第一篇:品管cp、cpk、Fmea等手法是什么? 五
品管cp、cpk、Fmea等手法是什么?五
品管cp、cpk、Fmea等手法是什么?
CPK——过程能力指数
CPK= MIN[(USL-MU)/3S,(MU|CA|),CPK是CA及CP两者的中和反应,CA反应的是位置关系(集中趋势),CP反应的是散布关系(离散趋势)
4.当选择制程站别用CPK来作管控时,应以成本做考量的首要因素,还有是其品质特性对后制程的影响度。
5.计算取样数据至少应有20~25组数据,方具有一定代表性。6.计算CPK除收集取样数据外,还应知晓该品质特性的规格上下限(USL,LSL),才可顺利计算其值。
7.首先可用EXCEL的“STDEV”函数自动计算所取样数据的标准差(σ),再计算出规格公差(T),及规格中心值(U).规格公差=规格上限-规格下限;规格中心值=(规格上限+规格下限)/2; 8.依据公式:,计算出制程准确度:CA值 9.依据公式:CP =,计算出制程精密度:CP值 10.依据公式:CPK=CP,计算出制程能力指数:CPK值
11.CPK的评级标准:(可据此标准对计算出之制程能力指数做相应对策)
A++级 CPK≥2.0 特优可考虑成本的降低 A+ 级 2.0 > CPK ≥ 1.67 优应当保持之
A 级 1.67 > CPK ≥ 1.33 良能力良好,状态稳定,但应尽力提升为A+级
B 级 1.33 > CPK ≥ 1.0 一般状态一般,制程因素稍有变异即有产生不良的危险,应利用各种资源及方法将其提升为 A级 C 级 1.0 > CPK ≥ 0.67 差制程不良较多,必须提升其能力 D 级 0.67 > CPK 不可接受其能力太差,应考虑重新整改设计制程。
FMEA(FAILURE MODE AND EFFECT ANALYSIS,失效模式和效果分析)是一种用来确定潜在失效模式及其原因的分析方法。
具体来说,通过实行FMEA,可在产品设计或生产工艺真正实现之前发现产品的弱点,可在原形样机阶段或在大批量 生产之前确定产品缺陷。
FMEA最早是由美国国家宇航局(NASA)形成的一套分析模式,FMEA是一种实用的解决问题的方法,可适用于许多工程
领域,目前世界许多汽车生产商和电子制造服务商(EMS)都已经采用这种模式进行设计和生产过程的管理和监控。FMEA简介
FMEA有三种类型,分别是系统FMEA、设计FMEA和工艺FMEA,本文中主要讨论工艺FMEA。
1)确定产品需要涉及的技术、能够出现的问题,包括下述各个方面: 需要设计的新系统、产品和工艺; 对现有设计和工艺的改进;
在新的应用中或新的环境下,对以前的设计和工艺的保留使用; 形成FMEA团队。理想的FMEA团队
应包括设计、生产、组装、质量控制、可靠性、服务、采购、测试以及供货方等所有有关方面的代表。2)记录FMEA的序号、日期和更改内容,保持FMEA始终是一个根据实际情况变化的实时现场记录,需要强调的是,FMEA文件必须包括创建和更新的日期。3)创建工艺流程图。
工艺流程图应按照事件的顺序和技术流程的要求而制定,实施FMEA需要工艺流程图,一般情况下工艺流程图不要 轻易变动。
4)列出所有可能的失效模式、效果和原因、以及对于每一项操作的工艺控制手段:
4.1 对于工艺流程中的每一项工艺,应确定可能发生的失效模式.如就表面贴装工艺(SMT)而言,涉及的问题可能包括,基于工程经验的焊球控制、焊膏控制、使用的阻焊剂
(SOLDERMASK)类型、元器件的焊盘图形设计等。
4.2 对于每一种失效模式,应列出一种或多种可能的失效影响,例如,焊球可能要影响到产品长期的可靠性,因此在可能的影响方面应该注明。
4.3 对于每一种失效模式,应列出一种或多种可能的失效原因.例如,影响焊球的可能因素包括焊盘图形设计、焊膏湿度过大以及焊膏量控制等。
4.4 现有的工艺控制手段是基于目前使用的检测失效模式的方法,来避免一些根本的原因。例如,现有的焊球工艺控制手段可能是自动光学检测(AOI),或者对焊膏记录良好的控制过程。
5)对事件发生的频率、严重程度和检测等级进行排序:
5.1 严重程度是评估可能的失效模式对于产品的影响,10为最严重,1为没有影响;
事件发生的频率要记录特定的失效原因和机理多长时间发生一次以及发生的几率。
如果为10,则表示几乎肯定要发生,工艺能力为0.33或者PPM大于10000。
5.2 检测等级是评估所提出的工艺控制检测失效模式的几率,列为10表示不能检测,1表示已经通过目前工艺控 制的缺陷检测。
5.3 计算风险优先数RPN(RISKPRIORITYNUMBER)。
RPN是事件发生的频率、严重程度和检测等级三者乘积,用来衡量可能的工艺缺陷,以便采取可能的预防措施
减少关键的工艺变化,使工艺更加可靠。对于工艺的矫正首先应集中在那些最受关注和风险程度最高的环节。
RPN最坏的情况是1000,最好的情况是1,确定从何处着手的最好方式是利用RPN的PARETO图,筛选那些累积 等级远低于80%的项目。
推荐出负责的方案以及完成日期,这些推荐方案的最终目的是降低一个或多个等级。对一些严重问题要时常 考虑拯救方案,如:
一个产品的失效模式影响具有风险等级9或10; 一个产品失效模式/原因事件发生以及严重程度很高; 一个产品具有很高的RPN值等等。在所有的拯救措施确和实施后,允许有一个稳定时期,然后还应该对修订的事件发生的频率、严重程度和检测 等级进行重新考虑和排序。FMEA应用
FMEA实际上意味着是事件发生之前的行为,并非事后补救。因此要想取得最佳的效果,应该在工艺失效模式在产品中出现之前完成。产品开发的5个阶段包括:
计划和界定、设计和开发、工艺设计、预生产、大批量生产。作为一家主要的EMS提供商,FLEXTRONICS INTERNATIONAL已经在生产工艺计划和控制中使用了FMEA管理,在产品的
早期引入FMEA管理对于生产高质量的产品,记录并不断改善工艺非常关键。对于该公司多数客户,在完全确定设计和
生产工艺后,产品即被转移到生产中心,这其中所使用的即是FMEA管理模式。
手持产品FMEA分析实例
在该新产品介绍(NPI)发布会举行之后,即可成立一个FMEA团队,包括生产总监、工艺工程师、产品工程师、测试工
程师、质量工程师、材料采购员以及项目经理,质量工程师领导该团队。FMEA首次会议的目标是加强初始生产工艺MPI
(MANUFACTURING PROCESS INSTRUCTION)和测试工艺TPI(TEST PROCESS INSTRUCTION)中的质量控制点同时团队
也对产品有更深入的了解,一般首次会议期间和之后的主要任务包括:
1.工艺和生产工程师一步一步地介绍工艺流程图,每一步的工艺功能和要求都需要界定。
2.团队一起讨论并列出所有可能的失效模式、所有可能的影响、所有可能的原因以及目前每一步的工艺控制,并对这些
因素按RPN进行等级排序。例如,在屏幕印制(SCREEN PRINT)操作中对于错过焊膏的所有可能失效模式,现有的工艺
控制是模板设计SD(STENCIL DESIGN)、定期地清洁模板、视觉检测VI(VISUAL INSPECTION)、设备预防性维护PM
(PREVENTIVE MAINTENANCE)和焊膏粘度检查。工艺工程师将目前所有的控制点包括在初始的MPI中,如模板设计研 究、确定模板清洁、视觉检查的频率以及焊膏控制等。
3.FMEA团队需要有针对性地按照MEA文件中的控制节点对现有的生产线进行审核,对目前的生产线的设置和其他问题进
行综合考虑。如干燥盒的位置,审核小组建议该放在微间距布局设备(FINE-PITCH PLACEMENTMACHINE)附近,以方 便对湿度敏感的元器件进行处理。
4.FMEA的后续活动在完成NPI的大致结构之后,可以进行FMEA的后续会议。会议的内容包括把现有的工艺控制和NPI大
致结构的质量报告进行综合考虑,FMEA团队对RPN重新进行等级排序,每一个步骤首先考虑前三个主要缺陷,确定好 推荐的方案、责任和目标完成日期。
对于表面贴装工艺,首要的两个缺陷是焊球缺陷和TOMBSTONE缺陷,可将下面的解决方案
推荐给工艺工程师:
对于焊球缺陷,检查模板设计(STENCILDESIGN),检查回流轮廓(REFLOW PROFILE)和回流预防性维护(PM)记录;
检查屏幕印制精度以及拾取和放置(PICK-AND-PLACE)机器的布局(PLACEMENT)精度.对于墓石(TOMBSTONE)缺陷,检查屏幕印制精度以及拾取和放置(PICK-AND-PLACE)机器的布局(PLACEMENT)精度;
检查回流方向;研究终端(TERMINATION)受污染的可能性。工艺工程师的研究报告表明,回流温度的急速上升是焊球缺陷的主要原因,终端(TERMINATION)受污染是墓石
(TOMBSTONE)缺陷的可能原因,因此为下一个设计有效性验证测试结构建立了一个设计实验(DOE),设计实验表明
一个供应商的元器件出现墓石(TOMBSTONE)缺陷的可能性较大,因此对供应商发出进一步调查的矫正要求。
5.对于产品的设计、应用、环境材料以及生产组装工艺作出的任何更改,在相应的FMEA文件中都必须及时更新。
FMEA更新会议在产品进行批量生产之前是一项日常的活动。
批量生产阶段的FMEA管理
作为一个工艺改进的历史性文件,FMEA被转移到生产现场以准备产品的发布。
FMEA在生产阶段的主要作用是检查FMEA文件,以在大规模生产之前对每一个控制节点进行掌握,同时审查生产线的有
效性,所有在NPI FMEA阶段未受质疑的项目都自然而然地保留到批量生产的现场。
拾取和放置(PICK-AND-PLACE)机器精度是工艺审核之后的一个主要考虑因素,设备部门必须验证布局机器的CP/CPK,同时进行培训以处理错误印制的电路板。FMEA团队需要密切监视第一次试生产,生产线的质量验证应该与此同时进行。
在试生产之后,FMEA需要举行一个会议核查现有的质量控制与试生产的质量报告,主要解决每一个环节的前面三个问题。
FMEA管理记录的是一个不断努力的过程和连续性的工艺改进,FMEA文件应该总是反映设计的最新状态,包括任何在生产 过程开始后进行的更改。
结语
使用FMEA管理模式在早期确定项目中的风险,可以帮助电子设备制造商提高生产能力和效率,缩短产品的面市时间。
此外通过这种模式也可使各类专家对生产工艺从各个角度进行检测,从而对生产过程进行改进。
所推荐的方案应该是正确的矫正,产生的效益相当可观。为了避免缺陷的产生,需要对工艺和设计进行更改。使用统计
学的方法对生产工艺进行研究,并不断反馈给合适的人员,确保工艺的不断改进并避免缺陷产生.
第二篇:CP,CPK,FMEA,SPC介绍
CP和CPK介绍
在评估SMT设备或在选型的时候,常听到“印刷机、贴片机或再流焊设备的Cp和Cpk值是多少?Cp、Cpk是什么意思呢?
CP(或Cpk)是英文Process Capability index缩写,汉语译作工序能力指数,也有译作工艺能力指数过程能力指数。
工序能力指数,是指工序在一定时间里,处于控制状态(稳定状态)下的实际加工能力。它是工序固有的能力,或者说它是工序保证质量的能力。
这里所指的工序,是指操作者、机器、原材料、工艺方法和生产环境等五个基本质量因素综合作用的过程,也就是产品质量的生产过程。产品质量就是工序中的各个质量因素所起作用的综合表现。
对于任何生产过程,产品质量总是分散地存在着。若工序能力越高,则产品质量特性值的分散就会越小;若工序能力越低,则产品质量特性值的分散就会越大。那么,应当用一个什么样的量,来描述生产过程所造成的总分散呢?通常,都用6σ(即μ+3σ)来表示工序能力:工序能力=6σ
若用符号P来表示工序能力,则:P=6σ
式中:σ是处于稳定状态下的工序的标准偏差
工序能力是表示生产过程客观存在着分散的一个参数。但是这个参数能否满足产品的技术要求,仅从它本身还难以看出。因此,还需要另一个参数来反映工序能力满足产品技术要求(公差、规格等质量标准)的程度。这个参数就叫做工序能力指数。它是技术要求和工序能力的比值,即 工序能力指数=技术要求/工序能力
当分布中心与公差中心重合时,工序能力指数记为Cp。当分布中心与公差中心有偏离时,工序能力指数记为Cpk。运用工序能力指数,可以帮助我们掌握生产过程的质量水平。工序能力指数的判断
工序的质量水平按Cp值可划分为五个等级。按其等级的高低,在管理上可以作出相应的判断和处置(见表1)。该表中的分级、判断和处置对于Cpk也同样适用。表1 工序能力指数的分级判断和处置参考表 Cp值 级别 判断 双侧公差范(T)处 置 Cp>1.67 特级 能力过高 T>106(1)可将公差缩小到约土46的范围(2)允许较大的外来波动,以提高效率(3)改用精度差些的设备,以降低成本(4)简略检验 1.67≥Cp1.33 一级 能力充分 T=86—106(1)若加工件不是关键零件,允许一定程度的外来波动(2)简化检验(3)用控制图进行控制 1.33≥Cp>1.0 二级 能力尚可 T=66—86(1)用控制图控制,防止外来波动(2)对产品抽样检验,注意抽样方式和间隔(3)Cp—1.0时,应检查设备等方面的情示器 1.0≥Cp>0.67 三级 能力不足 T=46—66(1)分析极差R过大的原因,并采取措施(2)若不影响产品最终质量和装配工作,可考虑放大公差范围(3)对产品全数检查,或进行分级筛选 0.67>Cp 四级 能力严重不足 T<46(1)必须追查各方面原因,对工艺进行改革(2)对产品进行全数检查
FMEA(失效模式与影响分析)
在设计和制造产品时,通常有三道控制缺陷的防线:避免或消除故障起因、预先确定或检测故障、减少故障的影响和后果。FMEA正是帮助我们从第一道防线就将缺陷消灭在摇篮之中的有效工具。
FMEA是一种可靠性设计的重要方法。它实际上是FMA(故障模式分析)和FEA(故障影响分析)的组合。它对各种可能的风险进行评价、分析,以便在现有技术的基础上消除这些风险或将这些风险减小到可接受的水平。及时性是成功实施FMEA的最重要因素之一,它是一个“事前的行为”,而不是“事后的行为”。为达到最佳效益,FMEA必须在故障模式被纳入产品之前进行。
FMEA实际是一组系列化的活动,其过程包括:找出产品/过程中潜在的故障模式;根据相应的评价体系对找出的潜在故障模式进行风险量化评估;列出故障起因/机理,寻找预防或改进措施。
由于产品故障可能与设计、制造过程、使用、承包商/供应商以及服务有关,因此FMEA又细分为设计FMEA、过程FMEA、使用FMEA和服务FMEA四类。其中设计FMEA和过程FMEA最为常用。设计FMEA(也记为d-FMEA)应在一个设计概念形成之时或之前开始,并且在产品开发各阶段中,当设计有变化或得到其他信息时及时不断地修改,并在图样加工完成之前结束。其评价与分析的对象是最终的产品以及每个与之相关的系统、子系统和零部件。需要注意的是,d-FMEA在体现设计意图的同时还应保证制造或装配能够实现设计意图。因此,虽然d-FMEA不是靠过程控制来克服设计中的缺陷,但其可以考虑制造/装配过程中技术的/客观的限制,从而为过程控制提供了良好的基础。进行d-FMEA有助于:
设计要求与设计方案的相互权衡;
制造与装配要求的最初设计;
提高在设计/开发过程中考虑潜在故障模式及其对系统和产品影响的可能性;
为制定全面、有效的设计试验计划和开发项目提供更多的信息; 建立一套改进设计和开发试验的优先控制系统;
为将来分析研究现场情况、评价设计的更改以及开发更先进的设计提供参考。
过程FMEA(也记为p-FMEA)应在生产工装准备之前、在过程可行性分析阶段或之前开始,而且要考虑从单个零件到总成的所有制造过程。其评价与分析的对象是所有新的部件/过程、更改过的部件/过程及应用或环境有变化的原有部件/过程。需要注意的是,虽然p-FMEA不是靠改变产品设计来克服过程缺陷,但它要考虑与计划的装配过程有关的产品设计特性参数,以便最大限度地保证产品满足用户的要求和期望。p-FMEA一般包括下述内容:
确定与产品相关的过程潜在故障模式;
评价故障对用户的潜在影响;
确定潜在制造或装配过程的故障起因,确定减少故障发生或找出故障条件的过程控制变量;
编制潜在故障模式分级表,建立纠正措施的优选体系;
将制造或装配过程文件化。
FMEA技术的应用发展十分迅速。50年代初,美国第一次将FMEA思想用于一种战斗机操作系统的设计分析,到了60年代中期,FMEA技术正式用于航天工业(Apollo计划)。1976年,美国国防部颁布了FMEA的军用标准,但仅限于设计方面。70年代末,FMEA技术开始进入汽车工业和医疗设备工业。80年代初,进入微电子工业。80年代中期,汽车工业开始应用过程FMEA确认其制造过程。到了1988年,美国联邦航空局发布咨询通报要求所有航空系统的设计及分析都必须使用FMEA。1991年,ISO-9000推荐使用FMEA提高产品和过程的设计。1994年,FMEA又成为QS-9000的认证要求。目前,FMEA已在工程实践中形成了一套科学而完整的分析方法。
SPC介绍
SPC即统计过程控制(Statistical Process Control)。SPC主要是指应用统计分析技术对生产过程进行实时监控,科学的区分出生产过程中产品质量的随机波动与异常波动,从而对生产过程的异常趋势提出预警,以便生产管理人员及时采取措施,消除异常,恢复过程的稳定,从而达到提高和控制质量的目的。
在生产过程中,产品的加工尺寸的波动是不可避免的。它是由人、机器、材料、方法和环境等基本因素的波动影响所致。波动分为两种:正常波动和异常波动。正常波动是偶然性原因(不可避免因素)造成的。它对产品质量影响较小,在技术上难以消除,在经济上也不值得消除。异常波动是由系统原因(异常因素)造成的。它对产品质量影响很大,但能够采取措施避免和消除。过程控制的目的就是消除、避免异常波动,使过程处于正常波动状态。SPC技术原理
统计过程控制(SPC)是一种借助数理统计方法的过程控制工具。它对生产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。当过程仅受随机因素影响时,过程处于统计控制状态(简称受控状态);当过程中存在系统因素的影响时,过程处于统计失控状态(简称失控状态)。由于过程波动具有统计规律性,当过程受控时,过程特性一般服从稳定的随机分布;而失控时,过程分布将发生改变。SPC正是利用过程波动的统计规律性对过程进行分析控制的。因而,它强调过程在受控和有能力的状态下运行,从而使产品和服务稳定地满足顾客的要求。
SPC可以为企业带的好处
....SPC 强调全过程监控、全系统参与,并且强调用科学方法(主要是统计技术)来保证全过程的预防。SPC不仅适用于质量控制,更可应用于一切管理过程(如产品设计、市场分析等)。正是它的这种全员参与管理质量的思想,实施SPC可以帮助企业在质量控制上真正作到“事前”预防和控制,SPC可以: · 对过程作出可靠的评估;
· 确定过程的统计控制界限,判断过程是否失控和过程是否有能力; · 为过程提供一个早期报警系统,及时监控过程的情况以防止废品的发生;
· 减少对常规检验的依赖性,定时的观察以及系统的测量方法替代了大量的检测和验证工作;
有了以上的预防和控制,我们的企业当然是可以: · 降低成本
· 降低不良率,减少返工和浪费 · 提高劳动生产率 · 提供核心竞争力 · 赢得广泛客户
· 更好地理解和实施质量体系
质量管理中常用的统计分析方法
....介绍的以下这些工具和方法具有很强的实用性,而且较为简单,在许多国家、地区和各行各业都得到广泛应用:
控制图:用来对过程状态进行监控,并可度量、诊断和改进过程状态。
直方图:是以一组无间隔的直条图表现频数分布特征的统计图,能够直观地显示出数据的分布情况。
排列图:又叫帕累托图,它是将各个项目产生的影响从最主要到最次要的顺序进行排列的一种工具。可用其区分影响产品质量的主要、次要、一般问题,找出影响产品质量的主要因素,识别进行质量改进的机会。
散布图: 以点的分布反映变量之间相关情况,是用来发现和显示两组数据之间相关关系的类型和程度,或确认其预期关系的一种示图工具。工序能力指数(CPK):分析工序能力满足质量标准、工艺规范的程度。
频数分析:形成观测量中变量不同水平的分布情况表。
描述统计量分析:如平均值、最大值、最小值、范围、方差等,了解过程的一些总体特征。
相关分析:研究变量之间关系的密切程度,并且假设变量都是随机变动的,不分主次,处于同等地位。
回归分析:分析变量之间的相互关系。
实施SPC的两个阶段
。实施SPC分为两个阶段,一是分析阶段,二是监控阶段。在这两个阶段所使用的控制图分别被称为分析用控制图和控制用控制图。
。分析阶段的主要目的在于:
。
一、使过程处于统计稳态。
二、使过程能力足够。
。分析阶段首先要进行的工作是生产准备,即把生产过程所需的原料、劳动力、设备、测量系统等按照标准要求进行准备。生产准备完成后就可以进行,注意一定要确保生产是在影响生产的各要素无异常的情况下进行;然后就可以用生产过程收集的数据计算控制界限,作成分析用控制图、直方图、或进行过程能力分析,检验生产过程是否处于统计稳态、以及过程能力是否足够。如果任何一个不能满足,则必须寻找原因,进行改进,并重新准备生产及分析。直到达到了分析阶段的两个目的,则分析阶段可以宣告结束,进入SPC监控阶段。
。监控阶段的主要工作是使用控制用控制图进行监控。此时控制图的控制界限已经根据分析阶段的结果而确定,生产过程的数据及时绘制到控制上,并密切观察控制图,控制图中点的波动情况可以显示出过程受控或失控,如果发现失控,必须寻找原因并尽快消除其影响。监控可以充分体现出SPC预防控制的作用。
。在工厂的实际应用中,对于每个控制项目,都必须经过以上两个阶段,并且在必要时会重复进行这样从分析到监控的过程。
SPC的最新发展
。经过近70年在全世界范围的实践,SPC理论已经发展得非常完善,其与计算机技术的结合日益紧密,其在企业内的应用范围、程度也已经非常广泛、深入。概括来讲,SPC的发展呈现如下特点:
(1).分析功能强大,辅助决策作用明显 在众多企业的实践基础上发展出繁多的统计方法和分析工具,应用这些方法和工具可根据不同目的、从不同角度对数据进行深入的研究与分析,在这一过程中SPC的辅助决策功能越来越得到强化;
(2).体现全面质量管理思想 随着全面质量管理思想的普及,SPC在企业产品质量管理上的应用也逐渐从生产制造过程质量控制扩展到产品设计、辅助生产过程、售后服务及产品使用等各个环节的质量控制,强调全过程的预防与控制;(3).与计算机网络技术紧密结合 现代企业质量管理要求将企业内外更多的因素纳入考察监控范围、企业内部不同部门管理职能同时呈现出分工越来越细与合作越来越紧密两个特点,这都要求可快速处理不同来源的数据并做到最大程度的资源共享。适应这种需要,SPC与计算机技术尤其是网络技术的结合越来越紧密。
(4).系统自动化程度不断加强 传统的SPC系统中,原始数据是手工抄录,然后人工计算、打点描图,或者采用人工输入计算机,然后再利用计算机进行统计分析。随着生产率的提高,在高速度、大规模、重复性生产的制造型企业里,SPC系统已更多采取利用数据采集设备自动进行数据采集,实时传输到质量控制中心进行分析的方式。
(5).系统可扩展性和灵活性要求越来越高 企业外部和内部环境的发展变化速度呈现出加速度的趋势,成功运用的系统不仅要适合现时的需要,更要符合未来发展的要求,在系统平台的多样性、软件技术的先进性、功能适应性和灵活性以及系统开放性等方面提出越来越高的要求。
第三篇:品管七大手法
品管七大手法七大手法:检查表、层别法、柏拉图、因果图、散布图、直方图、控制图
一、检查表检查表就是将需要检查的内容或项目一一列出,然后定期或不定期的逐项检查,并将问题点记录下来的方法,有时叫做查检表或点检表。例如:点检表、诊断表、工作改善检查表、满意度调查表、考核表、审核表、5S活动检查表、工程异常分析表等。
1、组成要素①确定检查的项目;②确定检查的频度;③确定检查的人员。
2、实施步骤①确定检查对象; ②制定检查表;③依检查表项目进行检查并记录;④对检查出的问题要求责任单位及时改善;⑤检查人员在规定的时间内对改善效果进行确认;⑥定期总结,持续改进。
二、层别法层别法就是将大量有关某一特定主题的观点、意见或想法按组分类,将收集到的大量的数据或资料按相互关系进行分组,加以层别。层别法一般和柏拉图、直方图等其它七大手法结合使用,也可单独使用。例如:抽样统计表、不良类别统计表、排行榜等。实施步骤:① 确定研究的主题; ② 制作表格并收集数据;③ 将收集的数据进行层别;④ 比较分析,对这些数据进行分析,找出其内在的原因,确定改善项目。
三、柏拉图柏拉图的使用要以层别法为前提,将层别法已确定的项目从大到小进行排列,再加上累积值的图形。它可以帮助我们找出关键的问题,抓住重要的少数及有用的多数,适用于记数值统计,有人称为ABC图,又因为柏拉图的排序识从大到小,故又称为排列图。
1、分类1)分析现象用柏拉图:与不良结果有关,用来发现主要问题。A品质:不合格、故障、顾客抱怨、退货、维修等;B成本:损失总数、费用等;C交货期:存货短缺、付款违约、交货期拖延等;D安全:发生事故、出现差错等。2)分析原因用柏拉图:与过程因素有关,用来发现主要问题。
A操作者:班次、组别、年龄、经验、熟练情况等;
B机器:设备、工具、模具、仪器等;
C原材料:制造商、工厂、批次、种类等;
D作业方法:作业环境、工序先后、作业安排等。
2、柏拉图的作用① 降低不良的依据;② 决定改善目标,找出问题点;③ 可以确认改善的效果。
3、实施步骤①
收集数据,用层别法分类,计算各层别项目占整体项目的百分数;②
把分好类的数据进行汇总,由多到少进行排列,并计算累计百分数;③
绘制横轴和纵轴刻度;④
绘制柱状图;⑤
绘制累积曲线;⑥
记录必要事项⑦
分析柏拉图要点:A柏拉图有两个纵坐标,左侧纵坐标一般表示数量或金额,右侧纵坐标一般表示数量或金额的累积百分数;B柏拉图的横坐标一般表示检查项目,按影响程度大小,从左到右依次排列;C绘制柏拉图时,按各项目数量或金额出现的频数,对应左侧纵坐标画出直方形,将各项目出现的累计频率,对应右侧纵坐标描出点子,并将这些点子按顺序连接成线。
4、应用要点及注意事项①
柏拉图要留存,把改善前与改善后的柏拉图排在一起,可以评估出改善效果;②
分析柏拉图只要抓住前面的2~3项九可以了;③
柏拉图的分类项目不要定得太少,5~9项教合适,如果分类项目太多,超过9项,可划入其它,如果分类项目太少,少于4项,做柏拉图无实际意义;④
作成的柏拉图如果发现各项目分配比例差不多时,柏拉图就失去意义,与柏拉图法则不符,应从其它角度收集数据再作分析;⑤
柏拉图是管理改善的手段而非目的,如果数据项别已经清楚者,则无需浪费时间制作柏拉图;⑥
其它项目如果大于前面几项,则必须加以分析层别,检讨其中是否有原因;⑦
柏拉图分析主要目的是从获得情报显示问题重点而采取对策,但如果第一位的项目依靠现有条件很难解决时,或者即使解决但花费很大,得不偿失,那么可以避开第一位项目,而从第二位项目着手。
四、因果图所谓因果图,又称特性要因图,主要用于分析品质特性与影响品质特性的可能原因之间的因果关系,通过把握现状、分析原因、寻找措施来促进问题的解决,是一种用于分析品质特性(结果)与可能影响特性的因素(原因)的一种工具。又称为鱼骨图。
1、分类1)追求原因型:在于追求问题的原因,并寻找其影响,以因果图表示结果(特性)与原因(要因)间的关系;2)追求对策型:追求问题点如何防止、目标如何达成,并以因果图表示期望效果与对策的关系。
2、实施步骤① 成立因果图分析小组,3~6人为好,最好是各部门的代表;② 确定问题点;③ 画出干线主骨、中骨、小骨及确定重大原因(一般从5M1E即人Man、机Machine、料Material、法Method、测Measure、环Environment六个方面全面找出原因);④ 与会人员热烈讨论,依据重大原因进行分析,找到中原因或小原因,绘至因果图中;⑤ 因果图小组要形成共识,把最可能是问题根源的项目用红笔或特殊记号标识;⑥ 记入必要事项
3、应用要点及注意事项①
确定原因要集合全员的知识与经验,集思广益,以免疏漏;②
原因解析愈细愈好,愈细则更能找出关键原因或解决问题的方法;③
有多少品质特性,就要绘制多少张因果图;④
如果分析出来的原因不能采取措施,说明问题还没有得到解决,要想改进有效果,原因必须要细分,直到能采取措施为止;⑤
在数据的基础上客观地评价每个因素的主要性;⑥
把重点放在解决问题上,并依5W2H的方法逐项列出,绘制因果图时,重点先放在“为什么会发生这种原因、结果”,分析后要提出对策时则放在“如何才能解决”;Why——为何要做?(对象)What——做什么?(目的)Where——在哪里做?(场所)When——什么时候做?(顺序)Who——谁来做?(人)How——用什么方法做?(手段)How much——花费多少?(费用)⑦
因果图应以现场所发生的问题来考虑;⑧
因果图绘制后,要形成共识再决定要因,并用红笔或特殊记号标出;⑨
因果图使用时要不断加以改进。
五、散布图将因果关系所对应变化的数据分别描绘在X-Y轴坐标系上,以掌握两个变量之间是否相关及相关的程度如何,这种图形叫做“散布图”,也称为“相关图”。
1、分类1)正相关:当变量X增大时,另一个变量Y也增大;2)负相关:当变量X增大时,另一个变量Y却减小;3)不相关:变量X(或Y)变化时,另一个变量并不改变;4)曲线相关:变量X开始增大时,Y也随着增大,但达到某一值后,则当X值增大时,Y反而减小。
2、实施步骤1)确定要调查的两个变量,收集相关的最新数据,至少30组以上;2)找出两个变量的最大值与最小值,将两个变量描入X轴与Y轴;3)将相应的两个变量,以点的形式标上坐标系;4)计入图名、制作者、制作时间等项目;5)判读散布图的相关性与相关程度。
3、应用要点及注意事项1)两组变量的对应数至少在30组以上,最好50组至100组,数据太少时,容易造成误判;2)通常横坐标用来表示原因或自变量,纵坐标表示效果或因变量;3)由于数据的获得常常因为5M1E的变化,导致数据的相关性受到影响,在这种情况下需要对数据获得的条件进行层别,否则散布图不能真实地反映两个变量之间的关系;4)当有异常点出现时,应立即查找原因,而不能把异常点删除;5)当散布图的相关性与技术经验不符时,应进一步检讨是否有什么原因造成假象。
六、直方图直方图是针对某产品或过程的特性值,利用常态分布(也叫正态分布)的原理,把50个以上的数据进行分组,并算出每组出现的次数,再用类似的直方图形描绘在横轴上。
1、实施步骤1)收集同一类型的数据;2)计算极差(全距)R=Xmax-Xmin;3)设定组数K:
K=1+3.23logN数据总数 50~100 100~250 250以上组
数 6~10 7~12 10~204)确定测量最小单位,即小数位数为n时,最小单位为10-n;5)计算组距h,组距h=极差R/组数K;6)求出各组的上、下限值第一组下限值=X¬¬min-测量最小单位10-n/2
第二组下限值(第一组上限值)=第一组下限值+组距h;7)计算各组的中心值,组中心值=(组下限值+组上限值)/2;8)制作频数表;9)按频数表画出直方图。
2、直方图的常见形态与判定1)正常型:是正态分布,服从统计规律,过程正常;2)缺齿型:不是正态分布,不服从统计规律;3)偏态型:不是正态分布,不服从统计规律;4)离岛型:不是正态分布,不服从统计规律;5)高原型:不是正态分布,不服从统计规律;6)双峰型:不是正态分布,不服从统计规律;7)不规则型:不是正态分布,不服从统计规律。
七、控制图
1、控制图法的涵义
影响产品质量的因素很多,有静态因素也有动态因素,有没有一种方法能够即时监控产品的生产过程、及时发现质量隐患,以便改善生产过程,减少废品和次品的产出?控制图法就是这样一种以预防为主的质量控制方法,它利用现场收集到的质量特征值,绘制成控制图,通过观察图形来判断产品的生产过程的质量状况。控制图可以提供很多有用的信息,是质量管理的重要方法之一。控制图又叫管理图,它是一种带控制界限的质量管理图表。运用控制图的目的之一就是,通过观察控制图上产品质量特性值的分布状况,分析和判断生产过程是否发生了异常,一旦发现异常就要及时采取必要的措施加以消除,使生产过程恢复稳定状态。也可以应用控制图来使生产过程达到统计控制的状态。产品质量特性值的分布是一种统计分布.因此,绘制控制图需要应用概率论的相关理论和知识。
控制图是对生产过程质量的一种记录图形,图上有中心线和上下控制限,并有反映按时间顺序抽取的各样本统计量的数值点。中心线是所控制的统计量的平均值,上下控制界限与中心线相距数倍标准差。多数的制造业应用三倍标准差控制界限,如果有充分的证据也可以使用其它控制界限。
常用的控制图有计量值和记数值两大类,它们分别适用于不同的生产过程;每类又可细分为具体的控制图,如计量值控制图可具体分为均值——极差控制图、单值一移动极差控制图等。
2、控制图的绘制
控制图的基本式样如图所示,制作控制图一般要经过以下几个步骤:
①按规定的抽样间隔和样本大小抽取样本;
②测量样本的质量特性值,计算其统计量数值;
③在控制图上描点;
④判断生产过程是否有并行。
控制图为管理者提供了许多有用的生产过程信息时应注意以下几个问题:
①根据工序的质量情况,合理地选择管理点。管理点一般是指关键部位、关健尺寸、工艺本身有特殊要求、对下工存有影响的关键点,如可以选质量不稳定、出现不良品较多的部位为管理点;
②根据管理点上的质量问题,合理选择控制图的种类:
③使用控制图做工序管理时,应首先确定合理的控制界限:
④控制图上的点有异常状态,应立即找出原因,采取措施后再进行生产,这是控制图发挥作用的首要前提;
⑤控制线不等于公差线,公差线是用来判断产品是否合格的,而控制线是用来判断工序质量是否发生变化的;
⑥控制图发生异常,要明确责任,及时解决或上报。
制作控制图时并不是每一次都计算控制界限,那么最初控制线是怎样确定的呢?如果现在的生产条件和过去的差不多,可以遵循以往的经验数据,即延用以往稳定生产的控制界限。下面介绍一种确定控制界限的方法,即现场抽样法,其步骤如下:
①随机抽取样品50件以上,测出样品的数据,计算控制界限,做控制图;
②观察控制图是否在控制状态中,即稳定情况,如果点全部在控制界限内.而且点的排列无异常,则可以转入下一步;
③如果有异常状态,或虽未超出控制界限,但排列有异常,则需查明导致异常的原因,并采取妥善措施使之处在控制状态,然后再重新取数据计算控制界限,转入下一步;
④把上述所取数据作立方图,将立方图和标准界限(公差上限和下限)相比较,看是否在理想状态和较理想状态,如果达不到要求,就必须采取措施,使平均位移动或标准偏差减少,采取措施以后再重复上述步骤重新取数据,做控制界限,直到满足标准为止。
3、怎样利用控制图判断异常现象
用控制图识别生产过程的状态,主要是根据样本数据形成的样本点位置以及变化趋势进行分析和判断.失控状态主要表现为以下两种情况:①样本点超出控制界限;②样本点在控制界限内,但排列异常。当数据点超越管理界限时,一般认为生产过程存在异常现象,此时就应该追究原因,并采取对策。排列异常主要指出现以下几种情况: ③连续七个以上的点全部偏离中心线上方或下方,这时应查看生产条件是否出现了变化。④连续三个点中的两个点进入管理界限的附近区域(指从中心线开始到管理界限的三分之二以上的区域),这时应注意生产的波动度是否过大。⑤点相继出现向上或向下的趋势,表明工序特性在向上或向下发生着变化。⑥点的排列状态呈周期性变化,这时可对作业时间进行层次处理,重新制作控制图,以便找出问题的原因。控制图对异常现象的揭示能力,将根据数据分组时各组数据的多少、样本的收集方法、层别的划分不同而不同。不应仅仅满足于对一份控制图的使用,而应变换各种各样的数据收取方法和使用方法,制作出各种类型的图表,这样才能收到更好的效果。值得注意的是,如果发现了超越管理界限的异常现象,却不去努力追究原因,采取对策,那么尽管控制图的效用很好.也只不过是空纸一张。品管新七大手法☆ 关联图
☆ 系统图
☆ 亲和图
☆ 矩阵图
☆ PDPC法(过程决策方法)
☆ 箭条图
☆ 数据矩阵解析法质量管理八大原则1.以顾客为关注焦点:组职依存于顾客,因此组织应当理解顾客当前和未来的需求,满求满足顾客要求并争取超越顾客期望.2.领导作用:
领导者确立组织统一的宗旨和方向,他们应当创造并保持使员工能充分参与实现组织目标的内部环境.3.全员能与:
各级人员都是组织人,只有他们的充分参与,才能使他们的才干为组织带来收益,4.过程方法:
将活动和相关的资源作为过程进行管理,可以更高效地得到期望的结果.5.管理的系统方法:
将相互关联的过程作为系统加以识别,理解和管理有助于组织提高实现目标的有效性的效率.6.持续改进:
持续改进总体业绩应当是组织上的一个永恒目标.7.基于事实的决策方法:有效决策是建立在数据和信息分析的基础上.8.与供方互利的关系:组织与供方是相互依存的,互利的关系可增强双方创造价值的能力.以上八大质量管理原则形成了质量管理体标准的基础.
第四篇:品管七大手法和四大原则
一、起源
新旧七种工具都是由日本人总结出来的。日本人在提出旧七种工具推行并获得成功之后,1979年又提出新七种工具。之所以称之为“七种工具”,是因为日本古代武士在出阵作战时,经常携带有七种武器,所谓七种工具就是沿用了七种武器。
有用的质量统计管理工具当然不止七种。除了新旧七种工具以外,常用的工具还有实验设计、分布图、推移图等。
本次课程,主要讲的是QC七大手法,而SPC(管制图)是QC七大手法的核心部分,是本次培训的重点内容。
二、旧七种工具
QC旧七大手法指的是:检查表、层别法、柏拉图、因果图、散布图、直方图、管制图。
旧七种工具是我们本次课程的内容,也是我们将要大力推行的管理方法。从某种意义上讲,推行QC七大手法的情况,一定程度上表明了公司管理的先进程度。这些手法的应用之成败,将成为公司升级市场的一个重要方面:几乎所有的OEM客户,都会把统计技术应用情况作为审核的重要方面,例如TDI、MOTOROLA等。
三、新七种工具
QC新七大手法指的是:关系图法、KJ法、系统图法、矩阵图法、矩阵数据分析法、PDPC法、网络图法。
相对而言,新七大手法在世界上的推广应用远不如旧七大手法,也从未成为顾客审核的重要方面。
第二章 层别法
一、定义
层别法是所有手法中最基本的概念,亦即将多种多样的资料,因应目的的需要分成不同的类别,使之方便以后的分析。
二、通常的层别方法
使用的最多的是空间别:
作业员:不同拉、班、组别
机器:不同机器别
原料、零件:不同供给厂家别
作业条件:不同的温度、压力、湿度、作业场所
产品:不同的产品别(如同时生产Ni-Cd和Ni-MH电池)
时间别:不同批别、不同时间生产的产品
其他:如使用不同的工艺方法生产的同种产品别
三、应用
层别法的应用,主要是一种系统概念,即在于要想把相当复杂的资料进行处理,就得懂得如何把这些资料加以有系统有目的的加以分门别类的归纳及统计。第三章 检查表
一、概述
检查表是QC七大手法中最简单也是使用得最多的手法。但或许正因为其简单而不受重视,所以检查表使用的过程中存在的问题不少。不妨看看我们现在正在使用的各种报表,是不是有很多栏目空缺?是不是有很多栏目的内容用笔进行了修改?是不是有很多栏目内容有待修改?
二、定义
以简单的数据,用容易理解的方式,制成图形或表格,必要时记上检查记号,并加以统计整理,作为进一步分析或核对检查之用。
三、目的记录某种事件发生的频率。
四、时机
1.当你必须记下某种事件发生的具体情况时;
2.当你想了解某件事件发生的次数时;
3.当你想收集资讯时。
五、检查表种类
1.不合格项目的检查表;
2.工序分布检查表;
3.缺陷位置检查表;
4.操作检查表。
六、使用检查表的注意事项
1.应尽量取得分层的信息;
2.应尽量简便地取得数据;
3.应立即与措施结合。应事先规定对什么样的数据发出警告,停止生产或向上级报告。
4.检查项目如果是很久以前制订现已不适用的,必须重新研究和修订 5.通常情况下归类中不能出现“其他问题类”。
第四章 柏拉图
一、起源
意大利经济学家Vilfredo.Pareto巴雷托(柏拉图)在分析社会财富分配时设计出的一种统计图,美国品管大师Joseph Juran将之加以应用到质量管理中。柏拉图能够充分反映出“少数关键、多数次要”的规律,也就是说柏拉图是一种寻找主要因素、抓住主要矛盾的手法。例如:少数用户占有大部分销售额、设备故障停顿时间大部分由少数故障引起,不合格品中大多数由少数人员造成等。
二、定义
根据收集的数据,以不良原因、不良状况、不良发生的位置分类;计算各项目所占的比例按大小顺序排列,再加上累积值的图形。
按照累计的百分数可以将各项分成三类:
0~80%为A类,显然是主要问题点;
80~90%为B类,是次要因素;
90~100%为C类,是一般因素。
三、作图步骤
1.搜集数据;如063048正极片批量为20000PCS,不良品中变形600,露铝360,硬块120,暗痕60,其他不良60。
2.作出分项统计表(按原因、人员、工序、不良项目等)A把分类项目按频数大小从大到小进行排列,至于“其他”项,不论其频数大小均放在最后; B计算各项目的累计频数;C计算各项目在全体项目中所占比率(即频率)D计算累计比率。(示范表格见下页)
示范表格(正极制片不良分项统计表,总批量20000PCS):
项目 数量 累计数 比率% 累计比率%
变形 600 600 50% 50%
露铝 360 960 30% 80%
硬块 120 1080 10% 90%
暗痕 60 1140 5% 95%
其他 60 1200 5% 100%
3.绘制排列图
A纵轴:
左:频数刻度,最大为总件数
右:频率(比率)刻度,最大数为100%。
注:总件数与最大数100%应保持在同一水平线上。
B横轴:按频数大小用直方柱在横轴上表示各项目(从左至右)
C依次累加频率,并连接成线。
4.记入必要事项,如:图题、取数据时间、制图人、制图时间、检查产品总数、总频数等等。示范图(见下页)
很明显,上图中变形和露铝为A类不良项,需立即采取措施改善;硬块为B类不良项;暗痕和其他为C类不良项。B、C两类可稍后再采取措施改善。
四、使用排列图的注意事项
1.抓住“少数关键”,把累计比率分为三类:A、B、C;
2.用来确定采取措施的顺序;
3.对照采取措施前后的排列图,研究各个组成项目的变化,可以对措施的效果进行鉴定;
4.利用排列图不仅可以找到一个问题的主要矛盾,而且可以连续使用找到复杂问题的最终原因;
5.现场应注意将排列图、因果图等质量管理方法的综合运用。如可以使用因果图对造成变形和露铝的原因进行进一步的分析。
第五章 因果图
一、概述
因果图最先由日本品管大师石川馨提出来的,故又叫石川图,同时因其形状,又叫鱼刺图、鱼骨图、树枝图。还有一个名称叫特性要因图。
一个质量问题的发生往往不是单纯一种或几种原因的结果,而是多种因素综合作用的结果。要从这些错综复杂的因素中理出头绪,抓住关键因素,就需要利用科学方法,从质量问题这个“结果”出发,依靠群众,集思广益,由表及里,逐步深入,直到找到根源为止。
因果图就是用来根据结果寻找原因的一种QC手法。
二、定义
用以找出造成某问题可能原因的图表。
三、因果图可用来分析的问题类型
1.表示产品质量的特性:尺寸、强度、寿命、不合格率、废品件数、纯度、透光度等;
2.费用特性:价格、收率、工时数、管理费用等;
3.产量特性:产量、交货时间、计划时间等
4.其他特性:出勤率、差错件数、合理化建议件数
四、因果图的作图步骤
1.确定问题
2.画粗箭头
3.因素即原因分类
常用:4M1E即人(员)、机(器)、料(原料)、法(工艺方法)、环(境),有时还可以补充软(件)、辅(助材料)、公(用设施)三方面。
也可用:工序顺序等分类
分类好后,用中箭头与主箭头成45°角画在主箭头两侧。
4.对中箭头所代表的一类因素,要进一步将与其有关的因素以小箭头画到中箭头上去,如有必要,可再次细分至可以直接采取行动为止。
5.检查所列因素有无遗漏,如有遗漏应予补充。
6.各箭头末端的因素中,凡影响重大的重要因素可加上小圈等记号,按已有数据、搜集不到数据、未取数据等情况,还可加上其他简便记号。
7.记入有关事项,如参加人员、制图者、制定日期等。
五、注意事项
1.实质上是枚举法,故要走群众路线,集中讨论;
2.最好采用能用数值表示的问题;
3.最细的原因要具体,以便采取措施;
4.对应于一个特性可以作几个因果图,如可按4M1E作图,也可按工序进行分类,分别作因果图。重要原因可以抽出再作新的因果图。
5.综合运用如排列图、对策表等;
6.复印几份加以保存,以便以后不断追加新内容。
六、因果图与排列图联用
1.建立柏拉图须先以层别建立要求目的之统计表;
2.建立柏拉图之目的,在于掌握影响全局较大的[重要少数项目];
3.再利用因果图针对这些项目形成的要素逐予探讨,并采取改善对策;
七、另一种作图步骤(形象)
1.集合有关人员召集与此问题相关的、有经验的人员,人数最好4-10人,并推选一人主导(主持人);
2.挂一张大白纸,准备2~3支色笔;
3.由集合的人员就影响问题的要因发言,发言内容记入图上,中途不可批评或质问(脑力激荡法);
4.时间大约1小时,搜集20~30个原因即可结束;
5.就所搜集的原因,何者影响最大,再由大家轮流发言,经大家磋商后,认为影响较大的因素圈上红圈;
6.与5一样,针对已画上一个红圈的,若认为最重要的可以再圈上两圈、三圈;
7.重新画一张因果图,未上圈的予以去除,圈数多的列为优先处理。
八、因果图示范图
九、因果卡图简介
因果卡图是在因果图的基础上发展出来的,又称为CEDAC(Cause Effect Diagram And Cards)图。
因果卡图一般长宽各数米,大多公开张贴于生产作业现场或技术攻关地点的醒目位置,因果卡图的一般结构是:右上方为问题栏,简要说明问题的现状,作为进行质量改进的依据,右下方写明质量改进项目的目标(一般用定量值表示)、项目负责人以及项目实施期限;右方中间为质量随着本项目的实施的变化曲线;左方为鱼刺图形,鱼刺两旁分别张贴用颜色区分的原因分析卡和措施方法卡;下方钉有两只标上“原因”和“措施”字样的大口袋,分别装有两种不同颜色的卡片,供参与者填写之用。然后将卡片按一定规则分类(如4M1E)张贴于鱼刺图形上。如可以规定鱼刺的左边张贴原因卡,右边张贴措施卡,用横线将对应的原因卡与措施卡相联。
第六章 散布图法
一、定义
散布图是用来表示一组成对的数据之间是否有相关性的一种图表。这种成对的数据或许是[特性—要因]、[特性—特性]、[要因—要因]的关系。
二、散布图的分类
1.正相关(如容量和附料重量)
2.负相关(油的粘度与温度)
3.不相关(气压与气温)
4.弱正相关(身高和体重)
5.弱负相关(温度与步伐)
三、散布图的绘制程序
1.收集资料(至少三十组以上)
2.找出数据中的最大值与最小值;
3.准备座标纸,画出纵轴、横轴的刻度,计算组距。通常用纵轴代表结果,横轴代表原因。组距的计算以数据中的最大值减最小值再除以所需设定的组数求得。是否一定需分组?
4.将各组对应数标示在座标上;
5.填上资料的收集地点、时间、测定方法、制作者等项目。
四、散布图的应用
当不知道两个因素之间的关系或两个因素之间关系在认识上比较模糊而需要对这两个因素之间的关系进行调查和确认时,可以通过散布图来确认二者之间的关系。实际上是一种实验的方法。
需要强调的是,在使用散布图调查两个因素之间的关系时,应尽可能固定对这两个因素有影响的其他因素,才能使通过散布图得到的结果比较准确。
五、散布图五种类型的示范图(见下页)
第七章 直方图法
一、定义:
为要容易的看出如长度、重量、时间、硬度等计量什的数据之分配情形,所用来表示的图形。
直方图是将所收集的测定值或数据之全距分为几个相等的区间作为横轴,并将各区间内之测定值所出现次数累积而成的面积,用柱子排起来的图形,故我们亦称之为柱状图。
二、直方图的作图步骤
1.收集记录数据
2.定组数
3.找到最大值L及最小值S,计算全距RR=L-S
4.定组距
R÷组数=组距
5.定组界
最小一组的下组界=S-[测量值的最小位数×0.5]最小一组的上组界=最小一组的下组界+组距依次类推。
6.决定中心点
(上组界+下组界)÷2=组的中心点
7.制作次数分布表
8.制作直方图
9.填上次数、规格、平均值、数据源、日期
三、直方图之功用
1.评估或查验制程;
2.指出采取行动的必要;
3.量测已采取矫正行动的效果;
4.比较机械绩效;
5.比较物料;
6.比较供应商。
第五篇:品管七大手法是常用的统计管理方法
品管七大手法是常用的统计管理方法,又称为初级统计管理方法。它主要包括控制图、因果图、相关图、排列图、统计分析表、数据分层法、散布图等所谓的QC七工具。
其实,质量管理的方法可以分为两大类:一是建立在全面质量管理思想之上的组织性的质量管理;二是以数理统计方法为基础的质量控制。
组织性的质量管理方法是指从组织结构,业务流程和人员工作方式的角度进行质量管理的方法,它建立在全面质量管理的思想之上,主要内容有制定质量方针,建立质量保证体系,开展QC小组活动,各部门质量责任的分担,进行质量诊断等。
统计质量控制是美国的贝尔电话实验所的休哈特(W.A.Shewhart)博士在1924年首先提出的控制图为起点,半个多世纪以来有了很大发展,现在这些方法可大致分为以下三类。
(1)初级统计管理方法:又称为常用的统计管理方法。它主要包括控制图、因果图、相关图、排列图、统计分析表、数据分层法、散布图等所谓的QC七工具(或叫品管七大手法)。运用这些工具,可以从经常变化的生产过程中,系统地收集与产品质量有关的各种数据,并用统计方法对数据进行整理,加工和分析,进而画出各种图表,计算某些数据指标,从中找出质量变化的规律,实现对质量的控制。日本著名的质量管理专家石川馨曾说过,企业内95%的质量管理问题,可通过企业上上下下全体人员活用这QC七工具而得到解决。全面质量管理的推行,也离不开企业各级、各部门人员对这些工具的掌握与灵活应用。
(2)中级统计管理方法 :包括抽样调查方法、抽样检验方法、功能检查方法、实验计划法、方法研究等。这些方法不一定要企业全体人员都掌握,主要是有关技术人员和质量管理部门的人使用。
(3)高级统计管理方法:包括高级实验计划法、多变量解析法。这些方法主要用于复杂的工程解析和质量解析,而且要借助于计算机手段,通常只是专业人员使用这些方法。
这里就概要介绍常用的初级统计质量管理七大手法即所谓的“QC七工具”,供网友们参考。
(一)统计分析表
统计分析表是利用统计表对数据进行整理和初步分析原因的一种工具,其格式可多种多样,这种方法虽然较单,但实用有效。
(二)数据分层法
数据分层法就是性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。因为在实际生产中,影响质量变动的因素很多如果不把这些困素区别开来,难以得出变化的规律。数据分层可根据实际情况按多种方式进行。例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,原材料成分进行分层,按检查手段,使用条件进行分层,按不同缺陷项目进行分层,等等。数据分层法经常与上述的统计分析表结合使用。
数据分层法的应用,主要是一种系统概念,即在于要想把相当复杂的资料进行处理,就得懂得如何把这些资料加以有系统有目的加以分门别类的归纳及统计。
科学管理强调的是以管理的技法来弥补以往靠经验靠视觉判断的管理的不足。而此管理技法,除了建立正确的理念外,更需要有数据的运用,才有办法进行工作解析及采取正确的措施。
如何建立原始的数据及将这些数据依据所需要的目的进行集计,也是诸多品管手法的最基础工作。
举个例子:我国航空市场近几年随着开放而竞争日趋激烈,航空公司为了争取市场除了加强各种措施外,也在服务品质方面下功夫。我们也可以经常在航机上看到客户满意度的调查。此调查是通过调查表来进行的。调查表的设计通常分为地面的服务品质及航机上的服务品质。地面又分为订票,候机;航机又分为空服态度,餐饮,卫生等。透过这些调查,将这些数据予以集计,就可得到从何处加强服务品质了。
(三)排列图(柏拉图)
排列图又称为柏拉图,由此图的发明者19世纪意大利经济学家柏拉图(Pareto)的名字而得名。柏拉图最早用排列图分析社会财富分布的状况,他发现当时意大利80%财富集中在20%的人手里,后来人们发现很多场合都服从这一规律,于是称之为Pareto定律。后来美国质量管理专家朱兰博士运用柏拉图的统计图加以延伸将其用于质量管理。排列图是分析和寻找影响质量主原因素的一种工具,其形式用双直角坐标图,左边纵坐标表示频数(如件数金额等),右边纵坐标表示频率(如百分比表示)。分折线表示累积频率,横
坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左向右排列。通过对排列图的观察分析可抓住影响质量的主原因素。这种方法实际上不仅在质量管理中,在其他许多管理工作中,例如在库存管理中,都有是十分有用的。
在质量管理过程中,要解决的问题很多,但往往不知从哪里着手,但事实上大部分的问题,只要能找出几个影响较大的原因,并加以处置及控制,就可解决问题的 80%以上。柏拉图是根据归集的数据,以不良原因,不良状况发生的现象,有系统地加以项目别(层别)分类,计算出各项目别所产生的数据(如不良率,损失金额)及所占的比例,再依照大小顺序排列,再加上累积值的图形。
在工厂或办公室里,把低效率,缺损,制品不良等损失按其原因别或现象别,也可换算成损失金额的80%以上的项目加以追究处理,这就是所谓的柏拉图分析。
柏拉图的使用要以层别法的项目别(现象别)为前提,依经顺位调整过后的统计表才能画制成柏拉图。柏拉图分析的步骤;
(1)将要处置的事,以状况(现象)或原因加以层别。
(2)纵轴虽可以表示件数,但最好以金额表示比较强烈。
(3)决定搜集资料的期间,自何时至何时,作为柏拉图资料的依据,期限间尽可能定期。
(4)各项目依照合半之大小顺位左至右排列在横轴上。
(5)绘上柱状图。
(6)连接累积曲线。
柏拉图法(重点管制法),提供了我们在没法面面俱到的状况下,去抓重要的事情,关键的事情,而这些重要的事情又不是靠直觉判断得来的,而是有数据依据的,并用图形来加强表示。也就是层别法提供了统计的基础,柏拉图法则可帮助我们抓住关键性的事情。
(四)因果分析图
因果分析图是以结果作为特性,以原因作为因素,在它们之间用箭头联系表示因果关系。因果分析图是一种充分发动员工动脑筋,查原因,集思广益的好办法,也特别适合于工作小组中实行质量的民主管理。当出现了某种质量问题,未搞清楚原因时,可针对问题发动大家寻找可能的原因,使每个人都畅所欲言,把所有可能的原因都列出来。
所谓因果分析图,就是将造成某项结果的众多原因,以系统的方式图解,即以图来表达结果(特性)与原因(因素)之间的关系。其形状像鱼骨,又称鱼骨图。
某项结果之形成,必定有原因,应设法利用图解法找出其因。首先提出了这个概念的是日本品管权威石川馨博士,所以特性原因图又称[石川图>。因果分析图,可使用在一般管理及工作改善的各种阶段,特别是树立意识的初期,易于使问题的原因明朗化,从而设计步骤解决问题。
(1)果分析图使用步骤
步骤1:集合有关人员。
召集与此问题相关的,有经验的人员,人数最好4-10人。
步骤2:挂一张大白纸,准备2-3支色笔。
步骤3:由集合的人员就影响问题的原因发言,发言内容记入图上,中途不可批评或质问。(脑力激荡 法)步骤4:时间大约1个小时,搜集20-30个原因则可结束。
步骤5:就所搜集的原因,何者影响最大,再由大轮流发言,经大家磋商后,认为影响较大予圈上红色圈。步骤6:与步骤5一样,针对已圈上一个红圈的,若认为最重要的可以再圈上两圈,三圈。
步骤7:重新画一张原因图,未上圈的予于去除,圈数愈多的列为最优先处理。
因果分析图提供的是抓取重要原因的工具,所以参加的人员应包含对此项工作具有经验者,才易秦效。
(2)因果分析图与柏拉图之使用
建立柏拉图须先以层别建立要求目的之统计表。建立柏拉图之目的,在于掌握影响全局较大的重要少数项目。再利用特性原因图针对这些项目形成的原因逐予于探讨,并采取改善对策。所以因果分析图可以单独使用,也可连接柏拉图使用。
(3)因果分析图再分析
要对问题形成的原因追根究底,才能从根本上解决问题。形成问题之主要原因找出来以后,再以实验设计的方法进行实验分析,拟具体实验方法,找出最佳工作方法,问题也许能得以彻底解决,这是解决问题,更是预防问题。
任何一个人,任何一个企业均有它追求的目标,但在追求目标的过程中,总会有许许多多有形与无形的障碍,而这些障碍是什么,这些障碍何于形成,这些障碍如何破解等问题,就是原因分析图法主要的概念。一个管理人员,在他的管理工作范围内所追求的目标,假如加以具体的归纳,我们可得知从项目来说不是很多。然而就每个追求的项目来说,都有会有影响其达成目的的主要原因及次要原因,这些原因就是阻碍你达成工作的变数。
如何将追求的项目一一地罗列出来,并将影响每个项目达成的主要原因及次要原因也整理出来,并使用因果分析图来表示,并针对这些原因有计划地加以强化,将会使你的管理工作更加得心应手。
同样地,有了这些原因分析图,即使发生问题,在解析问题的过程中,也能更快速,更可靠。
(五)直方图
直方图又称柱状图,它是表示数据变化情况的一种主要工具。用直方图可以将杂乱无章的资料,解析出规则性,比较直观地看出产品质量特性的分布状态,对于资料中心值或分布状况一目了然,便于判断其总体质量分布情况。在制作直方图时,牵涉到一些统计学的概念,首先要对数据进行分组,因此如何合理分组是其中的关键问题。分组通常是按组距相等的原则进行的两个关键数字是分组数和组距。
(六)散布图
散布图又叫相关图,它是将两个可能相关的变量数据用点画在坐标图上,用来表示一组成对的数据之间是否有相关性。这种成对的数据或许是特性一原因,特性一特性,原因一原因的关系。通过对其观察分析,来判断两个变量之间的相关关系。这种问题在实际生产中也是常见的,例如热处理时淬火温度与工件硬度之间的关系,某种元素在材料中的含量与材料强度的关系等。这种关系虽然存在,但又难以用精确的公式或函数关系表示,在这种情况下用相关图来分析就是很方便的。假定有一对变量x 和 y,x 表示某一种影响因素,y 表示某一质量特征值,通过实验或收集到的x 和 y 的数据,可以在坐标图上用点表示出来,根据点的分布特点,就可以判断 x和 y 的相关情况。
在我们的生活及工作中,许多现象和原因,有些呈规则的关联,有些呈不规则形有关联。我们要了解它,就可借助散布图统计手法来判断它们之间的相关关系。
(七)控制图
控制图又称为管制图。由美国的贝尔电话实验所的休哈特(W.A.Shewhart)博士在1924年首先提出管制图使用后,管制图就一直成为科学管理的一个重要工具,特别在质量管理方面成了一个不可或缺的管理工具。它是一种有控制界限的图,用来区分引起质量波动的原因是偶然的还是系统的,可以提供系统原因存在的信息,从而判断生产过程是否处于受控状态。控制图按其用途可分为两类,一类是供分析用的控制图,用控制图分析生产过程中有关质量特性值的变化情况,看工序是否处于稳定受控状;再一类是供管理用的控制图,主要用于发现生产过程是否出现了异常情况,以预防产生不合格品。
统计管理方法是进行质量控制的有效工具,但在应用中必须注意以下几个问题,否则的话就得不到应有的效果。这些问题主要是:1)数据有误。数据有误可能是两种原因造成的,一是人为的使用有误数据,二是由于未真正掌握统计方法;2)数据的采集方法不正确。如果抽样方法本身有误则其后的分析方法再正确也是无用的;3)数据的记录,抄写有误;4)异常值的处理。通常在生产过程取得的数据中总是含有一些异常值的,它们会导致分析结果有误。
以上概要介绍了七种常用初级统计质量管理七大手法即所谓的“QC七工具”,这些方法集中体现了质量管理的“以事实和数据为基础进行判断和管理”的特点。最后还需指出的是,这些方法看起来都比较简单,但能够在实际工作中正确灵活地应用并不是一件简单的事。