旁路系统:锅炉点火生炉或汽轮机甩负荷时,过热器和再热器没有蒸汽通过,管壁会因得不到冷却而产生爆管或烧损。
锅炉负荷增加,辐射式过热器、对流式过热器中气温变化热性?
气温特性:随着锅炉负荷的增加,过热器中的蒸汽流量和燃料消耗量都会增大,但锅炉火焰温度升高甚少,不及过热器中蒸汽流量增加的比例大,因此辐射式过热器中蒸汽焓增减少,蒸汽出口温度下降。燃料消耗量的增加会使炉膛出口烟温升高,烟气流量增大,对流式过热器换热量增加许多,过热蒸汽焓增增大,出口气温升高。
均相模型:1气和水均匀的混合在一起,与泡状液近似,只考虑汽和水的不同。2汽和水之间没有相对运动。
分流模型:水在管中紧靠管内壁流动,占据管截面积F‘,汽在管子中间由水形成的“水管”中流动,占据管截面积F“,考虑汽和水的相对速度。
弹筒发热量:将煤样放在充满压力为2.6~3.0Mpa的氧气的氧弹内,点火燃烧后,使燃烧产物冷却至煤样的原始温度,在此条件下单位质量的煤所放出的热量。
风烟挡板,隔绝通风。3待再燃烧现象消除时,进行必要的通风冷却和吹扫,锅炉吹扫冷却后要进行内部检查,确认设备正常后可重新点火。
锅炉运行过程中,当给水温度降低时,过热蒸汽温度将怎样变化?
给水温度降低,为保证锅炉负荷不变,必须增加炉膛燃料,使炉内烟气量增加,炉膛出口烟温增加,对流式过热器出口蒸汽温度随给水温度降低而升高,辐射式过热器出口汽温影响小基本不变。
蒸汽清洗是利用什么原理来提高蒸汽品质?为什么亚临界压力锅炉不采用蒸汽清洗? 蒸汽清洗是利用杂质的溶解度在水中的高于在蒸汽中的这一特性,同时补充水的杂质远低于锅水汽包表面的杂质含量,这样就可以提高蒸汽的品质,亚临界参数时杂质在汽相和液相的溶解度非常接近,因此清洗的作用已经很不明显,这样只有通过提高补水水质来实现提高蒸汽品质。
在组织锅炉燃烧时,为什么将燃烧所需空气分为一二次风,确定一次风率的依据是什么?
将其分为一二次风可以使燃料与氧化剂及时接触,而且接触的很好。这样使燃烧猛烈强度大并能以最小的过量空气系数达到完全燃烧,保证锅炉安全经济运行,依据是煤粉颗粒的大小和燃烧初期对氧气的需要。影响尾部受热面松散积灰的主要因素有哪些?常采用哪些方法减轻积灰?
1受热面温度2烟气流速3飞灰颗粒大小4管子的排列方式和节距5管子的直径
措施:1设计时选择合理的烟气流量,额定的负荷不低于5~6米/秒。2采用小管径和错列布置。3正确采用和布置吹灰装置,运行时合理的吹灰时间间隔和一次吹灰的持续时间。分析哪些原因会造成两侧排烟温度偏差较大?
第一类传热恶化。
第二类传热恶化:当质量含气率很大时,出现了液雾状流动结构,这时管中连续的水膜被撕破,对流放热系数a2大大下降,管壁温度大大升高,这个现象称为第二类传热恶化。